This file is indexed.

/usr/share/gap/lib/algsc.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
#############################################################################
##
#W  algsc.gi                    GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for elements of algebras given by structure
##  constants (s.~c.).
##
##  The family of s.~c. algebra elements has the following components.
##
##  `sctable' :
##        the structure constants table,
##  `names' :
##        list of names of the basis vectors (for printing only),
##  `zerocoeff' :
##        the zero coefficient (needed already for the s.~c. table),
##  `defaultTypeDenseCoeffVectorRep' :
##        the type of s.~c. algebra elements that are represented by
##        a dense list of coefficients.
##
##  If the family has *not* the category `IsFamilyOverFullCoefficientsFamily'
##  then it has the component `coefficientsDomain'.
##


#T need for the norm of a quaternion?
#T (note: returns an element in the coefficients domain, not in the algebra!
#T f( a b[1] + b b[2] + c b[3] + d b[4] ) = a^2 +b^2 +c^2 + d^2.)
#T
#T     NormQuat := function( quat )
#T         if not IsQuaternion( quat ) then
#T           Error( "<quat> must be a quaternion" );
#T         fi;
#T         return Sum( List( ExtRepOfObj( quat ), c -> c^2 ) );
#T     end;

#############################################################################
##
#M  IsWholeFamily( <V> )  . . . . . . . for s.~c. algebra elements collection
##
InstallMethod( IsWholeFamily,
    "for s. c. algebra elements collection",
    [ IsSCAlgebraObjCollection and IsLeftModule and IsFreeLeftModule ],
    function( V )
    local Fam;
    Fam:= ElementsFamily( FamilyObj( V ) );
    if IsFamilyOverFullCoefficientsFamily( Fam ) then
      return     IsWholeFamily( LeftActingDomain( V ) )
             and IsFullSCAlgebra( V );
    else
      return     LeftActingDomain( V ) = Fam!.coefficientsDomain
             and IsFullSCAlgebra( V );
    fi;
    end );


#############################################################################
##
#M  IsFullSCAlgebra( <V> )  . . . . . . for s.~c. algebra elements collection
##
InstallMethod( IsFullSCAlgebra,
    "for s. c. algebra elements collection",
    [ IsSCAlgebraObjCollection and IsAlgebra ],
    V -> Dimension(V) = Length( ElementsFamily( FamilyObj( V ) )!.names ) );


#############################################################################
##
#R  IsDenseCoeffVectorRep( <obj> )
##
##  This representation uses a coefficients vector
##  w.r.t. the basis that is known for the whole family.
##
##  The external representation is the coefficients vector,
##  which is stored at position 1 in the object.
##
DeclareRepresentation( "IsDenseCoeffVectorRep",
    IsPositionalObjectRep, [ 1 ] );


#############################################################################
##
#M  ObjByExtRep( <Fam>, <descr> ) . . . . . . . .  for s.~c. algebra elements
##
##  Check whether the coefficients list <coeffs> has the right length,
##  and lies in the correct family.
##  If the coefficients family of <Fam> has a uniquely determined zero
##  element, we need to check only whether the family of <descr> is the
##  collections family of the coefficients family of <Fam>.
##
InstallMethod( ObjByExtRep,
    "for s. c. algebra elements family",
    [ IsSCAlgebraObjFamily, IsHomogeneousList ],
    function( Fam, coeffs )
    if    IsFamilyOverFullCoefficientsFamily( Fam )
       or not IsBound( Fam!.coefficientsDomain ) then
      TryNextMethod();
    elif Length( coeffs ) <> Length( Fam!.names ) then
      Error( "<coeffs> must be a list of length ", Fam!.names );
    elif not ForAll( coeffs, c -> c in Fam!.coefficientsDomain ) then
      Error( "all in <coeffs> must lie in `<Fam>!.coefficientsDomain'" );
    fi;
    return Objectify( Fam!.defaultTypeDenseCoeffVectorRep,
                      [ Immutable( coeffs ) ] );
    end );

InstallMethod( ObjByExtRep,
    "for s. c. alg. elms. family with coefficients family",
    [ IsSCAlgebraObjFamily and IsFamilyOverFullCoefficientsFamily,
      IsHomogeneousList ],
    function( Fam, coeffs )
    if not IsIdenticalObj( CoefficientsFamily( Fam ),
                        ElementsFamily( FamilyObj( coeffs ) ) ) then
      Error( "family of <coeffs> does not fit to <Fam>" );
    elif Length( coeffs ) <> Length( Fam!.names ) then
      Error( "<coeffs> must be a list of length ", Fam!.names );
    fi;
    return Objectify( Fam!.defaultTypeDenseCoeffVectorRep,
                      [ Immutable( coeffs ) ] );
    end );


