/usr/share/gap/lib/algrep.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 | #############################################################################
##
#W algrep.gd GAP library Willem de Graaf
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for general modules over algebras.
##
#############################################################################
##
## <#GAPDoc Label="[1]{algrep}">
## An algebra module is a vector space together with an action of an
## algebra. So a module over an algebra is constructed by giving generators
## of a vector space, and a function for calculating the action of
## algebra elements on elements of the vector space. When creating an
## algebra module, the generators of the vector space are wrapped up and
## given the category <C>IsLeftAlgebraModuleElement</C> or
## <C>IsRightModuleElement</C> if the algebra acts from the left, or right
## respectively. (So in the case of a bi-module the elements get
## both categories.) Most linear algebra computations are delegated to
## the original vector space.
## <P/>
## The transition between the original vector space and the corresponding
## algebra module is handled by <C>ExtRepOfObj</C> and <C>ObjByExtRep</C>.
## For an element <C>v</C> of the algebra module, <C>ExtRepOfObj( v )</C> returns
## the underlying element of the original vector space. Furthermore, if <C>vec</C>
## is an element of the original vector space, and <C>fam</C> the elements
## family of the corresponding algebra module, then <C>ObjByExtRep( fam, vec )</C>
## returns the corresponding element of the algebra module. Below is an
## example of this.
## <P/>
## The action of the algebra on elements of the algebra module is constructed
## by using the operator <C>^</C>. If <C>x</C> is an element of an algebra <C>A</C>, and
## <C>v</C> an element of a left <C>A</C>-module, then <C>x^v</C> calculates the result
## of the action of <C>x</C> on <C>v</C>. Similarly, if <C>v</C> is an element of
## a right <C>A</C>-module, then <C>v^x</C> calculates the action of <C>x</C> on <C>v</C>.
## <#/GAPDoc>
##
##############################################################################
##
#C IsAlgebraModuleElement( <obj> )
#C IsAlgebraModuleElementCollection( <obj> )
#C IsAlgebraModuleElementFamily( <fam> )
##
## <#GAPDoc Label="IsAlgebraModuleElement">
## <ManSection>
## <Filt Name="IsAlgebraModuleElement" Arg='obj' Type='Category'/>
## <Filt Name="IsAlgebraModuleElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsAlgebraModuleElementFamily" Arg='fam' Type='Category'/>
##
## <Description>
## Category of algebra module elements. If an object has
## <C>IsAlgebraModuleElementCollection</C>, then it is an algebra module.
## If a family has <C>IsAlgebraModuleElementFamily</C>, then it is a family
## of algebra module elements (every algebra module has its own elements
## family).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAlgebraModuleElement", IsVector );
DeclareCategoryCollections( "IsAlgebraModuleElement" );
DeclareCategoryFamily( "IsAlgebraModuleElement" );
##############################################################################
##
#C IsLeftAlgebraModuleElement( <obj> )
#C IsLeftAlgebraModuleElementCollection( <obj> )
##
## <#GAPDoc Label="IsLeftAlgebraModuleElement">
## <ManSection>
## <Filt Name="IsLeftAlgebraModuleElement" Arg='obj' Type='Category'/>
## <Filt Name="IsLeftAlgebraModuleElementCollection" Arg='obj' Type='Category'/>
##
## <Description>
## Category of left algebra module elements. If an object has
## <C>IsLeftAlgebraModuleElementCollection</C>, then it is a left-algebra module.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsLeftAlgebraModuleElement", IsAlgebraModuleElement );
DeclareCategoryCollections( "IsLeftAlgebraModuleElement" );
##############################################################################
##
#C IsRightAlgebraModuleElement( <obj> )
#C IsRightAlgebraModuleElementCollection( <obj> )
