This file is indexed.

/usr/share/gap/lib/basis.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
#############################################################################
##
#W  basis.gi                    GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains generic methods for bases.
##


#############################################################################
##
#M  IsSmallList( <B> )  . . . . . . . . . . . . . . . . . . . . for any basis
##
#T  preliminary fix:
#T  Set `IsSmallList' whenever a `BasisVectors' value is entered that knows
#T  whether it is in `IsSmallList', and whenever a `UnderlyingLeftModule' is
#T  entered that knows its dimension.
#T  (This is not sufficient, since immediate methods may be switched off,
#T  but I do not like the idea to add this kind of code in each method that
#T  creates a basis object.)
##
InstallImmediateMethod( IsSmallList,
    IsBasis and HasBasisVectors and IsAttributeStoringRep, 0,
    function( B )
    B:= BasisVectors( B );
    if HasIsSmallList( B ) then
      return IsSmallList( B );
    fi;
    TryNextMethod();
    end );

InstallImmediateMethod( IsSmallList,
    IsBasis and HasUnderlyingLeftModule and IsAttributeStoringRep, 0,
    function( B )
    B:= UnderlyingLeftModule( B );
    if HasDimension( B ) then
      return Dimension( B ) <= MAX_SIZE_LIST_INTERNAL;
    fi;
    TryNextMethod();
    end );


#############################################################################
##
#M  IsCanonicalBasis( <B> ) . . . . . . . . . . . . . . . . . . for any basis
##
##  Note that we run into an error if no canonical basis is defined for the
##  underlying left module of <B>.
##
InstallMethod( IsCanonicalBasis,
    "for a basis",
    [ IsBasis ],
    B -> B = CanonicalBasis( UnderlyingLeftModule( B ) ) );


#############################################################################
##
#M  \[\]( <B>, <i> )
#M  Position( <B>, <v> )
#M  Length( <B> )
##
##  Bases are immutable homogeneous lists.
##
InstallMethod( \[\],
    "for a basis and a positive integer",
    [ IsBasis, IsPosInt ],
    function( B, i ) return BasisVectors( B )[i]; end );

InstallMethod( Position,
    "for a basis, an object, and a nonnegative integer",
    [ IsBasis, IsObject, IsInt ],
    function( B, v, from )
    return Position( BasisVectors( B ), v, from );
    end );

InstallMethod( Length,
    "for a basis",
    [ IsBasis ],
    B -> Length( BasisVectors( B ) ) );


#############################################################################
##
#R  IsRelativeBasisDefaultRep( <obj> )
##
##  A relative basis <B> is a basis of the free left module <V>
##  that delegates the computation of coefficients etc. to another basis <C>
##  of <V> via a basechange matrix.
##
##  Relative bases in the representation `IsRelativeBasisDefaultRep' need the
##  components `basis' (with value <C>) and
##  `basechangeMatrix' (with value the base change from <C> to <B>).
##  Relative bases in this representation are allowed only for finite
##  dimensional modules.
##
##  (Also the attribute `BasisVectors' is always present, since relative
##  bases are always constructed with explicitly given basis vectors.)
##
DeclareRepresentation( "IsRelativeBasisDefaultRep",
    IsAttributeStoringRep,
    [ "basis", "basechangeMatrix" ] );

InstallTrueMethod( IsFinite, IsBasis and IsRelativeBasisDefaultRep );


#############################################################################
##
#M  RelativeBasis( <B>, <vectors> )
##
InstallMethod( RelativeBasis,
    "for a basis and a homogeneous list",
    IsIdenticalObj,
    [ IsBasis, IsHomogeneousList ],
    function( B, vectors )

    local M,   # basechange matrix
          V,   # underlying module of `B'
          R;   # the relative basis, result

    # Check that the module is finite dimensional.
    if not IsFinite( vectors ) or not IsFinite( B ) then
      Error( "<B> and <vectors> must be finite" );
    fi;

    # Compute the basechange matrix.
    M:= List( vectors, x -> Coefficients( B, x ) );
    if not IsEmpty( vectors ) then
      if fail in M or Length( vectors ) <> Length( M[1] ) then
        return fail;
      fi;
      M:= M^-1;
      if M = fail then
        return fail;
      fi;
    fi;

    # If the module is not a vector space,
    # check that the base change is well-defined for the coefficients ring.
    V:= UnderlyingLeftModule( B );
    if not IsVectorSpace( V ) then
      R:= LeftActingDomain( V );
      if ForAny( M, row -> not IsSubset( R, row ) ) then
        return fail;
      fi;
    fi;