#############################################################################
##
#M  ExtRepOfObj( <elm> )  . . . . . . . . . . . .  for s.~c. algebra elements
##
InstallMethod( ExtRepOfObj,
    "for s. c. algebra element in dense coeff. vector rep.",
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    elm -> elm![1] );


#############################################################################
##
#M  Print( <elm> )  . . . . . . . . . . . . . . .  for s.~c. algebra elements
##
InstallMethod( PrintObj,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    function( elm )

    local F,      # family of `elm'
          names,  # generators names
          len,    # dimension of the algebra
          zero,   # zero element of the ring
          depth,  # first nonzero position in coefficients list
          one,    # identity element of the ring
          i;      # loop over the coefficients list

    F     := FamilyObj( elm );
    names := F!.names;
    elm   := ExtRepOfObj( elm );
    len   := Length( elm );

    # Treat the case that the algebra is trivial.
    if len = 0 then
      Print( "<zero of trivial s.c. algebra>" );
      return;
    fi;

    zero  := Zero( elm[1] );
    depth := PositionNot( elm, zero );

    if len < depth then

      # Print the zero element.
      # (Note that the unique element of a zero algebra has a name.)
      Print( "0*", names[1] );

    else

      one:= One(  elm[1] );

      if elm[ depth ] <> one then
        Print( "(", elm[ depth ], ")*" );
      fi;
      Print( names[ depth ] );

      for i in [ depth+1 .. len ] do
        if elm[i] <> zero then
          Print( "+" );
          if elm[i] <> one then
            Print( "(", elm[i], ")*" );
          fi;
          Print( names[i] );
        fi;
      od;

    fi;
    end );

#############################################################################
##
#M  String( <elm> )  . . . . . . . . . . . . . . .  for s.~c. algebra elements
##
InstallMethod( String,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    function( elm )

    local F,      # family of `elm'
          s,      # string
          names,  # generators names
          len,    # dimension of the algebra
          zero,   # zero element of the ring
          depth,  # first nonzero position in coefficients list
          one,    # identity element of the ring
          i;      # loop over the coefficients list

    F     := FamilyObj( elm );
    names := F!.names;
    elm   := ExtRepOfObj( elm );
    len   := Length( elm );

    # Treat the case that the algebra is trivial.
    if len = 0 then
      return "<zero of trivial s.c. algebra>";
    fi;

    zero  := Zero( elm[1] );
    depth := PositionNot( elm, zero );

    s:="";
    if len < depth then

      # Print the zero element.
      # (Note that the unique element of a zero algebra has a name.)
      Append(s, "0*");
      Append(s,names[1]);

    else

      one:= One(  elm[1] );

      if elm[ depth ] <> one then
	Add(s,'(');
	Append(s,String(elm[ depth ]));
	Append(s, ")*" );
      fi;
      Append(s, names[ depth ] );

      for i in [ depth+1 .. len ] do
        if elm[i] <> zero then
          Add(s, '+' );
          if elm[i] <> one then
	    Add(s,'(');
	    Append(s,String(elm[ i ]));
	    Append(s, ")*" );
          fi;
	  Append(s, names[ i ] );
        fi;
      od;

    fi;
    return s;
    end );


#############################################################################
##
#M  One( <Fam> )
##
##  Compute the identity (if exists) from the s.~c. table.
##
InstallMethod( One,
    "for family of s. c. algebra elements",
    [ IsSCAlgebraObjFamily ],
    function( F )
    local one;
    one:= IdentityFromSCTable( F!.sctable );
    if one <> fail then
      one:= ObjByExtRep( F, one );
    fi;
    return one;
    end );


#############################################################################
##
#M  \=( <x>, <y> )  . . . . . . . . . . equality of two s.~c. algebra objects
#M  \<( <x>, <y> )  . . . . . . . . . comparison of two s.~c. algebra objects
#M  \+( <x>, <y> )  . . . . . . . . . . . .  sum of two s.~c. algebra objects
#M  \-( <x>, <y> )  . . . . . . . . . difference of two s.~c. algebra objects
#M  \*( <x>, <y> )  . . . . . . . . . .  product of two s.~c. algebra objects
#M  Zero( <x> ) . . . . . . . . . . . . . .  zero of an s.~c. algebra element
#M  AdditiveInverse( <x> )  . .  additive inverse of an s.~c. algebra element
#M  Inverse( <x> )  . . . . . . . . . . . inverse of an s.~c. algebra element
##
InstallMethod( \=,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y ) return ExtRepOfObj( x ) = ExtRepOfObj( y ); end );

InstallMethod( \=,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y ) return x![1] = y![1]; end );

InstallMethod( \<,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y ) return ExtRepOfObj( x ) < ExtRepOfObj( y ); end );

InstallMethod( \<,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ], 0,
    function( x, y ) return x![1] < y![1]; end );