##
## <#GAPDoc Label="IsRightAlgebraModuleElement">
## <ManSection>
## <Filt Name="IsRightAlgebraModuleElement" Arg='obj' Type='Category'/>
## <Filt Name="IsRightAlgebraModuleElementCollection" Arg='obj' Type='Category'/>
##
## <Description>
## Category of right algebra module elements. If an object has
## <C>IsRightAlgebraModuleElementCollection</C>, then it is a right-algebra module.
## <Example><![CDATA[
## gap> A:= Rationals^[3,3];
## ( Rationals^[ 3, 3 ] )
## gap> M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );
## <bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
## [ 3, 3 ] ) (right)>
## gap> vv:= BasisVectors( Basis( M ) );
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
## gap> IsLeftAlgebraModuleElement( vv[1] );
## true
## gap> IsRightAlgebraModuleElement( vv[1] );
## true
## gap> vv[1] = [ 1, 0, 0 ];
## false
## gap> ExtRepOfObj( vv[1] ) = [ 1, 0, 0 ];
## true
## gap> ObjByExtRep( ElementsFamily( FamilyObj( M ) ), [ 1, 0, 0 ] ) in M;
## true
## gap> xx:= BasisVectors( Basis( A ) );;
## gap> xx[4]^vv[1]; # left action
## [ 0, 1, 0 ]
## gap> vv[1]^xx[2]; # right action
## [ 0, 1, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsRightAlgebraModuleElement", IsAlgebraModuleElement );
DeclareCategoryCollections( "IsRightAlgebraModuleElement" );
##############################################################################
##
#P IsAlgebraModule( <M> )
##
## <ManSection>
## <Prop Name="IsAlgebraModule" Arg='M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareProperty( "IsAlgebraModule", IsLeftModule );
##############################################################################
##
#P IsLeftAlgebraModule( <M> )
##
## <ManSection>
## <Prop Name="IsLeftAlgebraModule" Arg='M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareProperty( "IsLeftAlgebraModule", IsLeftModule );
##############################################################################
##
#P IsRightAlgebraModule( <M> )
##
## <ManSection>
## <Prop Name="IsRightAlgebraModule" Arg='M'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareProperty( "IsRightAlgebraModule", IsLeftModule );
##############################################################################
##
#A LeftActingAlgebra( <V> )
##
## <#GAPDoc Label="LeftActingAlgebra">
## <ManSection>
## <Attr Name="LeftActingAlgebra" Arg='V'/>
##
## <Description>
## Here <A>V</A> is a left-algebra module; this function returns the algebra
## that acts from the left on <A>V</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LeftActingAlgebra", IsAlgebraModule );
#############################################################################
##
#A RightActingAlgebra( <V> )
##
## <#GAPDoc Label="RightActingAlgebra">
## <ManSection>
## <Attr Name="RightActingAlgebra" Arg='V'/>
##
## <Description>
## Here <A>V</A> is a right-algebra module; this function returns the algebra
## that acts from the right on <A>V</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RightActingAlgebra", IsAlgebraModule );
##############################################################################
##
#O ActingAlgebra( <V> )
##
## <#GAPDoc Label="ActingAlgebra">
## <ManSection>
## <Oper Name="ActingAlgebra" Arg='V'/>
##
## <Description>
## Here <A>V</A> is an algebra module; this function returns the algebra
## that acts on <A>V</A> (this is the same as <C>LeftActingAlgebra( <A>V</A> )</C> if <A>V</A> is
## a left module, and <C>RightActingAlgebra( <A>V</A> )</C> if <A>V</A> is a right module;
## it will signal an error if <A>V</A> is a bi-module).
## <Example><![CDATA[
## gap> A:= Rationals^[3,3];;
## gap> M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );;
## gap> LeftActingAlgebra( M );
## ( Rationals^[ 3, 3 ] )
## gap> RightActingAlgebra( M );
## ( Rationals^[ 3, 3 ] )
## gap> V:= RightAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;
## gap> ActingAlgebra( V );
## ( Rationals^[ 3, 3 ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ActingAlgebra", [ IsAlgebraModule ] );
##############################################################################
##
#A GeneratorsOfAlgebraModule( <M> )
##
## <#GAPDoc Label="GeneratorsOfAlgebraModule">
## <ManSection>
## <Attr Name="GeneratorsOfAlgebraModule" Arg='M'/>
##
## <Description>
## A list of elements of <A>M</A> that generate <A>M</A> as an algebra module.
## <Example><![CDATA[
## gap> A:= Rationals^[3,3];;
## gap> V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;
## gap> GeneratorsOfAlgebraModule( V );
## [ [ 1, 0, 0 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfAlgebraModule", IsAlgebraModule );
##############################################################################
##
#O LeftAlgebraModuleByGenerators( <A>, <op>, <gens> )
##
## <#GAPDoc Label="LeftAlgebraModuleByGenerators">
## <ManSection>
## <Oper Name="LeftAlgebraModuleByGenerators" Arg='A, op, gens'/>
##
## <Description>
## Constructs the left algebra module over <A>A</A> generated by the list of
## vectors
## <A>gens</A>. The action of <A>A</A> is described by the function <A>op</A>. This must
## be a function of two arguments; the first argument is the algebra element,
## and the second argument is a vector; it outputs the result of applying
## the algebra element to the vector.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LeftAlgebraModuleByGenerators", [ IsAlgebra, IS_FUNCTION,
IsHomogeneousList ]);
##############################################################################
##
#O RightAlgebraModuleByGenerators( <A>, <op>, <gens> )
##
## <#GAPDoc Label="RightAlgebraModuleByGenerators">
## <ManSection>
## <Oper Name="RightAlgebraModuleByGenerators" Arg='A, op, gens'/>
##
## <Description>
## Constructs the right algebra module over <A>A</A> generated by the list of
## vectors
## <A>gens</A>. The action of <A>A</A> is described by the function <A>op</A>. This must
## be a function of two arguments; the first argument is a vector, and the
## second argument is the algebra element; it outputs the result of applying
## the algebra element to the vector.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RightAlgebraModuleByGenerators", [ IsAlgebra, IS_FUNCTION,
IsHomogeneousList ]);
##############################################################################
##
#O BiAlgebraModuleByGenerators( <A>, <B>, <opl>, <opr>, <gens> )
