/usr/share/gap/lib/arith.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 | #############################################################################
##
#W arith.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of the arithmetic operations, and the
## declarations of the categories for elements that allow those operations.
##
## This file contains the definitions of categories for elements in families
## that allow certain arithmetical operations,
## and the definition of properties, attributes, and operations for these
## elements.
##
## Note that the arithmetical operations are usually only partial functions.
## This means that a multiplicative element is simply an element whose
## family allows a multiplication of *some* of its elements. It does *not*
## mean that the the product of *any* two elements in the family is defined,
##
#############################################################################
##
#C IsExtAElement( <obj> )
##
## <#GAPDoc Label="IsExtAElement">
## <ManSection>
## <Filt Name="IsExtAElement" Arg='obj' Type='Category'/>
##
## <Description>
## An <E>external additive element</E> is an object that can be added via
## <C>+</C> with other elements
## (not necessarily in the same family, see <Ref Sect="Families"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsExtAElement", IsObject );
DeclareCategoryCollections( "IsExtAElement" );
DeclareCategoryCollections( "IsExtAElementCollection" );
DeclareSynonym( "IsExtAElementList",
IsExtAElementCollection and IsList );
DeclareSynonym( "IsExtAElementTable",
IsExtAElementCollColl and IsTable );
InstallTrueMethod( IsExtAElement,
IsExtAElementCollection );
#############################################################################
##
#C IsNearAdditiveElement( <obj> )
##
## <#GAPDoc Label="IsNearAdditiveElement">
## <ManSection>
## <Filt Name="IsNearAdditiveElement" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>near-additive element</E> is an object that can be added via
## <C>+</C> with elements in its family (see <Ref Sect="Families"/>);
## this addition is not necessarily commutative.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsNearAdditiveElement", IsExtAElement );
DeclareCategoryCollections( "IsNearAdditiveElement" );
DeclareCategoryCollections( "IsNearAdditiveElementCollection" );
DeclareCategoryCollections( "IsNearAdditiveElementCollColl" );
DeclareSynonym( "IsNearAdditiveElementList",
IsNearAdditiveElementCollection and IsList );
DeclareSynonym( "IsNearAdditiveElementTable",
IsNearAdditiveElementCollColl and IsTable );
InstallTrueMethod( IsNearAdditiveElement,
IsNearAdditiveElementList );
InstallTrueMethod( IsNearAdditiveElementList,
IsNearAdditiveElementTable );
#############################################################################
##
#C IsNearAdditiveElementWithZero( <obj> )
##
## <#GAPDoc Label="IsNearAdditiveElementWithZero">
## <ManSection>
## <Filt Name="IsNearAdditiveElementWithZero" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>near-additive element-with-zero</E> is an object that can be added
## via <C>+</C> with elements in its family
## (see <Ref Sect="Families"/>),
## and that is an admissible argument for the operation <Ref Func="Zero"/>;
## this addition is not necessarily commutative.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsNearAdditiveElementWithZero", IsNearAdditiveElement );
DeclareCategoryCollections( "IsNearAdditiveElementWithZero" );
DeclareCategoryCollections( "IsNearAdditiveElementWithZeroCollection" );
DeclareCategoryCollections( "IsNearAdditiveElementWithZeroCollColl" );
DeclareSynonym( "IsNearAdditiveElementWithZeroList",
IsNearAdditiveElementWithZeroCollection and IsList );
DeclareSynonym( "IsNearAdditiveElementWithZeroTable",
IsNearAdditiveElementWithZeroCollColl and IsTable );
InstallTrueMethod(
IsNearAdditiveElementWithZero,
IsNearAdditiveElementWithZeroList );
InstallTrueMethod(
IsNearAdditiveElementWithZeroList,
IsNearAdditiveElementWithZeroTable );
#############################################################################
##
#C IsNearAdditiveElementWithInverse( <obj> )
##
## <#GAPDoc Label="IsNearAdditiveElementWithInverse">
## <ManSection>
## <Filt Name="IsNearAdditiveElementWithInverse" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>near-additive element-with-inverse</E> is an object that can be
## added via <C>+</C> with elements in its family
## (see <Ref Sect="Families"/>),
## and that is an admissible argument for the operations <Ref Func="Zero"/>
## and <Ref Func="AdditiveInverse"/>;
## this addition is not necessarily commutative.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsNearAdditiveElementWithInverse",
IsNearAdditiveElementWithZero );
DeclareCategoryCollections( "IsNearAdditiveElementWithInverse" );
DeclareCategoryCollections( "IsNearAdditiveElementWithInverseCollection" );
DeclareCategoryCollections( "IsNearAdditiveElementWithInverseCollColl" );
DeclareSynonym( "IsNearAdditiveElementWithInverseList",
IsNearAdditiveElementWithInverseCollection and IsList );
DeclareSynonym( "IsNearAdditiveElementWithInverseTable",
IsNearAdditiveElementWithInverseCollColl and IsTable );
InstallTrueMethod(
IsNearAdditiveElementWithInverse,
IsNearAdditiveElementWithInverseList );
InstallTrueMethod(
IsNearAdditiveElementWithInverseList,
IsNearAdditiveElementWithInverseTable );
#############################################################################
##
#C IsAdditiveElement( <obj> )
##
## <#GAPDoc Label="IsAdditiveElement">
## <ManSection>
## <Filt Name="IsAdditiveElement" Arg='obj' Type='Category'/>
##
## <Description>
## An <E>additive element</E> is an object that can be added via <C>+</C>
## with elements in its family (see <Ref Sect="Families"/>);
## this addition is commutative.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAdditiveElement", IsNearAdditiveElement );
DeclareCategoryCollections( "IsAdditiveElement" );
DeclareCategoryCollections( "IsAdditiveElementCollection" );
DeclareCategoryCollections( "IsAdditiveElementCollColl" );
DeclareSynonym( "IsAdditiveElementList",
IsAdditiveElementCollection and IsList );
DeclareSynonym( "IsAdditiveElementTable",
IsAdditiveElementCollColl and IsTable );
InstallTrueMethod( IsAdditiveElement,
IsAdditiveElementList );
InstallTrueMethod( IsAdditiveElementList,
IsAdditiveElementTable );
#############################################################################
##
#C IsAdditiveElementWithZero( <obj> )
##
## <#GAPDoc Label="IsAdditiveElementWithZero">
## <ManSection>
## <Filt Name="IsAdditiveElementWithZero" Arg='obj' Type='Category'/>
##
## <Description>
## An <E>additive element-with-zero</E> is an object that can be added
## via <C>+</C> with elements in its family
## (see <Ref Sect="Families"/>),
## and that is an admissible argument for the operation <Ref Func="Zero"/>;
## this addition is commutative.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsAdditiveElementWithZero",
IsNearAdditiveElementWithZero and IsAdditiveElement );
DeclareSynonym( "IsAdditiveElementWithZeroCollection",
IsNearAdditiveElementWithZeroCollection
and IsAdditiveElementCollection );
DeclareSynonym( "IsAdditiveElementWithZeroCollColl",
IsNearAdditiveElementWithZeroCollColl
and IsAdditiveElementCollColl );
DeclareSynonym( "IsAdditiveElementWithZeroCollCollColl",
IsNearAdditiveElementWithZeroCollCollColl
and IsAdditiveElementCollCollColl );
DeclareSynonym( "IsAdditiveElementWithZeroList",
IsAdditiveElementWithZeroCollection and IsList );
DeclareSynonym( "IsAdditiveElementWithZeroTable",
IsAdditiveElementWithZeroCollColl and IsTable );
InstallTrueMethod(
IsAdditiveElementWithZero,
IsAdditiveElementWithZeroList );
InstallTrueMethod(
IsAdditiveElementWithZeroList,
IsAdditiveElementWithZeroTable );
#############################################################################
##
#C IsAdditiveElementWithInverse( <obj> )
##
## <#GAPDoc Label="IsAdditiveElementWithInverse">
## <ManSection>
## <Filt Name="IsAdditiveElementWithInverse" Arg='obj' Type='Category'/>
##
## <Description>
## An <E>additive element-with-inverse</E> is an object that can be
## added via <C>+</C> with elements in its family
## (see <Ref Sect="Families"/>),
## and that is an admissible argument for the operations <Ref Func="Zero"/>
## and <Ref Func="AdditiveInverse"/>;
## this addition is commutative.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsAdditiveElementWithInverse",
IsNearAdditiveElementWithInverse and IsAdditiveElement );
DeclareSynonym( "IsAdditiveElementWithInverseCollection",
IsNearAdditiveElementWithInverseCollection
and IsAdditiveElementCollection );
DeclareSynonym( "IsAdditiveElementWithInverseCollColl",
IsNearAdditiveElementWithInverseCollColl
and IsAdditiveElementCollColl );
DeclareSynonym( "IsAdditiveElementWithInverseCollCollColl",
IsNearAdditiveElementWithInverseCollCollColl
and IsAdditiveElementCollCollColl );
DeclareSynonym( "IsAdditiveElementWithInverseList",
IsAdditiveElementWithInverseCollection and IsList );
DeclareSynonym( "IsAdditiveElementWithInverseTable",
IsAdditiveElementWithInverseCollColl and IsTable );
InstallTrueMethod(
IsAdditiveElementWithInverse,
IsAdditiveElementWithInverseList );
InstallTrueMethod(
IsAdditiveElementWithInverseList,
IsAdditiveElementWithInverseTable );
#############################################################################
##
#C IsExtLElement( <obj> )
##
## <#GAPDoc Label="IsExtLElement">
## <ManSection>
## <Filt Name="IsExtLElement" Arg='obj' Type='Category'/>
##
## <Description>
## An <E>external left element</E> is an object that can be multiplied
## from the left, via <C>*</C>, with other elements
## (not necessarily in the same family, see <Ref Sect="Families"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsExtLElement", IsObject );
DeclareCategoryCollections( "IsExtLElement" );
DeclareCategoryCollections( "IsExtLElementCollection" );
DeclareSynonym( "IsExtLElementList",
IsExtLElementCollection and IsList );
DeclareSynonym( "IsExtLElementTable",
IsExtLElementCollColl and IsTable );
InstallTrueMethod(
IsExtLElement,
IsExtLElementCollection );
#############################################################################
##
#C IsExtRElement( <obj> )