    # Construct the relative basis.
    R:= Objectify( NewType( FamilyObj( vectors ),
                                IsFiniteBasisDefault
                            and IsRelativeBasisDefaultRep ),
                   rec() );
    SetUnderlyingLeftModule( R, V );
    SetBasisVectors( R, AsList( vectors ) );

    R!.basis            := B;
    R!.basechangeMatrix := Immutable( M );

    # Return the relative basis.
    return R;
    end );


#############################################################################
##
#M  RelativeBasisNC( <B>, <vectors> )
##
InstallMethod( RelativeBasisNC,
    "for a basis and a homogeneous list",
    IsIdenticalObj,
    [ IsBasis, IsHomogeneousList ],
    function( B, vectors )

    local M,   # basechange matrix
          R;   # the relative basis, result

    # Compute the basechange matrix.
    if IsEmpty( vectors ) then
      M:= [];
    else
      M:= List( vectors, x -> Coefficients( B, x ) )^-1;
    fi;

    # Construct the relative basis.
    R:= Objectify( NewType( FamilyObj( vectors ),
                                IsFiniteBasisDefault
                            and IsRelativeBasisDefaultRep ),
                   rec() );
    SetUnderlyingLeftModule( R, UnderlyingLeftModule( B ) );
    SetBasisVectors( R, AsList( vectors ) );
    R!.basis            := B;
    R!.basechangeMatrix := Immutable( M );

    # Return the relative basis.
    return R;
    end );


#############################################################################
##
#M  PrintObj( <B> ) . . . . . . . . . . . . . . . . . . . . . . print a basis
##
##  print whether the basis is known to be semi-echelonized,
##  print the basis vectors if they are known.
##
InstallMethod( PrintObj,
    "for a basis with basis vectors",
    [ IsBasis and HasBasisVectors ],
    function( B )
    Print( "Basis( ", UnderlyingLeftModule( B ), ", ",
           BasisVectors( B ), " )" );
    end );

InstallMethod( PrintObj,
    "for a basis",
    [ IsBasis ],
    function( B )
    Print( "Basis( ", UnderlyingLeftModule( B ), ", ... )" );
    end );
#T install better method for quotient spaces, in order to print
#T representatives only ?

InstallMethod( PrintObj,
    "for a semi-echelonized basis with basis vectors",
    [ IsBasis and HasBasisVectors and IsSemiEchelonized ],
    function( B )
    Print( "SemiEchelonBasis( ", UnderlyingLeftModule( B ), ", ",
           BasisVectors( B ), " )" );
    end );

InstallMethod( PrintObj,
    "for a semi-echelonized basis",
    [ IsBasis and IsSemiEchelonized ],
    function( B )
    Print( "SemiEchelonBasis( ", UnderlyingLeftModule( B ), ", ... )" );
    end );

InstallMethod( PrintObj,
    "for a canonical basis",
    [ IsBasis and IsCanonicalBasis ], SUM_FLAGS,
    function( B )
    Print( "CanonicalBasis( ", UnderlyingLeftModule( B ), " )" );
    end );


#############################################################################
##
#M  ViewObj( <B> )  . . . . . . . . . . . . . . . . . . . . . .  view a basis
##
##  print whether the basis is known to be semi-echelonized,
##  instead of the basis vectors tell the dimension.
##
InstallMethod( ViewObj,
    "for a basis with basis vectors",
    [ IsBasis and HasBasisVectors ],
    function( B )
    Print( "Basis( " );
    View( UnderlyingLeftModule( B ) );
    Print( ", " );
    View( BasisVectors( B ) );
    Print( " )" );
    end );

InstallMethod( ViewObj,
    "for a basis",
    [ IsBasis ],
    function( B )
    Print( "Basis( " );
    View( UnderlyingLeftModule( B ) );
    Print( ", ... )" );
    end );

InstallMethod( ViewObj,
    "for a semi-echelonized basis with basis vectors",
    [ IsBasis and HasBasisVectors and IsSemiEchelonized ],
    function( B )
    Print( "SemiEchelonBasis( " );
    View( UnderlyingLeftModule( B ) );
    Print( ", " );
    View( BasisVectors( B ) );
    Print( " )" );
    end );