##
## <#GAPDoc Label="BiAlgebraModuleByGenerators">
## <ManSection>
## <Oper Name="BiAlgebraModuleByGenerators" Arg='A, B, opl, opr, gens'/>
##
## <Description>
## Constructs the algebra bi-module over <A>A</A> and <A>B</A> generated by the list of
## vectors
## <A>gens</A>. The left action of <A>A</A> is described by the function <A>opl</A>,
## and the right action of <A>B</A> by the function <A>opr</A>. <A>opl</A> must be a
## function of two arguments; the first argument is the algebra element,
## and the second argument is a vector; it outputs the result of applying
## the algebra element on the left to the vector. <A>opr</A> must
## be a function of two arguments; the first argument is a vector, and the
## second argument is the algebra element; it outputs the result of applying
## the algebra element on the right to the vector.
## <Example><![CDATA[
## gap> A:= Rationals^[3,3];
## ( Rationals^[ 3, 3 ] )
## gap> V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );
## <left-module over ( Rationals^[ 3, 3 ] )>
## gap> W:= RightAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );
## <right-module over ( Rationals^[ 3, 3 ] )>
## gap> M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );
## <bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
## [ 3, 3 ] ) (right)>
## ]]></Example>
## <P/>
## In the above examples, the modules <C>V</C>, <C>W</C>, and <C>M</C> are
## <M>3</M>-dimensional vector spaces over the rationals.
## The algebra <C>A</C> acts from the left on <C>V</C>, from the right on
## <C>W</C>, and from the left and from the right on <C>M</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "BiAlgebraModuleByGenerators", [ IsAlgebra, IsAlgebra,
IS_FUNCTION, IS_FUNCTION, IsHomogeneousList ]);
##############################################################################
##
#O LeftAlgebraModule( <A>, <op>, <V> )
##
## <#GAPDoc Label="LeftAlgebraModule">
## <ManSection>
## <Oper Name="LeftAlgebraModule" Arg='A, op, V'/>
##
## <Description>
## Constructs the left algebra module over <A>A</A> with underlying space <A>V</A>.
## The action of <A>A</A> is described by the function <A>op</A>. This must
## be a function of two arguments; the first argument is the algebra element,
## and the second argument is a vector from <A>V</A>; it outputs the result of
## applying the algebra element to the vector.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LeftAlgebraModule", [ IsAlgebra, IS_FUNCTION,
IsVectorSpace ]);
##############################################################################
##
#O RightAlgebraModule( <A>, <op>, <V> )
##
## <#GAPDoc Label="RightAlgebraModule">
## <ManSection>
## <Oper Name="RightAlgebraModule" Arg='A, op, V'/>
##
## <Description>
## Constructs the right algebra module over <A>A</A> with underlying space <A>V</A>.
## The action of <A>A</A> is described by the function <A>op</A>. This must
## be a function of two arguments; the first argument is a vector, from <A>V</A>
## and the
## second argument is the algebra element; it outputs the result of applying
## the algebra element to the vector.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RightAlgebraModule", [ IsAlgebra, IS_FUNCTION,
IsVectorSpace ]);
##############################################################################
##
#O BiAlgebraModule( <A>, <B>, <opl>, <opr>, <V> )
##
## <#GAPDoc Label="BiAlgebraModule">
## <ManSection>
## <Oper Name="BiAlgebraModule" Arg='A, B, opl, opr, V'/>
##
## <Description>
## Constructs the algebra bi-module over <A>A</A> and <A>B</A> with underlying space
## <A>V</A>. The left action of <A>A</A> is described by the function <A>opl</A>,
## and the right action of <A>B</A> by the function <A>opr</A>. <A>opl</A> must be a
## function of two arguments; the first argument is the algebra element,
## and the second argument is a vector from <A>V</A>; it outputs the result of
## applying
## the algebra element on the left to the vector. <A>opr</A> must
## be a function of two arguments; the first argument is a vector from <A>V</A>,
## and the
## second argument is the algebra element; it outputs the result of applying
## the algebra element on the right to the vector.
## <Example><![CDATA[
## gap> A:= Rationals^[3,3];;
## gap> V:= Rationals^3;
## ( Rationals^3 )
## gap> V:= Rationals^3;;
## gap> M:= BiAlgebraModule( A, A, \*, \*, V );
## <bi-module over ( Rationals^[ 3, 3 ] ) (left) and ( Rationals^
## [ 3, 3 ] ) (right)>
## gap> Dimension( M );
## 3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "BiAlgebraModule", [ IsAlgebra, IsAlgebra,
IS_FUNCTION, IS_FUNCTION, IsVectorSpace ]);
##############################################################################
##
#C IsBasisOfAlgebraModuleElementSpace( <B> )
##
## <#GAPDoc Label="IsBasisOfAlgebraModuleElementSpace">
## <ManSection>
## <Filt Name="IsBasisOfAlgebraModuleElementSpace" Arg='B' Type='Category'/>
##
## <Description>
## If a basis <A>B</A> lies in the category <C>IsBasisOfAlgebraModuleElementSpace</C>,
## then
## <A>B</A> is a basis of a subspace of an algebra module. This means that
## <A>B</A> has the record field <C><A>B</A>!.delegateBasis</C> set. This last object
## is a basis of the corresponding subspace of the vector space underlying
## the algebra module (i.e., the vector
## space spanned by all <C>ExtRepOfObj( v )</C> for <C>v</C> in
## the algebra module).
## <Example><![CDATA[
## gap> A:= Rationals^[3,3];;
## gap> M:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [ 1, 0, 0 ] ] );;
## gap> B:= Basis( M );
## Basis( <3-dimensional bi-module over ( Rationals^
## [ 3, 3 ] ) (left) and ( Rationals^[ 3, 3 ] ) (right)>,
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] )
## gap> IsBasisOfAlgebraModuleElementSpace( B );
## true
## gap> B!.delegateBasis;
## SemiEchelonBasis( <vector space of dimension 3 over Rationals>,
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsBasisOfAlgebraModuleElementSpace", IsBasis );
##############################################################################
##
#O SubAlgebraModule( <M>, <gens> [,<"basis">] )