InstallMethod( \+,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y )
    return ObjByExtRep( FamilyObj(x), ExtRepOfObj(x) + ExtRepOfObj(y) );
    end );

InstallMethod( \+,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] + y![1] );
    end );

InstallMethod( \-,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y )
    return ObjByExtRep( FamilyObj(x), ExtRepOfObj(x) - ExtRepOfObj(y) );
    end );

InstallMethod( \-,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] - y![1] );
    end );

InstallMethod( \*,
    "for s. c. algebra elements",
    IsIdenticalObj,
    [ IsSCAlgebraObj, IsSCAlgebraObj ],
    function( x, y )
    local F;
    F:= FamilyObj( x );
    return ObjByExtRep( F, SCTableProduct( F!.sctable,
                        ExtRepOfObj( x ), ExtRepOfObj( y ) ) );
    end );

InstallMethod( \*,
    "for s. c. algebra elements in dense vector rep.",
    IsIdenticalObj,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep,
      IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    local F;
    F:= FamilyObj( x );
    return ObjByExtRep( F, SCTableProduct( F!.sctable, x![1], y![1] ) );
    end );

InstallMethod( \*,
    "for ring element and s. c. algebra element",
    IsCoeffsElms,
    [ IsRingElement, IsSCAlgebraObj ],
    function( x, y )
    return ObjByExtRep( FamilyObj( y ), x * ExtRepOfObj( y ) );
    end );

InstallMethod( \*,
    "for ring element and s. c. algebra element in dense vector rep.",
    IsCoeffsElms,
    [ IsRingElement, IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    return ObjByExtRep( FamilyObj( y ), x * y![1] );
    end );

InstallMethod( \*,
    "for s. c. algebra element and ring element",
    IsElmsCoeffs,
    [ IsSCAlgebraObj, IsRingElement ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) * y );
    end );

InstallMethod( \*,
    "for s. c. algebra element in dense vector rep. and ring element",
    IsElmsCoeffs,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsRingElement ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] * y );
    end );

InstallMethod( \*,
    "for integer and s. c. algebra element",
    [ IsInt, IsSCAlgebraObj ],
    function( x, y )
    return ObjByExtRep( FamilyObj( y ), x * ExtRepOfObj( y ) );
    end );

InstallMethod( \*,
    "for integer and s. c. algebra element in dense vector rep.",
    [ IsInt, IsSCAlgebraObj and IsDenseCoeffVectorRep ],
    function( x, y )
    return ObjByExtRep( FamilyObj( y ), x * y![1] );
    end );

InstallMethod( \*,
    "for s. c. algebra element and integer",
    [ IsSCAlgebraObj, IsInt ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) * y );
    end );

InstallMethod( \*,
    "for s. c. algebra element in dense vector rep. and integer",
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsInt ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] * y );
    end );

InstallMethod( \/,
    "for s. c. algebra element and scalar",
    IsElmsCoeffs,
    [ IsSCAlgebraObj, IsScalar ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), ExtRepOfObj( x ) / y );
    end );

InstallMethod( \/,
    "for s. c. algebra element in dense vector rep. and scalar",
    IsElmsCoeffs,
    [ IsSCAlgebraObj and IsDenseCoeffVectorRep, IsScalar ],
    function( x, y )
    return ObjByExtRep( FamilyObj( x ), x![1] / y );
    end );

InstallMethod( ZeroOp,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    x -> ObjByExtRep( FamilyObj( x ), Zero( ExtRepOfObj( x ) ) ) );

InstallMethod( AdditiveInverseOp,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    x -> ObjByExtRep( FamilyObj( x ),
                      AdditiveInverse( ExtRepOfObj( x ) ) ) );

InstallOtherMethod( OneOp,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    function( x )
    local F, one;
    F:= FamilyObj( x );
    one:= IdentityFromSCTable( F!.sctable );
    if one <> fail then
      one:= ObjByExtRep( F, one );
    fi;
    return one;
    end );

InstallOtherMethod( InverseOp,
    "for s. c. algebra element",
    [ IsSCAlgebraObj ],
    function( x )
    local one, F;
    one:= One( x );
    if one <> fail then
      F:= FamilyObj( x );
      one:= QuotientFromSCTable( F!.sctable, ExtRepOfObj( one ),
                                             ExtRepOfObj( x ) );
      if one <> fail then
        one:= ObjByExtRep( F, one );
      fi;
    fi;
    return one;
    end );


#############################################################################
##
#M  \in( <a>, <A> )
##
InstallMethod( \in,
    "for s. c. algebra element, and full s. c. algebra",
    IsElmsColls,
    [ IsSCAlgebraObj, IsFullSCAlgebra ],
    function( a, A )
    return IsSubset( LeftActingDomain( A ), ExtRepOfObj( a ) );
    end );