##
## <#GAPDoc Label="IsExtRElement">
## <ManSection>
## <Filt Name="IsExtRElement" Arg='obj' Type='Category'/>
##
## <Description>
## An <E>external right element</E> is an object that can be multiplied
## from the right, via <C>*</C>, with other elements
## (not necessarily in the same family, see <Ref Sect="Families"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsExtRElement", IsObject );
DeclareCategoryCollections( "IsExtRElement" );
DeclareCategoryCollections( "IsExtRElementCollection" );
DeclareSynonym( "IsExtRElementList",
IsExtRElementCollection and IsList );
DeclareSynonym( "IsExtRElementTable",
IsExtRElementCollColl and IsTable );
InstallTrueMethod(
IsExtRElement,
IsExtRElementCollection );
#############################################################################
##
#C IsMultiplicativeElement( <obj> )
##
## <#GAPDoc Label="IsMultiplicativeElement">
## <ManSection>
## <Filt Name="IsMultiplicativeElement" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>multiplicative element</E> is an object that can be multiplied via
## <C>*</C> with elements in its family (see <Ref Sect="Families"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMultiplicativeElement",
IsExtLElement and IsExtRElement );
DeclareCategoryCollections( "IsMultiplicativeElement" );
DeclareCategoryCollections( "IsMultiplicativeElementCollection" );
DeclareCategoryCollections( "IsMultiplicativeElementCollColl" );
DeclareSynonym( "IsMultiplicativeElementList",
IsMultiplicativeElementCollection and IsList );
DeclareSynonym( "IsMultiplicativeElementTable",
IsMultiplicativeElementCollColl and IsTable );
#############################################################################
##
#C IsMultiplicativeElementWithOne( <obj> )
##
## <#GAPDoc Label="IsMultiplicativeElementWithOne">
## <ManSection>
## <Filt Name="IsMultiplicativeElementWithOne" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>multiplicative element-with-one</E> is an object that can be
## multiplied via <C>*</C> with elements in its family
## (see <Ref Sect="Families"/>),
## and that is an admissible argument for the operation <Ref Func="One"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMultiplicativeElementWithOne",
IsMultiplicativeElement );
DeclareCategoryCollections( "IsMultiplicativeElementWithOne" );
DeclareCategoryCollections( "IsMultiplicativeElementWithOneCollection" );
DeclareCategoryCollections( "IsMultiplicativeElementWithOneCollColl" );
DeclareSynonym( "IsMultiplicativeElementWithOneList",
IsMultiplicativeElementWithOneCollection and IsList );
DeclareSynonym( "IsMultiplicativeElementWithOneTable",
IsMultiplicativeElementWithOneCollColl and IsTable );
#############################################################################
##
#C IsMultiplicativeElementWithInverse( <obj> )
##
## <#GAPDoc Label="IsMultiplicativeElementWithInverse">
## <ManSection>
## <Filt Name="IsMultiplicativeElementWithInverse" Arg='obj'
## Type='Category'/>
##
## <Description>
## A <E>multiplicative element-with-inverse</E> is an object that can be
## multiplied via <C>*</C> with elements in its family
## (see <Ref Sect="Families"/>),
## and that is an admissible argument for the operations <Ref Func="One"/>
## and <Ref Func="Inverse"/>. (Note the word <Q>admissible</Q>: an
## object in this category does not necessarily have an inverse,
## <Ref Func="Inverse"/> may return <K>fail</K>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMultiplicativeElementWithInverse",
IsMultiplicativeElementWithOne );
DeclareCategoryCollections( "IsMultiplicativeElementWithInverse" );
DeclareCategoryCollections( "IsMultiplicativeElementWithInverseCollection" );
DeclareCategoryCollections( "IsMultiplicativeElementWithInverseCollColl" );
DeclareSynonym( "IsMultiplicativeElementWithInverseList",
IsMultiplicativeElementWithInverseCollection and IsList );
DeclareSynonym( "IsMultiplicativeElementWithInverseTable",
IsMultiplicativeElementWithInverseCollColl and IsTable );
#############################################################################
##
#C IsVector( <obj> )
##
## <#GAPDoc Label="IsVector">
## <ManSection>
## <Filt Name="IsVector" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>vector</E> is an additive-element-with-inverse that can be
## multiplied from the left and right with other objects
## (not necessarily of the same type).
## Examples are cyclotomics, finite field elements,
## and of course row vectors (see below).
## <P/>
## Note that not all lists of ring elements are regarded as vectors,
## for example lists of matrices are not vectors.
## This is because although the category
## <Ref Func="IsAdditiveElementWithInverse"/> is
## implied by the meet of its collections category and <Ref Func="IsList"/>,
## the family of a list entry may not imply
## <Ref Func="IsAdditiveElementWithInverse"/> for all its elements.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsVector",
IsAdditiveElementWithInverse
and IsExtLElement
and IsExtRElement );
DeclareSynonym( "IsVectorCollection",
IsAdditiveElementWithInverseCollection
and IsExtLElementCollection
and IsExtRElementCollection );
DeclareSynonym( "IsVectorCollColl",
IsAdditiveElementWithInverseCollColl
and IsExtLElementCollColl
and IsExtRElementCollColl );
DeclareSynonym( "IsVectorList",
IsAdditiveElementWithInverseList
and IsExtLElementList
and IsExtRElementList );
DeclareSynonym( "IsVectorTable",
IsAdditiveElementWithInverseTable
and IsExtLElementTable
and IsExtRElementTable );
#############################################################################
##
#F IsOddAdditiveNestingDepthFamily( <Fam> )
#F IsOddAdditiveNestingDepthObject( <Fam> )
##
## <ManSection>
## <Filt Name="IsOddAdditiveNestingDepthFamily" Arg='Fam'/>
## <Filt Name="IsOddAdditiveNestingDepthObject" Arg='Fam'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareFilter( "IsOddAdditiveNestingDepthFamily" );
DeclareFilter( "IsOddAdditiveNestingDepthObject" );
#############################################################################
##
#C IsRowVector( <obj> )
##
## <#GAPDoc Label="IsRowVector">
## <ManSection>
## <Filt Name="IsRowVector" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>row vector</E> is a vector (see <Ref Func="IsVector"/>)
## that is also a homogeneous list of odd additive nesting depth
## (see <Ref Sect="Filters Controlling the Arithmetic Behaviour of Lists"/>).
## Typical examples are lists of integers and rationals,
## lists of finite field elements of the same characteristic,
## and lists of polynomials from a common polynomial ring.
## Note that matrices are <E>not</E> regarded as row vectors, because they have
## even additive nesting depth.
## <P/>
## The additive operations of the vector must thus be compatible with
## that for lists, implying that the list entries are the
## coefficients of the vector with respect to some basis.
## <P/>
## Note that not all row vectors admit a multiplication via <C>*</C>
## (which is to be understood as a scalar product);
## for example, class functions are row vectors but the product of two
## class functions is defined in a different way.
## For the installation of a scalar product of row vectors, the entries of
## the vector must be ring elements; note that the default method expects
## the row vectors to lie in <C>IsRingElementList</C>,
## and this category may not be implied by <Ref Func="IsRingElement"/>
## for all entries of the row vector
## (see the comment in <Ref Func="IsVector"/>).
## <P/>
## Note that methods for special types of row vectors really must be
## installed with the requirement <Ref Func="IsRowVector"/>,
## since <Ref Func="IsVector"/> may lead to a rank of the method below
## that of the default method for row vectors (see file <F>lib/vecmat.gi</F>).
## <P/>
## <Example><![CDATA[
## gap> IsRowVector([1,2,3]);
## true
## ]]></Example>
## <P/>
## Because row vectors are just a special case of lists, all operations
## and functions for lists are applicable to row vectors as well (see
## Chapter <Ref Chap="Lists"/>).
## This especially includes accessing elements of a row vector
## (see <Ref Sect="List Elements"/>), changing elements of a mutable row
## vector (see <Ref Sect="List Assignment"/>),
## and comparing row vectors (see <Ref Sect="Comparisons of Lists"/>).
## <P/>
## Note that, unless your algorithms specifically require you to be able
## to change entries of your vectors, it is generally better and faster
## to work with immutable row vectors.
## See Section <Ref Sect="Mutability and Copyability"/> for more
## details.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRowVector",
IsVector and IsHomogeneousList and IsOddAdditiveNestingDepthObject );
#############################################################################
##
## Filters Controlling the Arithmetic Behaviour of Lists
## <#GAPDoc Label="[1]{arith}">
## The arithmetic behaviour of lists is controlled by their types.
## The following categories and attributes are used for that.
## <P/>
## Note that we distinguish additive and multiplicative behaviour.
## For example, Lie matrices have the usual additive behaviour but not the
## usual multiplicative behaviour.
## <#/GAPDoc>
##
#############################################################################
##
#C IsGeneralizedRowVector( <list> ) . . . objects that comply with new list
## addition rules
##
## <#GAPDoc Label="IsGeneralizedRowVector">
## <ManSection>
## <Filt Name="IsGeneralizedRowVector" Arg='list' Type='Category'/>
##
## <Description>
## For a list <A>list</A>, the value <K>true</K> for
## <Ref Func="IsGeneralizedRowVector"/>
## indicates that the additive arithmetic behaviour of <A>list</A> is
## as defined in <Ref Sect="Additive Arithmetic for Lists"/>,
## and that the attribute <Ref Func="NestingDepthA"/>
## will return a nonzero value when called with <A>list</A>.
## <P/>
## <Example><![CDATA[
## gap> IsList( "abc" ); IsGeneralizedRowVector( "abc" );
## true
## false
## gap> liemat:= LieObject( [ [ 1, 2 ], [ 3, 4 ] ] );
## LieObject( [ [ 1, 2 ], [ 3, 4 ] ] )
## gap> IsGeneralizedRowVector( liemat );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsGeneralizedRowVector",
IsList and IsAdditiveElementWithInverse );
#############################################################################
##
#C IsMultiplicativeGeneralizedRowVector( <list> ) . . . .