##
## <#GAPDoc Label="SubAlgebraModule">
## <ManSection>
## <Oper Name="SubAlgebraModule" Arg='M, gens [,"basis"]'/>
##
## <Description>
## is the sub-module of the algebra module <A>M</A>, generated by the vectors
## in <A>gens</A>. If as an optional argument the string <C>basis</C> is added, then
## it is
## assumed that the vectors in <A>gens</A> form a basis of the submodule.
## <Example><![CDATA[
## gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
## gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
## gap> A:= Algebra( Rationals, [ m1, m2 ] );;
## gap> M:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0 ], [ 0, 1 ] ] );
## <left-module over <algebra over Rationals, with 2 generators>>
## gap> bb:= BasisVectors( Basis( M ) );
## [ [ 1, 0 ], [ 0, 1 ] ]
## gap> V:= SubAlgebraModule( M, [ bb[1] ] );
## <left-module over <algebra over Rationals, with 2 generators>>
## gap> Dimension( V );
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SubAlgebraModule", [ IsAlgebraModule,
IsAlgebraModuleElementCollection ] );
##############################################################################
##
#O LeftModuleByHomomorphismToMatAlg( <A>, <hom> )
##
## <#GAPDoc Label="LeftModuleByHomomorphismToMatAlg">
## <ManSection>
## <Oper Name="LeftModuleByHomomorphismToMatAlg" Arg='A, hom'/>
##
## <Description>
## Here <A>A</A> is an algebra and <A>hom</A> a homomorphism from <A>A</A> into a matrix
## algebra. This function returns the left <A>A</A>-module defined by the
## homomorphism <A>hom</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LeftModuleByHomomorphismToMatAlg", [ IsAlgebra,
IsAlgebraHomomorphism ]);
##############################################################################
##
#O RightModuleByHomomorphismToMatAlg( <A>, <hom> )
##
## <#GAPDoc Label="RightModuleByHomomorphismToMatAlg">
## <ManSection>
## <Oper Name="RightModuleByHomomorphismToMatAlg" Arg='A, hom'/>
##
## <Description>
## Here <A>A</A> is an algebra and <A>hom</A> a homomorphism from <A>A</A> into a matrix
## algebra. This function returns the right <A>A</A>-module defined by the
## homomorphism <A>hom</A>.
## <P/>
## First we produce a structure constants algebra with basis elements
## <M>x</M>, <M>y</M>, <M>z</M> such that <M>x^2 = x</M>, <M>y^2 = y</M>, <M>xz = z</M>, <M>zy = z</M>
## and all other products are zero.
## <P/>
## <Example><![CDATA[
## gap> T:= EmptySCTable( 3, 0 );;
## gap> SetEntrySCTable( T, 1, 1, [ 1, 1 ]);
## gap> SetEntrySCTable( T, 2, 2, [ 1, 2 ]);
## gap> SetEntrySCTable( T, 1, 3, [ 1, 3 ]);
## gap> SetEntrySCTable( T, 3, 2, [ 1, 3 ]);
## gap> A:= AlgebraByStructureConstants( Rationals, T );
## <algebra of dimension 3 over Rationals>
## ]]></Example>
## <P/>
## Now we construct an isomorphic matrix algebra.
## <P/>
## <Example><![CDATA[
## gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
## gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
## gap> m3:= NullMat( 2, 2 );; m3[1][2]:= 1;;
## gap> B:= Algebra( Rationals, [ m1, m2, m3 ] );
## <algebra over Rationals, with 3 generators>
## ]]></Example>
## <P/>
## Finally we construct the homomorphism and the corresponding right module.
## <P/>
## <Example><![CDATA[
## gap> f:= AlgebraHomomorphismByImages( A, B, Basis(A), [ m1, m2, m3 ] );;
## gap> RightModuleByHomomorphismToMatAlg( A, f );
## <right-module over <algebra of dimension 3 over Rationals>>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RightModuleByHomomorphismToMatAlg", [ IsAlgebra,
IsAlgebraHomomorphism ]);
##############################################################################
##
#A AdjointModule( <A> )
##
## <#GAPDoc Label="AdjointModule">
## <ManSection>
## <Attr Name="AdjointModule" Arg='A'/>
##
## <Description>
## returns the <A>A</A>-module defined by the left action of <A>A</A> on itself.
## <Example><![CDATA[
## gap> m1:= NullMat( 2, 2 );; m1[1][1]:= 1;;
## gap> m2:= NullMat( 2, 2 );; m2[2][2]:= 1;;
## gap> m3:= NullMat( 2, 2 );; m3[1][2]:= 1;;
## gap> A:= Algebra( Rationals, [ m1, m2, m3 ] );
## <algebra over Rationals, with 3 generators>
## gap> V:= AdjointModule( A );
## <3-dimensional left-module over <algebra of dimension
## 3 over Rationals>>
## gap> v:= Basis( V )[3];
## [ [ 0, 1 ], [ 0, 0 ] ]
## gap> W:= SubAlgebraModule( V, [ v ] );
## <left-module over <algebra of dimension 3 over Rationals>>
## gap> Dimension( W );
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AdjointModule", IsAlgebra );
##############################################################################
##
#A FaithfulModule( <A> )