#############################################################################
##
#F  AlgebraByStructureConstants( <R>, <sctable> )
#F  AlgebraByStructureConstants( <R>, <sctable>, <name> )
#F  AlgebraByStructureConstants( <R>, <sctable>, <names> )
#F  AlgebraByStructureConstants( <R>, <sctable>, <name1>, <name2>, ... )
##
##  is an algebra $A$ over the ring <R>, defined by the structure constants
##  table <sctable> of length $n$, say.
##
##  The generators of $A$ are linearly independent abstract space generators
##  $x_1, x_2, \ldots, x_n$ which are multiplied according to the formula
##  $ x_i x_j = \sum_{k=1}^n c_{ijk} x_k$
##  where `$c_{ijk}$ = <sctable>[i][j][1][i_k]'
##  and `<sctable>[i][j][2][i_k] = k'.
##
BindGlobal( "AlgebraByStructureConstantsArg", function( arglist, filter )
    local T,      # structure constants table
          n,      # dimensions of structure matrices
          R,      # coefficients ring
          zero,   # zero of `R'
          names,  # names of the algebra generators
          Fam,    # the family of algebra elements
          A,      # the algebra, result
          gens;   # algebra generators of `A'

    # Check the argument list.
    if not 1 < Length( arglist ) and IsRing( arglist[1] )
                                 and IsList( arglist[2] ) then
      Error( "usage: AlgebraByStructureConstantsArg([<R>,<sctable>]) or \n",
             "AlgebraByStructureConstantsArg([<R>,<sctable>,<name1>,...])" );
    fi;

    # Check the s.~c. table.
#T really do this?
    R    := arglist[1];
    zero := Zero( R );
    T    := arglist[2];

    if zero = T[ Length( T ) ] then
      T:= Immutable( T );
    else
      if T[ Length( T ) ] = 0 then
        T:= ReducedSCTable( T, One( zero ) );
      else
        Error( "<R> and <T> are not compatible" );
      fi;
    fi;

    if Length( T ) = 2 then
      n:= 0;
    else
      n:= Length( T[1] );
    fi;

    # Construct names of generators (used for printing only).
    if   Length( arglist ) = 2 then
      names:= List( [ 1 .. n ],
                    x -> Concatenation( "v.", String(x) ) );
      MakeImmutable( names );
    elif Length( arglist ) = 3 and IsString( arglist[3] ) then
      names:= List( [ 1 .. n ],
                    x -> Concatenation( arglist[3], String(x) ) );
      MakeImmutable( names );
    elif Length( arglist ) = 3 and IsHomogeneousList( arglist[3] )
                               and Length( arglist[3] ) = n
                               and ForAll( arglist[3], IsString ) then
      names:= Immutable( arglist[3] );
    elif Length( arglist ) = 2 + n then
      names:= Immutable( arglist{ [ 3 .. Length( arglist ) ] } );
    else
      Error( "usage: AlgebraByStructureConstantsArg([<R>,<sctable>]) or \n",
             "AlgebraByStructureConstantsArg([<R>,<sctable>,<name1>,...])" );
    fi;

    # If the coefficients know to be additively commutative then
    # also the s.c. algebra will know this.
    if IsAdditivelyCommutativeElementFamily( FamilyObj( zero ) ) then
      filter:= filter and IsAdditivelyCommutativeElement;
    fi;

    # Construct the family of elements of our algebra.
    # If the elements family of `R' has a uniquely determined zero element,
    # then all coefficients in this family are admissible.
    # Otherwise only coefficients from `R' itself are allowed.
    Fam:= NewFamily( "SCAlgebraObjFamily", filter );
    if Zero( ElementsFamily( FamilyObj( R ) ) ) <> fail then
      SetFilterObj( Fam, IsFamilyOverFullCoefficientsFamily );
    else
      Fam!.coefficientsDomain:= R;
    fi;

    Fam!.sctable   := T;
    Fam!.names     := names;
    Fam!.zerocoeff := zero;

    # Construct the default type of the family.
    Fam!.defaultTypeDenseCoeffVectorRep :=
        NewType( Fam, IsSCAlgebraObj and IsDenseCoeffVectorRep );

    SetCharacteristic( Fam, Characteristic( R ) );
    SetCoefficientsFamily( Fam, ElementsFamily( FamilyObj( R ) ) );

    # Make the generators and the algebra.
    if 0 < n then
      SetZero( Fam, ObjByExtRep( Fam, List( [ 1 .. n ], x -> zero ) ) );
      gens:= Immutable( List( IdentityMat( n, R ),
                              x -> ObjByExtRep( Fam, x ) ) );
      A:= FLMLORByGenerators( R, gens );
      UseBasis( A, gens );
    else
      SetZero( Fam, ObjByExtRep( Fam, EmptyRowVector( FamilyObj(zero) ) ) );
      gens:= Immutable( [] );
      A:= FLMLORByGenerators( R, gens, Zero( Fam ) );
      SetIsTrivial( A, true );
    fi;
    Fam!.basisVectors:= gens;
#T where is this needed?