## objects that comply with new list multiplication rules
##
## <#GAPDoc Label="IsMultiplicativeGeneralizedRowVector">
## <ManSection>
## <Filt Name="IsMultiplicativeGeneralizedRowVector" Arg='list'
## Type='Category'/>
##
## <Description>
## For a list <A>list</A>, the value <K>true</K> for
## <Ref Func="IsMultiplicativeGeneralizedRowVector"/> indicates that the
## multiplicative arithmetic behaviour of <A>list</A> is as defined
## in <Ref Sect="Multiplicative Arithmetic for Lists"/>,
## and that the attribute <Ref Func="NestingDepthM"/>
## will return a nonzero value when called with <A>list</A>.
## <P/>
## <Example><![CDATA[
## gap> IsMultiplicativeGeneralizedRowVector( liemat );
## false
## gap> bas:= CanonicalBasis( FullRowSpace( Rationals, 3 ) );
## CanonicalBasis( ( Rationals^3 ) )
## gap> IsMultiplicativeGeneralizedRowVector( bas );
## true
## ]]></Example>
## <P/>
## Note that the filters <Ref Func="IsGeneralizedRowVector"/>,
## <Ref Func="IsMultiplicativeGeneralizedRowVector"/>
## do <E>not</E> enable default methods for addition or multiplication
## (cf. <Ref Func="IsListDefault"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMultiplicativeGeneralizedRowVector",
IsGeneralizedRowVector );
#############################################################################
##
#A NestingDepthA( <obj> )
##
## <#GAPDoc Label="NestingDepthA">
## <ManSection>
## <Attr Name="NestingDepthA" Arg='obj'/>
##
## <Description>
## For a &GAP; object <A>obj</A>,
## <Ref Func="NestingDepthA"/> returns the <E>additive nesting depth</E>
## of <A>obj</A>.
## This is defined recursively
## as the integer <M>0</M> if <A>obj</A> is not in
## <Ref Func="IsGeneralizedRowVector"/>,
## as the integer <M>1</M> if <A>obj</A> is an empty list in
## <Ref Func="IsGeneralizedRowVector"/>,
## and as <M>1</M> plus the additive nesting depth of the first bound entry
## in <A>obj</A> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NestingDepthA", IsObject );
#############################################################################
##
#A NestingDepthM( <obj> )
##
## <#GAPDoc Label="NestingDepthM">
## <ManSection>
## <Attr Name="NestingDepthM" Arg='obj'/>
##
## <Description>
## For a &GAP; object <A>obj</A>,
## <Ref Attr="NestingDepthM"/> returns the
## <E>multiplicative nesting depth</E> of <A>obj</A>.
## This is defined recursively as the
## integer <M>0</M> if <A>obj</A> is not in
## <Ref Func="IsMultiplicativeGeneralizedRowVector"/>,
## as the integer <M>1</M> if <A>obj</A> is an empty list in
## <Ref Func="IsMultiplicativeGeneralizedRowVector"/>,
## and as <M>1</M> plus the multiplicative nesting depth of the first bound
## entry in <A>obj</A> otherwise.
## <Example><![CDATA[
## gap> NestingDepthA( v ); NestingDepthM( v );
## 1
## 1
## gap> NestingDepthA( m ); NestingDepthM( m );
## 2
## 2
## gap> NestingDepthA( liemat ); NestingDepthM( liemat );
## 2
## 0
## gap> l1:= [ [ 1, 2 ], 3 ];; l2:= [ 1, [ 2, 3 ] ];;
## gap> NestingDepthA( l1 ); NestingDepthM( l1 );
## 2
## 2
## gap> NestingDepthA( l2 ); NestingDepthM( l2 );
## 1
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NestingDepthM", IsObject );
#############################################################################
##
#C IsNearRingElement( <obj> )
##
## <#GAPDoc Label="IsNearRingElement">
## <ManSection>
## <Filt Name="IsNearRingElement" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Func="IsNearRingElement"/> is just a synonym for the meet of
## <Ref Func="IsNearAdditiveElementWithInverse"/> and
## <Ref Func="IsMultiplicativeElement"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsNearRingElement",
IsNearAdditiveElementWithInverse
and IsMultiplicativeElement );
DeclareSynonym( "IsNearRingElementCollection",
IsNearAdditiveElementWithInverseCollection
and IsMultiplicativeElementCollection );
DeclareSynonym( "IsNearRingElementCollColl",
IsNearAdditiveElementWithInverseCollColl
and IsMultiplicativeElementCollColl );
DeclareSynonym( "IsNearRingElementCollCollColl",
IsNearAdditiveElementWithInverseCollCollColl
and IsMultiplicativeElementCollCollColl );
DeclareSynonym( "IsNearRingElementList",
IsNearAdditiveElementWithInverseList
and IsMultiplicativeElementList );
DeclareSynonym( "IsNearRingElementTable",
IsNearAdditiveElementWithInverseTable
and IsMultiplicativeElementTable );
InstallTrueMethod(
IsNearRingElement,
IsNearRingElementTable );
DeclareCategoryFamily( "IsNearRingElement" );
#############################################################################
##
#C IsNearRingElementWithOne( <obj> )
##
## <#GAPDoc Label="IsNearRingElementWithOne">
## <ManSection>
## <Filt Name="IsNearRingElementWithOne" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Func="IsNearRingElementWithOne"/> is just a synonym for the meet of
## <Ref Func="IsNearAdditiveElementWithInverse"/> and
## <Ref Func="IsMultiplicativeElementWithOne"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsNearRingElementWithOne",
IsNearAdditiveElementWithInverse
and IsMultiplicativeElementWithOne );
DeclareSynonym( "IsNearRingElementWithOneCollection",
IsNearAdditiveElementWithInverseCollection
and IsMultiplicativeElementWithOneCollection );
DeclareSynonym( "IsNearRingElementWithOneCollColl",
IsNearAdditiveElementWithInverseCollColl
and IsMultiplicativeElementWithOneCollColl );
DeclareSynonym( "IsNearRingElementWithOneCollCollColl",
IsNearAdditiveElementWithInverseCollCollColl
and IsMultiplicativeElementWithOneCollCollColl );
DeclareSynonym( "IsNearRingElementWithOneList",
IsNearAdditiveElementWithInverseList
and IsMultiplicativeElementWithOneList );
DeclareSynonym( "IsNearRingElementWithOneTable",
IsNearAdditiveElementWithInverseTable
and IsMultiplicativeElementWithOneTable );
InstallTrueMethod(
IsNearRingElementWithOne,
IsNearRingElementWithOneTable );
#############################################################################
##
#C IsNearRingElementWithInverse( <obj> )
##
## <#GAPDoc Label="IsNearRingElementWithInverse">
## <ManSection>
## <Filt Name="IsNearRingElementWithInverse" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Func="IsNearRingElementWithInverse"/> is just a synonym for the meet of
## <Ref Func="IsNearAdditiveElementWithInverse"/> and
## <Ref Func="IsMultiplicativeElementWithInverse"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsNearRingElementWithInverse",
IsNearAdditiveElementWithInverse
and IsMultiplicativeElementWithInverse );
DeclareSynonym( "IsNearRingElementWithInverseCollection",
IsNearAdditiveElementWithInverseCollection
and IsMultiplicativeElementWithInverseCollection );
DeclareSynonym( "IsNearRingElementWithInverseCollColl",
IsNearAdditiveElementWithInverseCollColl
and IsMultiplicativeElementWithInverseCollColl );
DeclareSynonym( "IsNearRingElementWithInverseCollCollColl",
IsNearAdditiveElementWithInverseCollCollColl
and IsMultiplicativeElementWithInverseCollCollColl );
DeclareSynonym( "IsNearRingElementWithInverseList",
IsNearAdditiveElementWithInverseList
and IsMultiplicativeElementWithInverseList );
DeclareSynonym( "IsNearRingElementWithInverseTable",
IsNearAdditiveElementWithInverseTable
and IsMultiplicativeElementWithInverseTable );
InstallTrueMethod(
IsNearRingElementWithInverse,
IsNearRingElementWithInverseTable );
#############################################################################
##
#C IsRingElement( <obj> )
##
## <#GAPDoc Label="IsRingElement">
## <ManSection>
## <Filt Name="IsRingElement" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Func="IsRingElement"/> is just a synonym for the meet of
## <Ref Func="IsAdditiveElementWithInverse"/> and
## <Ref Func="IsMultiplicativeElement"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRingElement",
IsAdditiveElementWithInverse
and IsMultiplicativeElement );
DeclareSynonym( "IsRingElementCollection",
IsAdditiveElementWithInverseCollection
and IsMultiplicativeElementCollection );
DeclareSynonym( "IsRingElementCollColl",
IsAdditiveElementWithInverseCollColl
and IsMultiplicativeElementCollColl );
DeclareSynonym( "IsRingElementCollCollColl",
IsAdditiveElementWithInverseCollCollColl
and IsMultiplicativeElementCollCollColl );
DeclareSynonym( "IsRingElementList",
IsAdditiveElementWithInverseList
and IsMultiplicativeElementList );
DeclareSynonym( "IsRingElementTable",
IsAdditiveElementWithInverseTable
and IsMultiplicativeElementTable );
InstallTrueMethod(
IsRingElement,
IsRingElementTable );
DeclareCategoryFamily( "IsRingElement" );
#############################################################################
##
#C IsRingElementWithOne( <obj> )