##
## <#GAPDoc Label="FaithfulModule">
## <ManSection>
## <Attr Name="FaithfulModule" Arg='A' Label="for Lie algebras"/>
##
## <Description>
## returns a faithful finite-dimensional left-module over the algebra <A>A</A>.
## This is only implemented for associative algebras, and for Lie algebras
## of characteristic <M>0</M>. (It may also work for certain Lie algebras
## of characteristic <M>p > 0</M>.)
## <Example><![CDATA[
## gap> T:= EmptySCTable( 2, 0 );;
## gap> A:= AlgebraByStructureConstants( Rationals, T );
## <algebra of dimension 2 over Rationals>
## ]]></Example>
## <Example><![CDATA[
## gap> T:= EmptySCTable( 3, 0, "antisymmetric" );;
## gap> SetEntrySCTable( T, 1, 2, [ 1, 3 ]);
## gap> L:= LieAlgebraByStructureConstants( Rationals, T );
## <Lie algebra of dimension 3 over Rationals>
## gap> V:= FaithfulModule( L );
## <left-module over <Lie algebra of dimension 3 over Rationals>>
## gap> vv:= BasisVectors( Basis( V ) );
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
## gap> x:= Basis( L )[3];
## v.3
## gap> List( vv, v -> x^v );
## [ [ 0, 0, 0 ], [ 1, 0, 0 ], [ 0, 0, 0 ] ]
## ]]></Example>
## <P/>
## <C>A</C> is a <M>2</M>-dimensional algebra where all products are zero.
## <P/>
## <Example><![CDATA[
## gap> V:= FaithfulModule( A );
## <left-module over <algebra of dimension 2 over Rationals>>
## gap> vv:= BasisVectors( Basis( V ) );
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
## gap> xx:= BasisVectors( Basis( A ) );
## [ v.1, v.2 ]
## gap> xx[1]^vv[3];
## [ 1, 0, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "FaithfulModule", IsAlgebra );
##############################################################################
##
#O ModuleByRestriction( <V>, <sub1>[, <sub2>] )
##
## <#GAPDoc Label="ModuleByRestriction">
## <ManSection>
## <Oper Name="ModuleByRestriction" Arg='V, sub1[, sub2]'/>
##
## <Description>
## Here <A>V</A> is an algebra module and <A>sub1</A> is a subalgebra
## of the acting algebra of <A>V</A>. This function returns the
## module that is the restriction of <A>V</A> to <A>sub1</A>.
## So it has the same underlying vector space as <A>V</A>,
## but the acting algebra is <A>sub</A>.
## If two subalgebras <A>sub1</A>, <A>sub2</A> are given then <A>V</A> is
## assumed to be a bi-module, and <A>sub1</A> a subalgebra of the algebra
## acting on the left, and <A>sub2</A> a subalgebra of the algebra acting
## on the right.
## <Example><![CDATA[
## gap> A:= Rationals^[3,3];;
## gap> V:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;
## gap> B:= Subalgebra( A, [ Basis(A)[1] ] );
## <algebra over Rationals, with 1 generators>
## gap> W:= ModuleByRestriction( V, B );
## <left-module over <algebra over Rationals, with 1 generators>>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ModuleByRestriction", [ IsAlgebraModule, IsAlgebra ] );
##############################################################################
##
#O NaturalHomomorphismBySubAlgebraModule( <V>, <W> )
##
## <#GAPDoc Label="NaturalHomomorphismBySubAlgebraModule">
## <ManSection>
## <Oper Name="NaturalHomomorphismBySubAlgebraModule" Arg='V, W'/>
##
## <Description>
## Here <A>V</A> must be a sub-algebra module of <A>V</A>. This function returns
## the projection from <A>V</A> onto <C><A>V</A>/<A>W</A></C>. It is a linear map, that is
## also a module homomorphism. As usual images can be formed with
## <C>Image( f, v )</C> and pre-images with <C>PreImagesRepresentative( f, u )</C>.
## <P/>
## The quotient module can also be formed
## by entering <C><A>V</A>/<A>W</A></C>.
## <Example><![CDATA[
## gap> A:= Rationals^[3,3];;
## gap> B:= DirectSumOfAlgebras( A, A );
## <algebra over Rationals, with 6 generators>
## gap> T:= StructureConstantsTable( Basis( B ) );;
## gap> C:= AlgebraByStructureConstants( Rationals, T );
## <algebra of dimension 18 over Rationals>
## gap> V:= AdjointModule( C );
## <left-module over <algebra of dimension 18 over Rationals>>
## gap> W:= SubAlgebraModule( V, [ Basis(V)[1] ] );
## <left-module over <algebra of dimension 18 over Rationals>>
## gap> f:= NaturalHomomorphismBySubAlgebraModule( V, W );
## <linear mapping by matrix, <
## 18-dimensional left-module over <algebra of dimension
## 18 over Rationals>> -> <
## 9-dimensional left-module over <algebra of dimension
## 18 over Rationals>>>
## gap> quo:= ImagesSource( f ); # i.e., the quotient module
## <9-dimensional left-module over <algebra of dimension
## 18 over Rationals>>
## gap> v:= Basis( quo )[1];
## [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
## gap> PreImagesRepresentative( f, v );
## v.4
## gap> Basis( C )[4]^v;
## [ 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "NaturalHomomorphismBySubAlgebraModule", [ IsAlgebraModule,
IsAlgebraModule ] );
##############################################################################
##
#O MatrixOfAction( <B>, <x>[, <side>] )