    # Store the algebra in the family of the elements,
    # for accessing the full algebra, e.g., in `DefaultFieldOfMatrixGroup'.
    Fam!.fullSCAlgebra:= A;

    SetIsFullSCAlgebra( A, true );

    # Return the algebra.
    return A;
end );

InstallGlobalFunction( AlgebraByStructureConstants, function( arg )
    return AlgebraByStructureConstantsArg( arg, IsSCAlgebraObj );
end );

InstallGlobalFunction( LieAlgebraByStructureConstants, function( arg )
    local A;
    A:= AlgebraByStructureConstantsArg( arg, IsSCAlgebraObj and IsJacobianElement );
    SetIsLieAlgebra( A, true );
    return A;
end );

InstallGlobalFunction( RestrictedLieAlgebraByStructureConstants, function( arg )
    local A, fam, pmap, i, j, v;
    A := AlgebraByStructureConstantsArg( arg{[1..Length(arg)-1]}, IsSCAlgebraObj and IsRestrictedJacobianElement );
    SetIsLieAlgebra( A, true );
    SetIsRestrictedLieAlgebra( A, true );
    fam := FamilyObj(Representative(A));
    fam!.pMapping := [];
    pmap := arg[Length(arg)];
    while Length(pmap)<>Dimension(A) do
        Error("Pth power images list should have length ",Dimension(A));
    od;
    for i in [1..Length(pmap)] do
        v := List(pmap,i->fam!.zerocoeff);
        for j in [2,4..Length(pmap[i])] do
            v[pmap[i][j]] := One(v[1])*pmap[i][j-1];
        od;
        v := ObjByExtRep(fam,v);
#        while AdjointMatrix(Basis(A),A.(i))^Characteristic(A)<>AdjointMatrix(Basis(A),v) do
#            Error("p-mapping at position ",i," doesn't satisfy the axioms of a restricted Lie algebra");
#        od;
        Add(fam!.pMapping,v);
    od;
    SetPthPowerImages(Basis(A),fam!.pMapping);
    return A;
end );

#############################################################################
##
#M  \.( <A>, <n> )  . . . . . . . access to generators of a full s.c. algebra
##
InstallAccessToGenerators( IsSCAlgebraObjCollection and IsFullSCAlgebra,
    "s.c. algebra containing the whole family",
    GeneratorsOfAlgebra );


#############################################################################
##
#V  QuaternionAlgebraData
##
InstallFlushableValue( QuaternionAlgebraData, [] );


#############################################################################
##
#F  QuaternionAlgebra( <F>[, <a>, <b>] )
##
InstallGlobalFunction( QuaternionAlgebra, function( arg )
    local F, a, b, e, stored, filter, A;

    if   Length( arg ) = 1 and IsRing( arg[1] ) then
      F:= arg[1];
      a:= AdditiveInverse( One( F ) );
      b:= a;
    elif Length( arg ) = 1 and IsCollection( arg[1] ) then
      F:= Field( arg[1] );
      a:= AdditiveInverse( One( F ) );
      b:= a;
    elif Length( arg ) = 3 and IsRing( arg[1] ) then
      F:= arg[1];
      a:= arg[2];
      b:= arg[3];
    elif Length( arg ) = 3 and IsCollection( arg[1] ) then
      F:= Field( arg[1] );
      a:= arg[2];
      b:= arg[3];
    else
      Error( "usage: QuaternionAlgebra( <F>[, <a>, <b>] ) for a ring <F>" );
    fi;
    e:= One( F );
    if e = fail then
      Error( "<F> must have an identity element" );
    fi;

    # Generators in the right family may be already available.
    stored:= First( QuaternionAlgebraData,
                    t ->     t[1] = a and t[2] = b
                         and IsIdenticalObj( t[3], FamilyObj( F ) ) );
    if stored <> fail then
      A:= AlgebraWithOne( F, GeneratorsOfAlgebra( stored[4] ), "basis" );
      SetGeneratorsOfAlgebra( A, GeneratorsOfAlgebraWithOne( A ) );
    else

      # Construct a filter describing element properties,
      # which will be stored in the family.
      filter:= IsSCAlgebraObj and IsQuaternion;
      if HasIsAssociative( F ) and IsAssociative( F ) then
        filter:= filter and IsAssociativeElement;
      fi;
      if     IsNegRat( a ) and IsNegRat( b )
#T it suffices if the parameters are real and negative
         and IsCyclotomicCollection( F ) and IsField( F )
         and ForAll( GeneratorsOfDivisionRing( F ),
                     x -> x = ComplexConjugate( x ) ) then
        filter:= filter and IsZDFRE;
      fi;