##
## <#GAPDoc Label="IsRingElementWithOne">
## <ManSection>
## <Filt Name="IsRingElementWithOne" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Func="IsRingElementWithOne"/> is just a synonym for the meet of
## <Ref Func="IsAdditiveElementWithInverse"/> and
## <Ref Func="IsMultiplicativeElementWithOne"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRingElementWithOne",
IsAdditiveElementWithInverse
and IsMultiplicativeElementWithOne );
DeclareSynonym( "IsRingElementWithOneCollection",
IsAdditiveElementWithInverseCollection
and IsMultiplicativeElementWithOneCollection );
DeclareSynonym( "IsRingElementWithOneCollColl",
IsAdditiveElementWithInverseCollColl
and IsMultiplicativeElementWithOneCollColl );
DeclareSynonym( "IsRingElementWithOneCollCollColl",
IsAdditiveElementWithInverseCollCollColl
and IsMultiplicativeElementWithOneCollCollColl );
DeclareSynonym( "IsRingElementWithOneList",
IsAdditiveElementWithInverseList
and IsMultiplicativeElementWithOneList );
DeclareSynonym( "IsRingElementWithOneTable",
IsAdditiveElementWithInverseTable
and IsMultiplicativeElementWithOneTable );
InstallTrueMethod(
IsRingElementWithOne,
IsRingElementWithOneTable );
#############################################################################
##
#C IsRingElementWithInverse( <obj> )
#C IsScalar( <obj> )
##
## <#GAPDoc Label="IsRingElementWithInverse">
## <ManSection>
## <Filt Name="IsRingElementWithInverse" Arg='obj' Type='Category'/>
## <Filt Name="IsScalar" Arg='obj' Type='Category'/>
##
## <Description>
## <Ref Func="IsRingElementWithInverse"/> and <Ref Func="IsScalar"/>
## are just synonyms for the meet of
## <Ref Func="IsAdditiveElementWithInverse"/> and
## <Ref Func="IsMultiplicativeElementWithInverse"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsRingElementWithInverse",
IsAdditiveElementWithInverse
and IsMultiplicativeElementWithInverse );
DeclareSynonym( "IsRingElementWithInverseCollection",
IsAdditiveElementWithInverseCollection
and IsMultiplicativeElementWithInverseCollection );
DeclareSynonym( "IsRingElementWithInverseCollColl",
IsAdditiveElementWithInverseCollColl
and IsMultiplicativeElementWithInverseCollColl );
DeclareSynonym( "IsRingElementWithInverseCollCollColl",
IsAdditiveElementWithInverseCollCollColl
and IsMultiplicativeElementWithInverseCollCollColl );
DeclareSynonym( "IsRingElementWithInverseList",
IsAdditiveElementWithInverseList
and IsMultiplicativeElementWithInverseList );
DeclareSynonym( "IsRingElementWithInverseTable",
IsAdditiveElementWithInverseTable
and IsMultiplicativeElementWithInverseTable );
InstallTrueMethod(
IsRingElementWithInverse,
IsRingElementWithInverseTable );
DeclareSynonym( "IsScalar", IsRingElementWithInverse );
DeclareSynonym( "IsScalarCollection", IsRingElementWithInverseCollection );
DeclareSynonym( "IsScalarCollColl", IsRingElementWithInverseCollColl );
DeclareSynonym( "IsScalarList", IsRingElementWithInverseList );
DeclareSynonym( "IsScalarTable", IsRingElementWithInverseTable );
#############################################################################
##
#C IsZDFRE( <obj> )
##
## <ManSection>
## <Filt Name="IsZDFRE" Arg='obj' Type='Category'/>
##
## <Description>
## This category (<Q>is zero divisor free ring element</Q>) indicates elements
## from a ring which contains no zero divisors. For matrix operations over
## this ring, a standard Gauss algorithm can be used.
## </Description>
## </ManSection>
##
DeclareCategory("IsZDFRE",IsRingElementWithInverse);
DeclareCategoryCollections("IsZDFRE");
DeclareCategoryCollections("IsZDFRECollection");
#############################################################################
##
#C IsMatrix( <obj> )
##
## <#GAPDoc Label="IsMatrix">
## <ManSection>
## <Filt Name="IsMatrix" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>matrix</E> is a list of lists of equal length whose entries lie in a
## common ring.
## <P/>
## Note that matrices may have different multiplications,
## besides the usual matrix product there is for example the Lie product.
## So there are categories such as
## <Ref Func="IsOrdinaryMatrix"/> and <Ref Func="IsLieMatrix"/>
## that describe the matrix multiplication.
## One can form the product of two matrices only if they support the same
## multiplication.
## <P/>
## <Example><![CDATA[
## gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];
## [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]
## gap> IsMatrix(mat);
## true
## ]]></Example>
## <P/>
## Note also the filter <Ref Func="IsTable"/>
## which may be more appropriate than <Ref Filt="IsMatrix"/>
## for some purposes.
## <P/>
## Note that the empty list <C>[]</C> and more complex
## <Q>empty</Q> structures such as <C>[[]]</C> are <E>not</E> matrices,
## although special methods allow them be used in place of matrices in some
## situations. See <Ref Func="EmptyMatrix"/> below.
## <P/>
## <Example><![CDATA[
## gap> [[0]]*[[]];
## [ [ ] ]
## gap> IsMatrix([[]]);
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
#T
#T In order to avoid that a matrix supports more than one multiplication,
#T appropriate immediate methods are installed (see~arith.gi).
##
DeclareSynonym( "IsMatrix", IsRingElementTable );
DeclareCategoryCollections( "IsMatrix" );
#############################################################################
##
#C IsOrdinaryMatrix( <obj> )
##
## <#GAPDoc Label="IsOrdinaryMatrix">
## <ManSection>
## <Filt Name="IsOrdinaryMatrix" Arg='obj' Type='Category'/>
##
## <Description>
## An <E>ordinary matrix</E> is a matrix whose multiplication is the ordinary
## matrix multiplication.
## <P/>
## Each matrix in internal representation is in the category
## <Ref Func="IsOrdinaryMatrix"/>,
## and arithmetic operations with objects in <Ref Func="IsOrdinaryMatrix"/>
## produce again matrices in <Ref Func="IsOrdinaryMatrix"/>.
## <P/>
## Note that we want that Lie matrices shall be matrices that behave in the
## same way as ordinary matrices, except that they have a different
## multiplication.
## So we must distinguish the different matrix multiplications,
## in order to be able to describe the applicability of multiplication,
## and also in order to form a matrix of the appropriate type as the
## sum, difference etc. of two matrices
## which have the same multiplication.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsOrdinaryMatrix", IsMatrix );
DeclareCategoryCollections( "IsOrdinaryMatrix" );
#T get rid of this filter!!
InstallTrueMethod( IsOrdinaryMatrix, IsMatrix and IsInternalRep );
InstallTrueMethod( IsGeneralizedRowVector, IsMatrix );
#T get rid of that hack!
InstallTrueMethod( IsMultiplicativeGeneralizedRowVector,
IsOrdinaryMatrix );
#############################################################################
##
#C IsLieMatrix( <mat> )
##
## <#GAPDoc Label="IsLieMatrix">
## <ManSection>
## <Filt Name="IsLieMatrix" Arg='mat' Type='Category'/>
##
## <Description>
## A <E>Lie matrix</E> is a matrix whose multiplication is given by the
## Lie bracket.
## (Note that a matrix with ordinary matrix multiplication is in the
## category <Ref Func="IsOrdinaryMatrix"/>.)
## <P/>
## Each matrix created by <Ref Func="LieObject"/> is in the category
## <Ref Func="IsLieMatrix"/>,
## and arithmetic operations with objects in <Ref Func="IsLieMatrix"/>
## produce again matrices in <Ref Func="IsLieMatrix"/>.
## <!-- We do not claim that every object in <Ref Func="IsLieMatrix"/>
## is also contained in <Ref Func="IsLieObject"/>,
## since the former describes the containment in a certain
## family and the latter describes a certain matrix multiplication;
## probably this distinction is unnecessary. -->
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsLieMatrix", IsGeneralizedRowVector and IsMatrix );
#############################################################################
##
#C IsAssociativeElement( <obj> ) . . . elements belonging to assoc. families
#C IsAssociativeElementCollection( <obj> )
#C IsAssociativeElementCollColl( <obj> )
##
## <#GAPDoc Label="IsAssociativeElement">
## <ManSection>
## <Filt Name="IsAssociativeElement" Arg='obj' Type='Category'/>
## <Filt Name="IsAssociativeElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsAssociativeElementCollColl" Arg='obj' Type='Category'/>
##
## <Description>
## An element <A>obj</A> in the category <Ref Func="IsAssociativeElement"/>
## knows that the multiplication of any elements in the family of <A>obj</A>
## is associative.
## For example, all permutations lie in this category, as well as those
## ordinary matrices (see <Ref Func="IsOrdinaryMatrix"/>)
## whose entries are also in <Ref Func="IsAssociativeElement"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAssociativeElement", IsMultiplicativeElement );
DeclareCategoryCollections( "IsAssociativeElement" );
DeclareCategoryCollections( "IsAssociativeElementCollection" );