##
## <#GAPDoc Label="MatrixOfAction">
## <ManSection>
## <Oper Name="MatrixOfAction" Arg='B, x[, side]'/>
##
## <Description>
## Here <A>B</A> is a basis of an algebra module and <A>x</A> is an element
## of the algebra that acts on this module. This function returns
## the matrix of the action of <A>x</A> with respect to <A>B</A>.
## If <A>x</A> acts from the left, then the coefficients of the images of
## the basis elements of <A>B</A> (under the action of <A>x</A>) are the
## columns of the output.
## If <A>x</A> acts from the right, then they are the rows of the output.
## <P/>
## If the module is a bi-module, then the third parameter <A>side</A> must
## be specified.
## This is the string <C>"left"</C>, or <C>"right"</C> depending whether
## <A>x</A> acts from the left or the right.
## <Example><![CDATA[
## gap> M:= LeftAlgebraModuleByGenerators( A, \*, [ [ 1, 0, 0 ] ] );;
## gap> x:= Basis(A)[3];
## [ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
## gap> MatrixOfAction( Basis( M ), x );
## [ [ 0, 0, 1 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MatrixOfAction", [ IsBasisOfAlgebraModuleElementSpace,
IsObject ] );
#############################################################################
##
#C IsMonomialElement( <obj> )
##
## <ManSection>
## <Filt Name="IsMonomialElement" Arg='obj' Type='Category'/>
##
## <Description>
## If the object <A>obj</A> lies in the category <C>IsMonomialElement</C>, then
## it is a linear combination of monomials. This category is used to set
## up some basic functionality and linear algebra for tensor elements,
## wedge elements, symmetric power elements (in order not to have to copy
## esentially the same code for all these elements).
## </Description>
## </ManSection>
##
DeclareCategory( "IsMonomialElement", IsVector );
DeclareCategoryCollections( "IsMonomialElement" );
DeclareCategoryFamily( "IsMonomialElement" );
#############################################################################
##
#O ConvertToNormalFormMonomialElement( <me> )
##
## <ManSection>
## <Oper Name="ConvertToNormalFormMonomialElement" Arg='me'/>
##
## <Description>
## Converts the monomial element to some normal form (e.g., if it is a
## tensor element v\otimes w, it will expand v and w on a basis of the
## underlying vector spaces).
## </Description>
## </ManSection>
##
DeclareOperation( "ConvertToNormalFormMonomialElement",
[ IsMonomialElement ] );
##############################################################################
##
#C IsTensorElement( <obj> )
##
## <ManSection>
## <Filt Name="IsTensorElement" Arg='obj' Type='Category'/>
##
## <Description>
## An element of the tensor product of algebra modules lies in the
## category <C>IsTensorElement</C>.
## </Description>
## </ManSection>
##
DeclareCategory( "IsTensorElement", IsMonomialElement );
DeclareCategoryCollections( "IsTensorElement" );
##############################################################################
##
#O TensorProduct( <list> )
#O TensorProduct( <V>, <W>, ... )
##
## <ManSection>
## <Oper Name="TensorProduct" Arg='list'
## Label="for a list of vector spaces"/>
## <Oper Name="TensorProduct" Arg='V, W, ...' Label="for vector spaces"/>
##
## <Description>
## Here <A>list</A> must be a list of vector spaces. This function returns
## the tensor product of the elements in the list. The vector spaces
## must be defined over the same field.
## <P/>
## In the second form, the vector spaces are given individually.
## <P/>
## Elements of the tensor product <M>V_1\otimes \cdots \otimes V_k</M> are
## linear combinations of <M>v_1\otimes\cdots \otimes v_k</M>, where
## the <M>v_i</M> are arbitrary basis elements of <M>V_i</M>. In &GAP; a tensor
## element like that is printed as
## <Log><![CDATA[
## v_1<x> ... <x>v_k
## ]]></Log>
## Furthermore, the zero of a tensor product is printed as
## <Log><![CDATA[
## <0-tensor>
## ]]></Log>
## This does not mean that all tensor products have the
## same zero element: zeros of different tensor products have different
## families.
## </Description>
## </ManSection>
##
DeclareOperation( "TensorProductOp", [ IsList, IsVectorSpace ] );
DeclareGlobalFunction( "TensorProduct" );
###############################################################################
##
#O TensorProductOfAlgebraModules( <list> )
#O TensorProductOfAlgebraModules( <V>, <W> )
##
## <#GAPDoc Label="TensorProductOfAlgebraModules">
## <ManSection>
## <Oper Name="TensorProductOfAlgebraModules" Arg='list'
## Label="for a list of algebra modules"/>
## <Oper Name="TensorProductOfAlgebraModules" Arg='V, W'
## Label="for two algebra modules"/>
##
## <Description>
## Here the elements of <A>list</A> must be algebra modules.
## The tensor product is returned as an algebra module.
## The two-argument version works in the same way and
## returns the tensor product of its arguments.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra("G",2,Rationals);;
## gap> V:= HighestWeightModule( L, [ 1, 0 ] );;
## gap> W:= TensorProductOfAlgebraModules( [ V, V, V ] );
## <343-dimensional left-module over <Lie algebra of dimension
## 14 over Rationals>>
## gap> w:= Basis(W)[1];
## 1*(1*v0<x>1*v0<x>1*v0)
## gap> Basis(L)[1]^w;
## <0-tensor>
## gap> Basis(L)[7]^w;
## 1*(1*v0<x>1*v0<x>y1*v0)+1*(1*v0<x>y1*v0<x>1*v0)+1*(y
## 1*v0<x>1*v0<x>1*v0)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TensorProductOfAlgebraModules", [ IsList ] );
###############################################################################
##
#C IsWedgeElement( <obj> )
##
## <ManSection>
## <Filt Name="IsWedgeElement" Arg='obj' Type='Category'/>
##
## <Description>
## An element of an exterior power of an algebra module lies in the
## category <C>IsWedgeElement</C>.
## </Description>
## </ManSection>
##
DeclareCategory( "IsWedgeElement", IsMonomialElement );
DeclareCategoryCollections( "IsWedgeElement" );
##############################################################################
##
#O ExteriorPower( <V>, <k> )