      # Construct the algebra.
      A:= AlgebraByStructureConstantsArg(
              [ F,
                [ [ [[1],[e]], [[2],[ e]], [[3],[ e]], [[4],[   e]] ],
                  [ [[2],[e]], [[1],[ a]], [[4],[ e]], [[3],[   a]] ],
                  [ [[3],[e]], [[4],[-e]], [[1],[ b]], [[2],[  -b]] ],
                  [ [[4],[e]], [[3],[-a]], [[2],[ b]], [[1],[-a*b]] ],
                  0, Zero(F) ],
                "e", "i", "j", "k" ],
              filter );
      SetFilterObj( A, IsAlgebraWithOne );
#T better introduce AlgebraWithOneByStructureConstants?

      # Store the data for the next call.
      Add( QuaternionAlgebraData, [ a, b, FamilyObj( F ), A ] );

    fi;

    # A quaternion algebra with negative parameters over a real field
    # is a division ring.
    if     IsNegRat( a ) and IsNegRat( b )
       and IsCyclotomicCollection( F ) and IsField( F )
       and ForAll( GeneratorsOfDivisionRing( F ),
                   x -> x = ComplexConjugate( x ) ) then
      SetFilterObj( A, IsMagmaWithInversesIfNonzero );
#T better use `DivisionRingByGenerators'?
      SetGeneratorsOfDivisionRing( A, GeneratorsOfAlgebraWithOne( A ) );
    fi;

    # Return the quaternion algebra.
    return A;
end );


#############################################################################
##
#M  OneOp( <quat> ) . . . . . . . . . . . . . . . . . . . .  for a quaternion
##
InstallMethod( OneOp,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    quat -> ObjByExtRep( FamilyObj( quat ),
                         [ 1, 0, 0, 0 ] * One( ExtRepOfObj( quat )[1] ) ) );


#############################################################################
##
#M  InverseOp( <quat> ) . . . . . . . . . . . . . . . . . .  for a quaternion
##
##  Let $a$ and $b$ be the parameters from which the algebra of <quat> was
##  constructed.
##  The inverse of $c_1 e + c_2 i + c_3 j + c_4 k$ is
##  $c_1/z e - c_2/z i - c_3/z j - c_4/z k$
##  where $z = c_1^2 - c_2^2 a - c_3^2 b + c_4^2 a b$.
##
InstallMethod( InverseOp,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    function( quat )
    local data, z, a, b;
    data:= ExtRepOfObj( quat );
    a:= FamilyObj( quat )!.sctable[2][2][2][1];
    b:= FamilyObj( quat )!.sctable[3][3][2][1];
    z:= data[1]^2 - data[2]^2 * a - data[3]^2 * b + data[4]^2 * a * b;
    if IsZero( z ) then
      return fail;
    fi;
    return ObjByExtRep( FamilyObj( quat ),
               [ data[1]/z, AdditiveInverse( data[2]/z ),
                            AdditiveInverse( data[3]/z ),
                            AdditiveInverse( data[4]/z ) ] );
    end );


#############################################################################
##
#M  ComplexConjugate( <quat> )  . . . . . . . . . . . . . .  for a quaternion
##
InstallMethod( ComplexConjugate,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    function( quat )
    local v;

    v:= ExtRepOfObj( quat );
    return ObjByExtRep( FamilyObj( quat ), [ v[1], -v[2], -v[3], -v[4] ] );
    end );


#############################################################################
##
#M  RealPart( <quat> )  . . . . . . . . . . . . . . . . . .  for a quaternion
##
InstallMethod( RealPart,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    function( quat )
    local v, z;

    v:= ExtRepOfObj( quat );
    z:= Zero( v[1] );
    return ObjByExtRep( FamilyObj( quat ), [ v[1], z, z, z ] );
    end );


#############################################################################
##
#M  ImaginaryPart( <quat> ) . . . . . . . . . . . . . . . .  for a quaternion
##
InstallMethod( ImaginaryPart,
    "for a quaternion",
    [ IsQuaternion and IsSCAlgebraObj ],
    function( quat )
    local v, z;

    v:= ExtRepOfObj( quat );
    z:= Zero( v[1] );
    return ObjByExtRep( FamilyObj( quat ), [ v[2], z, v[4], -v[3] ] );
    end );