#############################################################################
##
#M IsAssociativeElement( <mat> ) . . . . . . . for certain ordinary matrices
##
## Matrices with associative multiplication
## and with entries in an associative family
## are themselves associative elements.
##
InstallTrueMethod( IsAssociativeElement,
IsOrdinaryMatrix and IsAssociativeElementCollColl );
#############################################################################
##
#C IsAdditivelyCommutativeElement( <obj> )
#C IsAdditivelyCommutativeElementCollection( <obj> )
#C IsAdditivelyCommutativeElementCollColl( <obj> )
#C IsAdditivelyCommutativeElementFamily( <obj> )
##
## <#GAPDoc Label="IsAdditivelyCommutativeElement">
## <ManSection>
## <Filt Name="IsAdditivelyCommutativeElement" Arg='obj' Type='Category'/>
## <Filt Name="IsAdditivelyCommutativeElementCollection" Arg='obj'
## Type='Category'/>
## <Filt Name="IsAdditivelyCommutativeElementCollColl" Arg='obj'
## Type='Category'/>
## <Filt Name="IsAdditivelyCommutativeElementFamily" Arg='obj'
## Type='Category'/>
##
## <Description>
## An element <A>obj</A> in the category
## <Ref Func="IsAdditivelyCommutativeElement"/> knows
## that the addition of any elements in the family of <A>obj</A>
## is commutative.
## For example, each finite field element and each rational number lies in
## this category.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsAdditivelyCommutativeElement", IsAdditiveElement );
DeclareCategoryCollections( "IsAdditivelyCommutativeElement" );
DeclareCategoryCollections( "IsAdditivelyCommutativeElementCollection" );
DeclareCategoryFamily( "IsAdditivelyCommutativeElement" );
#############################################################################
##
#M IsAdditivelyCommutativeElement( <mat> ) . . . . . . for certain matrices
##
## Matrices with entries in an additively commutative family
## are themselves additively commutative elements.
##
InstallTrueMethod( IsAdditivelyCommutativeElement,
IsMatrix and IsAdditivelyCommutativeElementCollColl );
#############################################################################
##
#M IsAdditivelyCommutativeElement( <mat> ) . . . . . for certain row vectors
##
## Row vectors with entries in an additively commutative family
## are themselves additively commutative elements.
##
InstallTrueMethod( IsAdditivelyCommutativeElement,
IsRowVector and IsAdditivelyCommutativeElementCollection );
#############################################################################
##
#C IsCommutativeElement( <obj> ) . . . elements belonging to comm. families
#C IsCommutativeElementCollection( <obj> )
#C IsCommutativeElementCollColl( <obj> )
##
## <#GAPDoc Label="IsCommutativeElement">
## <ManSection>
## <Filt Name="IsCommutativeElement" Arg='obj' Type='Category'/>
## <Filt Name="IsCommutativeElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsCommutativeElementCollColl" Arg='obj' Type='Category'/>
##
## <Description>
## An element <A>obj</A> in the category <Ref Func="IsCommutativeElement"/>
## knows that the multiplication of any elements in the family of <A>obj</A>
## is commutative.
## For example, each finite field element and each rational number lies in
## this category.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsCommutativeElement", IsMultiplicativeElement );
DeclareCategoryCollections( "IsCommutativeElement" );
DeclareCategoryCollections( "IsCommutativeElementCollection" );
#############################################################################
##
#C IsFiniteOrderElement( <obj> )
#C IsFiniteOrderElementCollection( <obj> )
#C IsFiniteOrderElementCollColl( <obj> )
##
## <#GAPDoc Label="IsFiniteOrderElement">
## <ManSection>
## <Filt Name="IsFiniteOrderElement" Arg='obj' Type='Category'/>
## <Filt Name="IsFiniteOrderElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsFiniteOrderElementCollColl" Arg='obj' Type='Category'/>
##
## <Description>
## An element <A>obj</A> in the category <Ref Func="IsFiniteOrderElement"/>
## knows that it has finite multiplicative order.
## For example, each finite field element and each permutation lies in
## this category.
## However the value may be <K>false</K> even if <A>obj</A> has finite
## order, but if this was not known when <A>obj</A> was constructed.
## <P/>
## Although it is legal to set this filter for any object with finite order,
## this is really useful only in the case that all elements of a family are
## known to have finite order.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsFiniteOrderElement",
IsMultiplicativeElementWithInverse );
DeclareCategoryCollections( "IsFiniteOrderElement" );
DeclareCategoryCollections( "IsFiniteOrderElementCollection" );
#############################################################################
##
#C IsJacobianElement( <obj> ) . elements belong. to fam. with Jacobi ident.
#C IsJacobianElementCollection( <obj> )
#C IsJacobianElementCollColl( <obj> )
##
## <#GAPDoc Label="IsJacobianElement">
## <ManSection>
## <Filt Name="IsJacobianElement" Arg='obj' Type='Category'/>
## <Filt Name="IsJacobianElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsJacobianElementCollColl" Arg='obj' Type='Category'/>
## <Filt Name="IsRestrictedJacobianElement" Arg='obj' Type='Category'/>
## <Filt Name="IsRestrictedJacobianElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsRestrictedJacobianElementCollColl" Arg='obj' Type='Category'/>
##
## <Description>
## An element <A>obj</A> in the category <Ref Func="IsJacobianElement"/>
## knows that the multiplication of any elements in the family <M>F</M>
## of <A>obj</A> satisfies the Jacobi identity, that is,
## <M>x * y * z + z * x * y + y * z * x</M> is zero
## for all <M>x</M>, <M>y</M>, <M>z</M> in <M>F</M>.
## <P/>
## For example, each Lie matrix (see <Ref Func="IsLieMatrix"/>)
## lies in this category.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsJacobianElement", IsRingElement );
DeclareCategoryCollections( "IsJacobianElement" );
DeclareCategoryCollections( "IsJacobianElementCollection" );
DeclareCategory( "IsRestrictedJacobianElement", IsJacobianElement );
DeclareCategoryCollections( "IsRestrictedJacobianElement" );
DeclareCategoryCollections( "IsRestrictedJacobianElementCollection" );
#############################################################################
##
#C IsZeroSquaredElement( <obj> ) . . . elements belong. to zero squared fam.
#C IsZeroSquaredElementCollection( <obj> )
#C IsZeroSquaredElementCollColl( <obj> )
##
## <#GAPDoc Label="IsZeroSquaredElement">
## <ManSection>
## <Filt Name="IsZeroSquaredElement" Arg='obj' Type='Category'/>
## <Filt Name="IsZeroSquaredElementCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsZeroSquaredElementCollColl" Arg='obj' Type='Category'/>
##
## <Description>
## An element <A>obj</A> in the category <Ref Func="IsZeroSquaredElement"/>
## knows that <C><A>obj</A>^2 = Zero( <A>obj</A> )</C>.
## For example, each Lie matrix (see <Ref Func="IsLieMatrix"/>)
## lies in this category.
## <P/>
## Although it is legal to set this filter for any zero squared object,
## this is really useful only in the case that all elements of a family are
## known to have square zero.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsZeroSquaredElement", IsRingElement );
DeclareCategoryCollections( "IsZeroSquaredElement" );
DeclareCategoryCollections( "IsZeroSquaredElementCollection" );
#############################################################################
##
#P IsZero( <elm> ) . . . . . . . . . . . . . . . . . . test for zero element
##
## <#GAPDoc Label="IsZero">
## <ManSection>
## <Prop Name="IsZero" Arg='elm'/>
##
## <Description>
## is <K>true</K> if <C><A>elm</A> = Zero( <A>elm</A> )</C>,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsZero", IsAdditiveElementWithZero );
#############################################################################
##
#P IsOne( <elm> ) . . . . . . . . . . . . . . . . test for identity element
##
## <#GAPDoc Label="IsOne">
## <ManSection>
## <Prop Name="IsOne" Arg='elm'/>
##
## <Description>
## is <K>true</K> if <C><A>elm</A> = One( <A>elm</A> )</C>,
## and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsOne", IsMultiplicativeElementWithOne );
#############################################################################
##
#A ZeroImmutable( <obj> ) . . additive neutral of an element/domain/family
#A ZeroAttr( <obj> ) synonym of ZeroImmutable
#A Zero( <obj> ) synonym of ZeroImmutable
#O ZeroMutable( <obj> ) . . . . . . mutable additive neutral of an element
#O ZeroOp( <obj> ) synonym of ZeroMutable
#O ZeroSameMutability( <obj> ) mutability preserving zero (0*<obj>)