##
## <ManSection>
## <Oper Name="ExteriorPower" Arg='V, k'/>
##
## <Description>
## Here <A>V</A> must be a vector space. This function returns the <A>k</A>-th
## exterior power of <A>V</A>.
## <P/>
## Elements of the exterior power <M>\bigwedge^k V</M> are
## linear combinations of <M>v_{i_1}\wedge\cdots \wedge v_{i_k}</M>, where
## the <M>v_{i_j}</M> are basis elements of <M>V</M>, and
## <M>1 \leq i_1 < i_2 \cdots < i_k</M>. In &GAP; a wedge
## element like that is printed as
## <Log><![CDATA[
## v_1/\ ... /\v_k
## ]]></Log>
## Furthermore, the zero of an exterior power is printed as
## <Log><![CDATA[
## <0-wedge>
## ]]></Log>
## This does not mean that all exterior powers have the
## same zero element: zeros of different exterior powers have different
## families.
## </Description>
## </ManSection>
##
DeclareOperation( "ExteriorPower", [ IsLeftModule, IsInt ] );
##############################################################################
##
#O ExteriorPowerOfAlgebraModule( <V>, <k> )
##
## <#GAPDoc Label="ExteriorPowerOfAlgebraModule">
## <ManSection>
## <Oper Name="ExteriorPowerOfAlgebraModule" Arg='V, k'/>
##
## <Description>
## Here <A>V</A> must be an algebra module, defined over a Lie algebra.
## This function returns the <A>k</A>-th exterior power of <A>V</A> as an
## algebra module.
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra("G",2,Rationals);;
## gap> V:= HighestWeightModule( L, [ 1, 0 ] );;
## gap> W:= ExteriorPowerOfAlgebraModule( V, 3 );
## <35-dimensional left-module over <Lie algebra of dimension
## 14 over Rationals>>
## gap> w:= Basis(W)[1];
## 1*(1*v0/\y1*v0/\y3*v0)
## gap> Basis(L)[10]^w;
## 1*(1*v0/\y1*v0/\y6*v0)+1*(1*v0/\y3*v0/\y5*v0)+1*(y1*v0/\y3*v0/\y4*v0)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ExteriorPowerOfAlgebraModule", [ IsAlgebraModule, IsInt ] );
##############################################################################
##
#C IsSymmetricPowerElement( <obj> )
##
## <ManSection>
## <Filt Name="IsSymmetricPowerElement" Arg='obj' Type='Category'/>
##
## <Description>
## An element of a symmetric power of an algebra module lies in the
## category <C>IsSymmetricPowerElement</C>.
## </Description>
## </ManSection>
##
DeclareCategory( "IsSymmetricPowerElement", IsMonomialElement );
DeclareCategoryCollections( "IsSymmetricPowerElement" );
##############################################################################
##
#O SymmetricPower( <V>, <k> )
##
## <ManSection>
## <Oper Name="SymmetricPower" Arg='V, k'/>
##
## <Description>
## Here <A>V</A> must be a vector space. This function returns the <A>k</A>-th
## symmetric power of <A>V</A>.
## </Description>
## </ManSection>
##
DeclareOperation( "SymmetricPower", [ IsLeftModule, IsInt ] );
##############################################################################
##
#O SymmetricPowerOfAlgebraModule( <V>, <k> )
##
## <#GAPDoc Label="SymmetricPowerOfAlgebraModule">
## <ManSection>
## <Oper Name="SymmetricPowerOfAlgebraModule" Arg='V, k'/>
##
## <Description>
## Here <A>V</A> must be an algebra module. This function returns the
## <A>k</A>-th symmetric power of <A>V</A> (as an algebra module).
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra("G",2,Rationals);;
## gap> V:= HighestWeightModule( L, [ 1, 0 ] );;
## gap> W:= SymmetricPowerOfAlgebraModule( V, 3 );
## <84-dimensional left-module over <Lie algebra of dimension
## 14 over Rationals>>
## gap> w:= Basis(W)[1];
## 1*(1*v0.1*v0.1*v0)
## gap> Basis(L)[2]^w;
## <0-symmetric element>
## gap> Basis(L)[7]^w;
## 3*(1*v0.1*v0.y1*v0)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SymmetricPowerOfAlgebraModule",[ IsAlgebraModule,IsInt ]);
##############################################################################
##
#C IsDirectSumElement( <obj> )
##
## <ManSection>
## <Filt Name="IsDirectSumElement" Arg='obj' Type='Category'/>
##
## <Description>
## An element of the direct sum of algebra modules lies in the category
## <C>IsDirectSumElement</C>.
## </Description>
## </ManSection>
##
DeclareCategory( "IsDirectSumElement", IsVector );
DeclareCategoryCollections( "IsDirectSumElement" );
DeclareCategoryFamily( "IsDirectSumElement" );
##############################################################################
##
#O DirectSumOfAlgebraModules( <list> )
#O DirectSumOfAlgebraModules( <V>, <W> )