#############################################################################
##
#F  ComplexificationQuat( <vector> )
#F  ComplexificationQuat( <matrix> )
##
InstallGlobalFunction( ComplexificationQuat, function( matrixorvector )
    local result,
          i, e,
          M,
          m,
          n,
          j, k,
          v,
          coeff;

    result:= [];
    i:= E(4);
    e:= 1;

    if   IsQuaternionCollColl( matrixorvector ) then

      M:= matrixorvector;
      m:= Length( M );
      n:= Length( M[1] );
      for j in [ 1 .. 2*m ] do
        result[j]:= [];
      od;
      for j in [ 1 .. m ] do
        for k in [ 1 .. n ] do
          coeff:= ExtRepOfObj( M[j][k] );
          result[  j  ][  k  ]:=   e * coeff[1] + i * coeff[2];
          result[  j  ][ n+k ]:=   e * coeff[3] + i * coeff[4];
          result[ m+j ][  k  ]:= - e * coeff[3] + i * coeff[4];
          result[ m+j ][ n+k ]:=   e * coeff[1] - i * coeff[2];
        od;
      od;

    elif IsQuaternionCollection( matrixorvector ) then

      v:= matrixorvector;
      n:= Length( v );
      for j in [ 1 .. n ] do
        coeff:= ExtRepOfObj( v[j] );
        result[  j  ]:= e * coeff[1] + i * coeff[2];
        result[ n+j ]:= e * coeff[3] + i * coeff[4];
      od;

    else
      Error( "<matrixorvector> must be a vector or matrix of quaternions" );
    fi;

    return result;
end );


#############################################################################
##
#F  OctaveAlgebra( <F> )
##
InstallGlobalFunction( OctaveAlgebra, F -> AlgebraByStructureConstants(
    F,
    [ [ [[1],[1]],[[],[]],[[3],[1]],[[],[]],[[5],[1]],[[],[]],[[],[]],
        [[8],[1]] ],
      [ [[],[]],[[2],[1]],[[],[]],[[4],[1]],[[],[]],[[6],[1]],[[7],[1]],
        [[],[]] ],
      [ [[],[]],[[3],[1]],[[],[]],[[1],[1]],[[7],[1]],[[],[]],[[],[]],
        [[6],[1]] ],
      [ [[4],[1]],[[],[]],[[2],[1]],[[],[]],[[],[]],[[8],[1]],[[5],[1]],
        [[],[]] ],
      [ [[],[]],[[5],[1]],[[7],[-1]],[[],[]],[[],[]],[[1],[1]],[[],[]],
        [[4],[-1]] ],
      [ [[6],[1]],[[],[]],[[],[]],[[8],[-1]],[[2],[1]],[[],[]],[[3],[-1]],
        [[],[]] ],
      [ [[7],[1]],[[],[]],[[],[]],[[5],[-1]],[[],[]],[[3],[1]],[[],[]],
        [[2],[-1]] ],
      [ [[],[]],[[8],[1]],[[6],[-1]],[[],[]],[[4],[1]],[[],[]],[[1],[-1]],
        [[],[]] ],
      0, 0 ],
    "s1", "t1", "s2", "t2", "s3", "t3", "s4", "t4" ) );


#############################################################################
##
#M  NiceFreeLeftModuleInfo( <V> )
#M  NiceVector( <V>, <v> )
#M  UglyVector( <V>, <r> )
##
InstallHandlingByNiceBasis( "IsSCAlgebraObjSpace", rec(
    detect := function( R, gens, V, zero )
      return IsSCAlgebraObjCollection( V );
      end,

    NiceFreeLeftModuleInfo := ReturnTrue,

    NiceVector := function( V, v )
      return ExtRepOfObj( v );
      end,

    UglyVector := function( V, r )
      local F;
      F:= ElementsFamily( FamilyObj( V ) );
      if Length( r ) <> Length( F!.names ) then
        return fail;
      fi;
      return ObjByExtRep( F, r );
      end ) );


#############################################################################
##
#M  MutableBasis( <R>, <gens> )
#M  MutableBasis( <R>, <gens>, <zero> )
##
##  We choose a mutable basis that stores a mutable basis for a nice module.
##
InstallMethod( MutableBasis,
    "for ring and collection of s. c. algebra elements",
    [ IsRing, IsSCAlgebraObjCollection ],
    MutableBasisViaNiceMutableBasisMethod2 );

InstallOtherMethod( MutableBasis,
    "for ring, (possibly empty) list, and zero element",
    [ IsRing, IsList, IsSCAlgebraObj ],
    MutableBasisViaNiceMutableBasisMethod3 );


#############################################################################
##
#M  Coefficients( <B>, <v> )  . . . . . . coefficients w.r.t. canonical basis
##
InstallMethod( Coefficients,
    "for canonical basis of full s. c. algebra",
    IsCollsElms,
    [ IsBasis and IsCanonicalBasisFullSCAlgebra, IsSCAlgebraObj ],
    function( B, v )
    return ExtRepOfObj( v );
    end );