#O ZeroSM( <obj> ) synonym of ZeroSameMutability
##
## <#GAPDoc Label="ZeroImmutable">
## <ManSection>
## <Attr Name="ZeroImmutable" Arg='obj'/>
## <Attr Name="ZeroAttr" Arg='obj'/>
## <Attr Name="Zero" Arg='obj'/>
## <Oper Name="ZeroMutable" Arg='obj'/>
## <Oper Name="ZeroOp" Arg='obj'/>
## <Oper Name="ZeroSameMutability" Arg='obj'/>
## <Oper Name="ZeroSM" Arg='obj'/>
##
## <Description>
## <Ref Func="ZeroImmutable"/>, <Ref Func="ZeroMutable"/>,
## and <Ref Func="ZeroSameMutability"/> all
## return the additive neutral element of the additive element <A>obj</A>.
## <P/>
## They differ only w.r.t. the mutability of the result.
## <Ref Func="ZeroImmutable"/> is an attribute and hence returns an
## immutable result.
## <Ref Func="ZeroMutable"/> is guaranteed to return a new <E>mutable</E>
## object whenever a mutable version of the required element exists in &GAP;
## (see <Ref Func="IsCopyable"/>).
## <Ref Func="ZeroSameMutability"/> returns a result that is mutable if
## <A>obj</A> is mutable and if a mutable version of the required element
## exists in &GAP;;
## for lists, it returns a result of the same immutability level as
## the argument. For instance, if the argument is a mutable matrix
## with immutable rows, it returns a similar object.
## <P/>
## <C>ZeroSameMutability( <A>obj</A> )</C> is equivalent to
## <C>0 * <A>obj</A></C>.
## <P/>
## <Ref Attr="ZeroAttr"/> and <Ref Func="Zero"/> are synonyms of
## <Ref Func="ZeroImmutable"/>.
## <Ref Func="ZeroSM"/> is a synonym of <Ref Func="ZeroSameMutability"/>.
## <Ref Func="ZeroOp"/> is a synonym of <Ref Func="ZeroMutable"/>.
## <P/>
## If <A>obj</A> is a domain or a family then <Ref Func="Zero"/> is defined
## as the zero element of all elements in <A>obj</A>,
## provided that all these elements have the same zero.
## For example, the family of all cyclotomics has the zero element <C>0</C>,
## but a collections family (see <Ref Func="CollectionsFamily"/>) may
## contain matrices of all dimensions and then it cannot have a unique
## zero element.
## Note that <Ref Func="Zero"/> is applicable to a domain only if it is an
## additive magma-with-zero
## (see <Ref Func="IsAdditiveMagmaWithZero"/>);
## use <Ref Func="AdditiveNeutralElement"/> otherwise.
## <P/>
## The default method of <Ref Func="Zero"/> for additive elements calls
## <Ref Func="ZeroMutable"/>
## (note that methods for <Ref Func="ZeroMutable"/> must <E>not</E> delegate
## to <Ref Func="Zero"/>);
## so other methods to compute zero elements need to be installed only for
## <Ref Func="ZeroMutable"/> and (in the case of copyable objects)
## <Ref Func="ZeroSameMutability"/>.
## <P/>
## For domains, <Ref Func="Zero"/> may call <Ref Attr="Representative"/>,
## but <Ref Attr="Representative"/> is allowed to fetch the zero of a domain
## <A>D</A> only if <C>HasZero( <A>D</A> )</C> is <K>true</K>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ZeroImmutable", IsAdditiveElementWithZero );
DeclareAttribute( "ZeroImmutable", IsFamily );
DeclareSynonymAttr( "ZeroAttr", ZeroImmutable );
DeclareSynonymAttr( "Zero", ZeroImmutable );
DeclareOperationKernel( "ZeroMutable", [ IsAdditiveElementWithZero ],
ZERO_MUT );
DeclareSynonym( "ZeroOp", ZeroMutable );
DeclareOperationKernel( "ZeroSameMutability", [ IsAdditiveElementWithZero ],
ZERO );
DeclareSynonym( "ZeroSM", ZeroSameMutability );
#############################################################################
##
#O `<elm1>+<elm2>' . . . . . . . . . . . . . . . . . . . sum of two elements
##
DeclareOperationKernel( "+", [ IsExtAElement, IsExtAElement ], SUM );
#############################################################################
##
#A AdditiveInverseImmutable( <elm> ) . . . . additive inverse of an element
#A AdditiveInverseAttr( <elm> ) . . . . additive inverse of an element
#A AdditiveInverse( <elm> ) . . . . additive inverse of an element
#O AdditiveInverseMutable( <elm> ) . mutable additive inverse of an element
#O AdditiveInverseOp( <elm> ) . mutable additive inverse of an element
#O AdditiveInverseSameMutability( <elm> ) . additive inverse of an element
#O AdditiveInverseSM( <elm> ) . additive inverse of an element
##
## <#GAPDoc Label="AdditiveInverseImmutable">
## <ManSection>
## <Attr Name="AdditiveInverseImmutable" Arg='elm'/>
## <Attr Name="AdditiveInverseAttr" Arg='elm'/>
## <Attr Name="AdditiveInverse" Arg='elm'/>
## <Oper Name="AdditiveInverseMutable" Arg='elm'/>
## <Oper Name="AdditiveInverseOp" Arg='elm'/>
## <Oper Name="AdditiveInverseSameMutability" Arg='elm'/>
## <Oper Name="AdditiveInverseSM" Arg='elm'/>
##
## <Description>
## <Ref Attr="AdditiveInverseImmutable"/>,
## <Ref Oper="AdditiveInverseMutable"/>, and
## <Ref Oper="AdditiveInverseSameMutability"/> all return the
## additive inverse of <A>elm</A>.
## <P/>
## They differ only w.r.t. the mutability of the result.
## <Ref Attr="AdditiveInverseImmutable"/> is an attribute and hence returns
## an immutable result.
## <Ref Oper="AdditiveInverseMutable"/> is guaranteed to return a new
## <E>mutable</E> object whenever a mutable version of the required element
## exists in &GAP; (see <Ref Func="IsCopyable"/>).
## <Ref Oper="AdditiveInverseSameMutability"/> returns a result that is
## mutable if <A>elm</A> is mutable and if a mutable version of the required
## element exists in &GAP;;
## for lists, it returns a result of the same immutability level as
## the argument. For instance, if the argument is a mutable matrix
## with immutable rows, it returns a similar object.
## <P/>
## <C>AdditiveInverseSameMutability( <A>elm</A> )</C> is equivalent to
## <C>-<A>elm</A></C>.
## <P/>
## <Ref Attr="AdditiveInverseAttr"/> and <Ref Attr="AdditiveInverse"/> are
## synonyms of <Ref Attr="AdditiveInverseImmutable"/>.
## <Ref Oper="AdditiveInverseSM"/> is a synonym of
## <Ref Oper="AdditiveInverseSameMutability"/>.
## <Ref Oper="AdditiveInverseOp"/> is a synonym of
## <Ref Oper="AdditiveInverseMutable"/>.
## <P/>
## The default method of <Ref Attr="AdditiveInverse"/> calls
## <Ref Oper="AdditiveInverseMutable"/>
## (note that methods for <Ref Oper="AdditiveInverseMutable"/>
## must <E>not</E> delegate to <Ref Attr="AdditiveInverse"/>);
## so other methods to compute additive inverses need to be installed only
## for <Ref Oper="AdditiveInverseMutable"/> and (in the case of copyable
## objects) <Ref Oper="AdditiveInverseSameMutability"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AdditiveInverseImmutable", IsAdditiveElementWithInverse );
DeclareSynonymAttr( "AdditiveInverseAttr", AdditiveInverseImmutable );
DeclareSynonymAttr( "AdditiveInverse", AdditiveInverseImmutable );
DeclareOperationKernel( "AdditiveInverseMutable",
[ IsAdditiveElementWithInverse ], AINV_MUT);
DeclareSynonym( "AdditiveInverseOp", AdditiveInverseMutable);
DeclareOperationKernel( "AdditiveInverseSameMutability",
[ IsAdditiveElementWithInverse ], AINV );
DeclareSynonym( "AdditiveInverseSM", AdditiveInverseSameMutability);
#############################################################################
##
#O `<elm1>-<elm2>' . . . . . . . . . . . . . . . difference of two elements
##
DeclareOperationKernel( "-",
[ IsExtAElement, IsNearAdditiveElementWithInverse ], DIFF );
#############################################################################
##
#O `<elm1>*<elm2>' . . . . . . . . . . . . . . . . . product of two elements
##
DeclareOperationKernel( "*", [ IsExtRElement, IsExtLElement ], PROD );
#############################################################################
##
#A OneImmutable( <obj> ) multiplicative neutral of an element/domain/family
#A OneAttr( <obj> )
#A One( <obj> )
#A Identity( <obj> )
#O OneMutable( <obj> ) . . . . . . . . multiplicative neutral of an element
#O OneOp( <obj> )
#O OneSameMutability( <obj> )
#O OneSM( <obj> )