##
## <#GAPDoc Label="DirectSumOfAlgebraModules">
## <ManSection>
## <Oper Name="DirectSumOfAlgebraModules" Arg='list'
## Label="for a list of Lie algebra modules"/>
## <Oper Name="DirectSumOfAlgebraModules" Arg='V, W'
## Label="for two Lie algebra modules"/>
##
## <Description>
## Here <A>list</A> must be a list of algebra modules. This function returns the
## direct sum of the elements in the list (as an algebra module).
## The modules must be defined over the same algebras.
## <P/>
## In the second form is short for <C>DirectSumOfAlgebraModules( [ <A>V</A>, <A>W</A> ] )</C>
## <Example><![CDATA[
## gap> A:= FullMatrixAlgebra( Rationals, 3 );;
## gap> V:= BiAlgebraModuleByGenerators( A, A, \*, \*, [ [1,0,0] ] );;
## gap> W:= DirectSumOfAlgebraModules( V, V );
## <6-dimensional left-module over ( Rationals^[ 3, 3 ] )>
## gap> BasisVectors( Basis( W ) );
## [ ( [ 1, 0, 0 ] )(+)( [ 0, 0, 0 ] ), ( [ 0, 1, 0 ] )(+)( [ 0, 0, 0 ] )
## , ( [ 0, 0, 1 ] )(+)( [ 0, 0, 0 ] ),
## ( [ 0, 0, 0 ] )(+)( [ 1, 0, 0 ] ), ( [ 0, 0, 0 ] )(+)( [ 0, 1, 0 ] )
## , ( [ 0, 0, 0 ] )(+)( [ 0, 0, 1 ] ) ]
## ]]></Example>
## <Example><![CDATA[
## gap> L:= SimpleLieAlgebra( "C", 3, Rationals );;
## gap> V:= HighestWeightModule( L, [ 1, 1, 0 ] );
## <64-dimensional left-module over <Lie algebra of dimension
## 21 over Rationals>>
## gap> W:= HighestWeightModule( L, [ 0, 0, 2 ] );
## <84-dimensional left-module over <Lie algebra of dimension
## 21 over Rationals>>
## gap> U:= DirectSumOfAlgebraModules( V, W );
## <148-dimensional left-module over <Lie algebra of dimension
## 21 over Rationals>>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "DirectSumOfAlgebraModules", [ IsList ] );
#############################################################################
##
#C IsSparseRowSpaceElement( <vec> )
#C IsSparseRowSpaceElementCollection( <coll> )
#C IsSparseRowSpaceElementFamily( <fam> )
##
## <ManSection>
## <Filt Name="IsSparseRowSpaceElement" Arg='vec' Type='Category'/>
## <Filt Name="IsSparseRowSpaceElementCollection" Arg='coll' Type='Category'/>
## <Filt Name="IsSparseRowSpaceElementFamily" Arg='fam' Type='Category'/>
##
## <Description>
## An object lying in the category <C>IsSparseRowSpaceElement</C> is an
## element of a full row space, of which all elements are sparsely
## represented.
## </Description>
## </ManSection>
##
DeclareCategory( "IsSparseRowSpaceElement", IsVector );
DeclareCategoryCollections( "IsSparseRowSpaceElement" );
DeclareCategoryFamily( "IsSparseRowSpaceElement" );
#T Can this be clean?
#T Elements of row spaces are row vectors,
#T and these are lists, so their family is obviously the collections family
#T of the list entries.
#T The concept of different *representations* for the same object should be
#T used to implement sparse and dense lists;
#T regarding sparse and dense lists as different (and in the case of different
#T families even incomparable) elements may be easy to implement but is not
#T desirable!
#T TB, January 12th, 2000.
##############################################################################
##
#O FullSparseRowSpace( <R>, <n> )
##
## <ManSection>
## <Oper Name="FullSparseRowSpace" Arg='R, n'/>
##
## <Description>
## Is the full sparse row space over the ring <A>R</A> with dimension <A>n</A>.
## </Description>
## </ManSection>
##
DeclareOperation( "FullSparseRowSpace", [ IsRing, IsInt ] );
#############################################################################
##
#F IsDirectSumElementsSpace( <V> )
##
## <ManSection>
## <Func Name="IsDirectSumElementsSpace" Arg='V'/>
##
## <Description>
## ...
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsDirectSumElementsSpace",
"for free left modules of direct-sum-elements" );
###############################################################################
##
#O TranslatorSubalgebra( <M>, <U>, <W> )
##
## <#GAPDoc Label="TranslatorSubalgebra">
## <ManSection>
## <Oper Name="TranslatorSubalgebra" Arg='M, U, W'/>
##
## <Description>
## Here <A>M</A> is an algebra module, and <A>U</A> and <A>W</A> are two subspaces of <A>M</A>.
## Let <A>A</A> be the algebra acting on <A>M</A>. This function returns the subspace
## of elements of <A>A</A> that map <A>U</A> into <A>W</A>. If <A>W</A> is a sub-algebra-module
## (i.e., closed under the action of <A>A</A>), then this space is a subalgebra
## of <A>A</A>.
## <P/>
## This function works for left, or right modules over a
## finite-dimensional algebra. We
## stress that it is not checked whether <A>U</A> and <A>W</A> are indeed subspaces
## of <A>M</A>. If this is not the case nothing is guaranteed about the behaviour
## of the function.
## <Example><![CDATA[
## gap> A:= FullMatrixAlgebra( Rationals, 3 );
## ( Rationals^[ 3, 3 ] )
## gap> V:= Rationals^[3,2];
## ( Rationals^[ 3, 2 ] )
## gap> M:= LeftAlgebraModule( A, \*, V );
## <left-module over ( Rationals^[ 3, 3 ] )>
## gap> bm:= Basis(M);;
## gap> U:= SubAlgebraModule( M, [ bm[1] ] );
## <left-module over ( Rationals^[ 3, 3 ] )>
## gap> TranslatorSubalgebra( M, U, M );
## <algebra of dimension 9 over Rationals>
## gap> W:= SubAlgebraModule( M, [ bm[4] ] );
## <left-module over ( Rationals^[ 3, 3 ] )>
## gap> T:=TranslatorSubalgebra( M, U, W );
## <algebra of dimension 0 over Rationals>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "TranslatorSubalgebra",
[ IsAlgebraModule, IsFreeLeftModule, IsFreeLeftModule ] );
#############################################################################
##
#E
|