#############################################################################
##
#M  LinearCombination( <B>, <coeffs> )  . . . . . . . . . for canonical basis
##
InstallMethod( LinearCombination,
    "for canonical basis of full s. c. algebra",
    [ IsBasis and IsCanonicalBasisFullSCAlgebra, IsRowVector ],
    function( B, coeffs )
    return ObjByExtRep( ElementsFamily( FamilyObj( B ) ), coeffs );
    end );


#############################################################################
##
#M  BasisVectors( <B> ) . . . . . . for canonical basis of full s.~c. algebra
##
InstallMethod( BasisVectors,
    "for canonical basis of full s. c. algebra",
    [ IsBasis and IsCanonicalBasisFullSCAlgebra ],
    B -> ElementsFamily( FamilyObj(
             UnderlyingLeftModule( B ) ) )!.basisVectors );


#############################################################################
##
#M  Basis( <A> )  . . . . . . . . . . . . . . . basis of a full s.~c. algebra
##
InstallMethod( Basis,
    "for full s. c. algebra (delegate to `CanonicalBasis')",
    [ IsFreeLeftModule and IsSCAlgebraObjCollection and IsFullSCAlgebra ],
    CANONICAL_BASIS_FLAGS,
    CanonicalBasis );


#############################################################################
##
#M  CanonicalBasis( <A> ) . . . . . . . . . . . basis of a full s.~c. algebra
##
InstallMethod( CanonicalBasis,
    "for full s. c. algebras",
    [ IsFreeLeftModule and IsSCAlgebraObjCollection and IsFullSCAlgebra ],
    function( A )
    local B;
    B:= Objectify( NewType( FamilyObj( A ),
                                IsCanonicalBasisFullSCAlgebra
                            and IsAttributeStoringRep
                            and IsFiniteBasisDefault
                            and IsCanonicalBasis ),
                   rec() );
    SetUnderlyingLeftModule( B, A );
    SetStructureConstantsTable( B,
        ElementsFamily( FamilyObj( A ) )!.sctable );
    return B;
    end );


#############################################################################
##
#M  IsCanonicalBasisFullSCAlgebra( <B> )
##
InstallMethod( IsCanonicalBasisFullSCAlgebra,
    "for a basis",
    [ IsBasis ],
    function( B )
    local A;
    A:= UnderlyingLeftModule( B );
    return     IsSCAlgebraObjCollection( A )
           and IsFullSCAlgebra( A )
           and IsCanonicalBasis( B );
    end );

#T change implementation: bases of their own right, as for Gaussian row spaces,
#T if the algebra is Gaussian


#############################################################################
##
#M  Intersection2( <V>, <W> )
##
##  Contrary to the generic case that is handled by `Intersection2Spaces',
##  we know initially a (finite dimensional) common coefficient space,
##  so we can avoid the intermediate construction of such a space.
##
InstallMethod( Intersection2,
    "for two spaces in a common s.c. algebra",
    IsIdenticalObj,
    [ IsVectorSpace and IsSCAlgebraObjCollection,
      IsVectorSpace and IsSCAlgebraObjCollection ],
    function( V, W )
    local F,       # coefficients field
          gensV,   # list of generators of 'V'
          gensW,   # list of generators of 'W'
          Fam,     # family of an element
          inters;  # intersection, result

    F:= LeftActingDomain( V );
    if F <> LeftActingDomain( W ) then
      # The generic method is good enough for this.
      TryNextMethod();
    fi;

    gensV:= GeneratorsOfLeftModule( V );
    gensW:= GeneratorsOfLeftModule( W );
    if IsEmpty( gensV ) or IsEmpty( gensW ) then
      inters:= [];
    else
      gensV:= List( gensV, ExtRepOfObj );
      gensW:= List( gensW, ExtRepOfObj );
      if not (     ForAll( gensV, v -> IsSubset( F, v ) )
               and ForAll( gensW, v -> IsSubset( F, v ) ) ) then
        # We are not in a Gaussian situation.
        TryNextMethod();
      fi;
      Fam:= ElementsFamily( FamilyObj( V ) );
      inters:= List( SumIntersectionMat( gensV, gensW )[2],
                     x -> ObjByExtRep( Fam, x ) );
    fi;

    # Construct the intersection space, if possible with a parent,
    # and with as much structure as possible.
    if IsEmpty( inters ) then
      inters:= TrivialSubFLMLOR( V );
    elif IsFLMLOR( V ) and IsFLMLOR( W ) then
      inters:= FLMLOR( F, inters, "basis" );
    else
      inters:= VectorSpace( F, inters, "basis" );
    fi;
    if     HasParent( V ) and HasParent( W )
       and IsIdenticalObj( Parent( V ), Parent( W ) ) then
      SetParent( inters, Parent( V ) );
    fi;

    # Run implications by the subset relation.
    UseSubsetRelation( V, inters );
    UseSubsetRelation( W, inters );

    # Return the result.
    return inters;
    end );

# analogous for closure?

#############################################################################
##
#E