##
## <#GAPDoc Label="OneImmutable">
## <ManSection>
## <Attr Name="OneImmutable" Arg='obj'/>
## <Attr Name="OneAttr" Arg='obj'/>
## <Attr Name="One" Arg='obj'/>
## <Attr Name="Identity" Arg='obj'/>
## <Oper Name="OneMutable" Arg='obj'/>
## <Oper Name="OneOp" Arg='obj'/>
## <Oper Name="OneSameMutability" Arg='obj'/>
## <Oper Name="OneSM" Arg='obj'/>
##
## <Description>
## <Ref Attr="OneImmutable"/>, <Ref Oper="OneMutable"/>,
## and <Ref Oper="OneSameMutability"/> return the multiplicative neutral
## element of the multiplicative element <A>obj</A>.
## <P/>
## They differ only w.r.t. the mutability of the result.
## <Ref Attr="OneImmutable"/> is an attribute and hence returns an immutable
## result.
## <Ref Oper="OneMutable"/> is guaranteed to return a new <E>mutable</E>
## object whenever a mutable version of the required element exists in &GAP;
## (see <Ref Func="IsCopyable"/>).
## <Ref Oper="OneSameMutability"/> returns a result that is mutable if
## <A>obj</A> is mutable
## and if a mutable version of the required element exists in &GAP;;
## for lists, it returns a result of the same immutability level as
## the argument. For instance, if the argument is a mutable matrix
## with immutable rows, it returns a similar object.
## <P/>
## If <A>obj</A> is a multiplicative element then
## <C>OneSameMutability( <A>obj</A> )</C>
## is equivalent to <C><A>obj</A>^0</C>.
## <P/>
## <Ref Attr="OneAttr"/>, <Ref Attr="One"/> and <Ref Attr="Identity"/> are
## synonyms of <C>OneImmutable</C>.
## <Ref Oper="OneSM"/> is a synonym of <Ref Oper="OneSameMutability"/>.
## <Ref Oper="OneOp"/> is a synonym of <Ref Oper="OneMutable"/>.
## <P/>
## If <A>obj</A> is a domain or a family then <Ref Attr="One"/> is defined
## as the identity element of all elements in <A>obj</A>,
## provided that all these elements have the same identity.
## For example, the family of all cyclotomics has the identity element
## <C>1</C>,
## but a collections family (see <Ref Func="CollectionsFamily"/>)
## may contain matrices of all dimensions and then it cannot have a unique
## identity element.
## Note that <Ref Oper="One"/> is applicable to a domain only if it is a
## magma-with-one (see <Ref Func="IsMagmaWithOne"/>);
## use <Ref Func="MultiplicativeNeutralElement"/> otherwise.
## <P/>
## The identity of an object need not be distinct from its zero,
## so for example a ring consisting of a single element can be regarded as a
## ring-with-one (see <Ref Chap="Rings"/>).
## This is particularly useful in the case of finitely presented algebras,
## where any factor of a free algebra-with-one is again an algebra-with-one,
## no matter whether or not it is a zero algebra.
## <P/>
## The default method of <Ref Attr="One"/> for multiplicative elements calls
## <Ref Oper="OneMutable"/> (note that methods for <Ref Oper="OneMutable"/>
## must <E>not</E> delegate to <Ref Attr="One"/>);
## so other methods to compute identity elements need to be installed only
## for <Ref Oper="OneOp"/> and (in the case of copyable objects)
## <Ref Oper="OneSameMutability"/>.
## <P/>
## For domains, <Ref Attr="One"/> may call <Ref Attr="Representative"/>,
## but <Ref Attr="Representative"/> is allowed to fetch the identity of a
## domain <A>D</A> only if <C>HasOne( <A>D</A> )</C> is <K>true</K>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "OneImmutable", IsMultiplicativeElementWithOne );
DeclareAttribute( "OneImmutable", IsFamily );
DeclareSynonymAttr( "OneAttr", OneImmutable );
DeclareSynonymAttr( "One", OneImmutable );
DeclareSynonymAttr( "Identity", OneImmutable );
DeclareOperationKernel( "OneMutable", [ IsMultiplicativeElementWithOne ],
ONE );
DeclareSynonym( "OneOp", OneMutable);
DeclareOperationKernel( "OneSameMutability",
[ IsMultiplicativeElementWithOne ], ONE_MUT );
DeclareSynonym( "OneSM", OneSameMutability);
#############################################################################
##
#A InverseImmutable( <elm> ) . . . . multiplicative inverse of an element
#A InverseAttr( <elm> )
#A Inverse( <elm> )
#O InverseMutable( <elm> )
#O InverseOp( <elm> )
#O InverseSameMutability( <elm> ) . . multiplicative inverse of an element
#O InverseSM( <elm> )
##
## <#GAPDoc Label="InverseImmutable">
## <ManSection>
## <Attr Name="InverseImmutable" Arg='elm'/>
## <Attr Name="InverseAttr" Arg='elm'/>
## <Attr Name="Inverse" Arg='elm'/>
## <Oper Name="InverseMutable" Arg='elm'/>
## <Oper Name="InverseOp" Arg='elm'/>
## <Oper Name="InverseSameMutability" Arg='elm'/>
## <Oper Name="InverseSM" Arg='elm'/>
##
## <Description>
## <Ref Attr="InverseImmutable"/>, <Ref Oper="InverseMutable"/>, and
## <Ref Oper="InverseSameMutability"/>
## all return the multiplicative inverse of an element <A>elm</A>,
## that is, an element <A>inv</A> such that
## <C><A>elm</A> * <A>inv</A> = <A>inv</A> * <A>elm</A>
## = One( <A>elm</A> )</C> holds;
## if <A>elm</A> is not invertible then <K>fail</K>
## (see <Ref Sect="Fail"/>) is returned.
## <P/>
## Note that the above definition implies that a (general) mapping
## is invertible in the sense of <Ref Attr="Inverse"/> only if its source
## equals its range
## (see <Ref Sect="Technical Matters Concerning General Mappings"/>).
## For a bijective mapping <M>f</M> whose source and range differ,
## <Ref Func="InverseGeneralMapping"/> can be used
## to construct a mapping <M>g</M> with the property
## that <M>f</M> <C>*</C> <M>g</M> is the identity mapping on the source of
## <M>f</M> and <M>g</M> <C>*</C> <M>f</M> is the identity mapping on the
## range of <M>f</M>.
## <P/>
## The operations differ only w.r.t. the mutability of the result.
## <Ref Attr="InverseImmutable"/> is an attribute and hence returns an
## immutable result.
## <Ref Oper="InverseMutable"/> is guaranteed to return a new <E>mutable</E>
## object whenever a mutable version of the required element exists in &GAP;.
## <Ref Oper="InverseSameMutability"/> returns a result that is mutable if
## <A>elm</A> is mutable and if a mutable version of the required element
## exists in &GAP;;
## for lists, it returns a result of the same immutability level as
## the argument. For instance, if the argument is a mutable matrix
## with immutable rows, it returns a similar object.
## <P/>
## <C>InverseSameMutability( <A>elm</A> )</C> is equivalent to
## <C><A>elm</A>^-1</C>.
## <P/>
## <Ref Attr="InverseAttr"/> and <Ref Attr="Inverse"/> are synonyms of
## <Ref Attr="InverseImmutable"/>.
## <Ref Oper="InverseSM"/> is a synonym of
## <Ref Oper="InverseSameMutability"/>.
## <Ref Oper="InverseOp"/> is a synonym of <Ref Oper="InverseMutable"/>.
## <P/>
## The default method of <Ref Attr="InverseImmutable"/> calls
## <Ref Oper="InverseMutable"/> (note that methods
## for <Ref Oper="InverseMutable"/> must <E>not</E> delegate to
## <Ref Attr="InverseImmutable"/>);
## other methods to compute inverses need to be installed only for
## <Ref Oper="InverseMutable"/> and (in the case of copyable objects)
## <Ref Oper="InverseSameMutability"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "InverseImmutable", IsMultiplicativeElementWithInverse );
DeclareSynonymAttr( "InverseAttr", InverseImmutable );
DeclareSynonymAttr( "Inverse", InverseImmutable );
DeclareOperationKernel( "InverseMutable",
[ IsMultiplicativeElementWithInverse ], INV );
DeclareSynonym( "InverseOp", InverseMutable );
DeclareOperationKernel( "InverseSameMutability",
[ IsMultiplicativeElementWithInverse ], INV_MUT );
DeclareSynonym( "InverseSM", InverseSameMutability );
#############################################################################
##
#O `<elm1>/<elm2>' . . . . . . . . . . . . . . . . quotient of two elements
##
DeclareOperationKernel( "/",
[ IsExtRElement, IsMultiplicativeElementWithInverse ],
QUO );
#############################################################################
##
#O LeftQuotient( <elm1>, <elm2> ) . . . . . . left quotient of two elements
##
## <#GAPDoc Label="LeftQuotient">
## <ManSection>
## <Oper Name="LeftQuotient" Arg='elm1, elm2'/>
##
## <Description>
## returns the product <C><A>elm1</A>^(-1) * <A>elm2</A></C>.
## For some types of objects (for example permutations) this product can be
## evaluated more efficiently than by first inverting <A>elm1</A>
## and then forming the product with <A>elm2</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperationKernel( "LeftQuotient",
[ IsMultiplicativeElementWithInverse, IsExtLElement ],
LQUO );
#############################################################################
##
#O `<elm1>^<elm2>' . . . . . . . . . . . . . . . . . power of two elements
##
DeclareOperationKernel( "^",
[ IsMultiplicativeElement, IsMultiplicativeElement ],
POW );
#T How is powering defined for nonassociative multiplication ??
#############################################################################
##
#O Comm( <elm1>, <elm2> ) . . . . . . . . . . . commutator of two elements
##
## <#GAPDoc Label="Comm">
## <ManSection>
## <Oper Name="Comm" Arg='elm1, elm2'/>
##
## <Description>
## returns the <E>commutator</E> of <A>elm1</A> and <A>elm2</A>.
## The commutator is defined as the product
## <M><A>elm1</A>^{{-1}} * <A>elm2</A>^{{-1}} * <A>elm1</A> * <A>elm2</A></M>.
## <P/>
## <Example><![CDATA[
## gap> a:= (1,3)(4,6);; b:= (1,6,5,4,3,2);;
## gap> Comm( a, b );
## (1,5,3)(2,6,4)
## gap> LeftQuotient( a, b );
## (1,2)(3,6)(4,5)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperationKernel( "Comm",
[ IsMultiplicativeElementWithInverse,
IsMultiplicativeElementWithInverse ],
COMM );
#############################################################################
##
#O LieBracket( <elm1>, <elm2> ) . . . . . . . . Lie bracket of two elements
##
## <#GAPDoc Label="LieBracket">
## <ManSection>
## <Oper Name="LieBracket" Arg='elm1, elm2'/>
##
## <Description>
## returns the element
## <C><A>elm1</A> * <A>elm2</A> - <A>elm2</A> * <A>elm1</A></C>.
## <P/>
## The addition <Ref Oper="\+"/> is assumed to be associative
## but <E>not</E> assumed to be commutative
## (see <Ref Func="IsAdditivelyCommutative"/>).
## The multiplication <Ref Oper="\*"/> is <E>not</E> assumed to be
## commutative or associative
## (see <Ref Func="IsCommutative"/>, <Ref Func="IsAssociative"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "LieBracket", [ IsRingElement, IsRingElement ] );
#############################################################################
##
#O `<elm1> mod <elm2>' . . . . . . . . . . . . . . . modulus of two elements
##
DeclareOperationKernel( "mod", [ IsObject, IsObject ], MOD );
#############################################################################
##
#A Int( <elm> ) . . . . . . . . . . . . . . . . . . integer value of <elm>
##
## <#GAPDoc Label="Int">
## <ManSection>
## <Attr Name="Int" Arg='elm'/>
##
## <Description>
## <Ref Attr="Int"/> returns an integer <C>int</C> whose meaning depends
## on the type of <A>elm</A>.
## <P/>
## If <A>elm</A> is a rational number
## (see Chapter <Ref Chap="Rational Numbers"/>) then <C>int</C> is the
## integer part of the quotient of numerator and denominator of <A>elm</A>
## (see <Ref Func="QuoInt"/>).
## <P/>
## If <A>elm</A> is an element of a finite prime field
## (see Chapter <Ref Chap="Finite Fields"/>) then <C>int</C> is the
## smallest nonnegative integer such that
## <C><A>elm</A> = int * One( <A>elm</A> )</C>.
## <P/>
## If <A>elm</A> is a string
## (see Chapter <Ref Chap="Strings and Characters"/>) consisting of
## digits <C>'0'</C>, <C>'1'</C>, <M>\ldots</M>, <C>'9'</C>
## and <C>'-'</C> (at the first position) then <C>int</C> is the integer
## described by this string.
## The operation <Ref Func="String"/> can be used to compute a string for
## rational integers, in fact for all cyclotomics.
## <P/>
## <Example><![CDATA[
## gap> Int( 4/3 ); Int( -2/3 );
## 1
## 0
## gap> int:= Int( Z(5) ); int * One( Z(5) );
## 2
## Z(5)
## gap> Int( "12345" ); Int( "-27" ); Int( "-27/3" );
## 12345
## -27
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Int", IsObject );
#############################################################################
##
#A Rat( <elm> ) . . . . . . . . . . . . . . . . . . rational value of <elm>
##
## <#GAPDoc Label="Rat">
## <ManSection>
## <Attr Name="Rat" Arg='elm'/>
##
## <Description>
## <Ref Attr="Rat"/> returns a rational number <A>rat</A> whose meaning
## depends on the type of <A>elm</A>.
## <P/>
## If <A>elm</A> is a string consisting of digits <C>'0'</C>, <C>'1'</C>,
## <M>\ldots</M>, <C>'9'</C> and <C>'-'</C> (at the first position),
## <C>'/'</C> and the decimal dot <C>'.'</C> then <A>rat</A> is the rational
## described by this string.
## The operation <Ref Func="String"/> can be used to compute a string for
## rational numbers, in fact for all cyclotomics.
## <P/>
## <Example><![CDATA[
## gap> Rat( "1/2" ); Rat( "35/14" ); Rat( "35/-27" ); Rat( "3.14159" );
## 1/2
## 5/2
## -35/27
## 314159/100000
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Rat", IsObject );
#############################################################################
##
#O Sqrt( <obj> )
##
## <#GAPDoc Label="Sqrt">
## <ManSection>
## <Oper Name="Sqrt" Arg='obj'/>
##
## <Description>
## <Ref Oper="Sqrt"/> returns a square root of <A>obj</A>, that is,
## an object <M>x</M> with the property that <M>x \cdot x = <A>obj</A></M>
## holds.
## If such an <M>x</M> is not unique then the choice of <M>x</M> depends
## on the type of <A>obj</A>.
## For example, <Ref Func="ER"/> is the <Ref Oper="Sqrt"/> method for
## rationals (see <Ref Func="IsRat"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Sqrt", [ IsMultiplicativeElement ] );
#############################################################################
##
#O Root( <n>, <k> )
#O Root( <n> )
##
## <ManSection>
## <Oper Name="Root" Arg='n, k'/>
## <Oper Name="Root" Arg='n'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "Root", [ IsMultiplicativeElement, IS_INT ] );
#############################################################################
##
#O Log( <elm>, <base> )
##
## <ManSection>
## <Oper Name="Log" Arg='elm, base'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareOperation( "Log",
[ IsMultiplicativeElement, IsMultiplicativeElement ] );
#############################################################################
##
#A Characteristic( <obj> ) . . . characteristic of an element/domain/family
##
## <#GAPDoc Label="Characteristic">
## <ManSection>
## <Attr Name="Characteristic" Arg='obj'/>
##
## <Description>
## <Ref Attr="Characteristic"/> returns the <E>characteristic</E> of
## <A>obj</A>.
## <P/>
## If <A>obj</A> is a family, all of whose elements lie in
## <Ref Filt="IsAdditiveElementWithZero"/> then its characteristic
## is the least positive integer <M>n</M>, if any, such that
## <C>IsZero(n*x)</C> is <K>true</K> for all <C>x</C> in the
## family <A>obj</A>, otherwise it is <M>0</M>.
## <P/>
## If <A>obj</A> is a collections family of a family <M>g</M> which
## has a characteristic, then the characteristic of <A>obj</A> is
## the same as the characteristic of <M>g</M>.
## <P/>
## For other families <A>obj</A> the characteristic is not defined
## and <K>fail</K> will be returned.
## <P/>
## For any object <A>obj</A> which is in the filter
## <Ref Filt="IsAdditiveElementWithZero"/> or in the filter
## <Ref Filt="IsAdditiveMagmaWithZero"/> the characteristic of
## <A>obj</A> is the same as the characteristic of its family
## if that is defined and undefined otherwise.
## <P/>
## For all other objects <A>obj</A> the characteristic is undefined
## and may return <K>fail</K> or a <Q>no method found</Q> error.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Characteristic", IsObject );
#############################################################################
##
#A Order( <elm> )
##
## <#GAPDoc Label="Order">
## <ManSection>
## <Attr Name="Order" Arg='elm'/>
##
## <Description>
## is the multiplicative order of <A>elm</A>.
## This is the smallest positive integer <M>n</M> such that
## <A>elm</A> <C>^</C> <M>n</M> <C>= One( <A>elm</A> )</C>
## if such an integer exists. If the order is
## infinite, <Ref Attr="Order"/> may return the value <Ref Var="infinity"/>,
## but it also might run into an infinite loop trying to test the order.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Order", IsMultiplicativeElementWithOne );
#############################################################################
##
#A NormedRowVector( <v> )
##
## <#GAPDoc Label="NormedRowVector">
## <ManSection>
## <Attr Name="NormedRowVector" Arg='v'/>
##
## <Description>
## returns a scalar multiple <C><A>w</A> = <A>c</A> * <A>v</A></C>
## of the row vector <A>v</A>
## with the property that the first nonzero entry of <A>w</A> is an identity
## element in the sense of <Ref Func="IsOne"/>.
## <P/>
## <Example><![CDATA[
## gap> NormedRowVector( [ 5, 2, 3 ] );
## [ 1, 2/5, 3/5 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NormedRowVector", IsRowVector and IsScalarCollection );
#############################################################################
##
#P IsCommutativeFamily
##
DeclareProperty( "IsCommutativeFamily", IsFamily );
#############################################################################
##
#P IsSkewFieldFamily
##
## <ManSection>
## <Prop Name="IsSkewFieldFamily" Arg='obj'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareProperty( "IsSkewFieldFamily", IsFamily );
#############################################################################
##
#P IsUFDFamily( <family> )
##
## <ManSection>
## <Prop Name="IsUFDFamily" Arg='family'/>
##
## <Description>
## the family <A>family</A> is at least a commutative ring-with-one,
## without zero divisors, and the factorisation of each element into
## elements of <A>family</A> is unique (up to units and ordering).
## </Description>
## </ManSection>
##
DeclareProperty( "IsUFDFamily", IsFamily );
#############################################################################
##
#R IsAdditiveElementAsMultiplicativeElementRep( <obj> )
##
## <ManSection>
## <Filt Name="IsAdditiveElementAsMultiplicativeElementRep" Arg='obj' Type='Representation'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareRepresentation("IsAdditiveElementAsMultiplicativeElementRep",
IsPositionalObjectRep and IsMultiplicativeElement,[]);
#############################################################################
##
#A AdditiveElementsAsMultiplicativeElementsFamily( <fam> )
##
## <ManSection>
## <Attr Name="AdditiveElementsAsMultiplicativeElementsFamily" Arg='fam'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute("AdditiveElementsAsMultiplicativeElementsFamily", IsFamily);
#############################################################################
##
#A AdditiveElementAsMultiplicativeElement( <obj> )
##
## <ManSection>
## <Attr Name="AdditiveElementAsMultiplicativeElement" Arg='obj'/>
##
## <Description>
## for an additive element <A>obj</A>, this attribute returns a <E>multiplicative</E>
## element, for which multiplication is done via addition of the original
## element. The original element of such a <Q>wrapped</Q> multiplicative
## element can be obtained as the <C>UnderlyingElement</C>.
## </Description>
## </ManSection>
##
DeclareAttribute("AdditiveElementAsMultiplicativeElement",
IsAdditiveElement );
#############################################################################
##
#O UnderlyingElement( <elm> )
##
## <ManSection>
## <Oper Name="UnderlyingElement" Arg='elm'/>
##
## <Description>
## Let <A>elm</A> be an object which builds on elements of another domain and
## just wraps these up to provide another arithmetic.
## </Description>
## </ManSection>
##
DeclareOperation( "UnderlyingElement", [ IsObject ] );
#############################################################################
##
#P IsIdempotent( <elt> )
##
## <#GAPDoc Label="IsIdempotent">
## <ManSection>
## <Prop Name="IsIdempotent" Arg='elt'/>
##
## <Description>
## returns <K>true</K> iff <A>elt</A> is its own square.
## (Even if <Ref Func="IsZero"/> returns <K>true</K> for <A>elt</A>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty("IsIdempotent", IsMultiplicativeElement);
#############################################################################
##
#E
|