InstallMethod( ViewObj,
    "for a semi-echelonized basis",
    [ IsBasis and IsSemiEchelonized ],
    function( B )
    Print( "SemiEchelonBasis( " );
    View( UnderlyingLeftModule( B ) );
    Print( ", ... )" );
    end );

InstallMethod( ViewObj,
    "for a canonical basis",
    [ IsBasis and IsCanonicalBasis ], SUM_FLAGS,
    function( B )
    Print( "CanonicalBasis( " );
    View( UnderlyingLeftModule( B ) );
    Print( " )" );
    end );


#############################################################################
##
#M  Basis( <D> )
##
InstallImmediateMethod( Basis,
    IsFreeLeftModule and HasCanonicalBasis and IsAttributeStoringRep, 0,
    CanonicalBasis );


#############################################################################
##
#M  CanonicalBasis( <D> ) . . . . . . . . . . . . . .  default, return `fail'
##
InstallMethod( CanonicalBasis,
    "default method, return `fail'",
    [ IsFreeLeftModule ],
    ReturnFail );


#############################################################################
##
#M  LinearCombination( <B>, <coeff> ) . . . . . . . . lin. comb. w.r.t. basis
##
InstallMethod( LinearCombination,
    "for a basis and a homogeneous list",
    [ IsBasis, IsHomogeneousList ],
    function( B, coeff )

    local vec,   # list of basis vectors of `B'
          zero,  # zero coefficient
          v,     # linear combination, result
          i;     # loop over the basis vectors

    vec:= BasisVectors( B );
    v:= Zero( UnderlyingLeftModule( B ) );
    zero:= Zero( LeftActingDomain( UnderlyingLeftModule( B ) ) );
    for i in [ 1 .. Length( coeff ) ] do
      if coeff[i] <> zero then
        v:= v + coeff[i] * vec[i];
      fi;
    od;
    return v;
    end );

InstallOtherMethod( LinearCombination,
    "for two lists",
    [ IsList, IsList ],
    function( B, coeff )
    local lincomb,
          i;
    if Length( B ) > 0 and Length( B ) = Length( coeff ) then
      lincomb:= coeff[1] * B[1];
      for i in [ 2 .. Length( B ) ] do
        lincomb:= lincomb + coeff[i] * B[i];
      od;
      return lincomb;
    else
      Error( "sorry, can't compute linear combination w.r. to <B>" );
    fi;
    end );
# why not PROD_LIST_LIST_DEFAULT or PROD_LIST_LIST_TRY ??
# (cf. method in fieldfin.gi)
# note that coeff and B may be empty, then the zero vector is returned!
# (document this for the operation!)


#############################################################################
##
#M  EnumeratorByBasis( <B> )  . . . . . . . . . . . enumerator w.r.t. a basis
##
##  An enumerator w.r.t. a basis <B> that is *not* (known to be) the
##  canonical basis of a full row space delegates the task to an enumerator
##  <E> for the canonical basis of the corresponding coefficient space;
##  a special method is installed for this case.
##
##  For this purpose, the following components are provided.
##  `coeffspaceenum':
##        (with value <E>)
##  `basis':
##        (with value <B>)
##
BindGlobal( "ElementNumber_Basis", function( enum, n )
    if Length( enum!.coeffspaceenum ) < n then
      Error( "<enum>[", n, "] must have an assigned value" );
    fi;
    return LinearCombination( enum!.basis, enum!.coeffspaceenum[ n ] );
    end );

BindGlobal( "NumberElement_Basis", function( enum, elm )
    elm:= Coefficients( enum!.basis, elm );
    if elm <> fail then
      elm:= Position( enum!.coeffspaceenum, elm );
    fi;
    return elm;
    end );

InstallMethod( EnumeratorByBasis,
    "for basis of a finite dimensional left module",
    [ IsBasis ],
    function( B )
    local V;

    V:= UnderlyingLeftModule( B );
    if not IsFiniteDimensional( V ) then
      TryNextMethod();
    fi;

    # Return the enumerator.
    return EnumeratorByFunctions( V,
               rec( ElementNumber  := ElementNumber_Basis,
                    NumberElement  := NumberElement_Basis,

                    basis          := B,
                    coeffspaceenum := EnumeratorByBasis( CanonicalBasis(
                     FullRowModule( LeftActingDomain(V), Dimension(V) ) ) ) )
                   );
    end );


#############################################################################
##
#M  IteratorByBasis( <B> )  . . . . . . . . . . . . . iterator w.r.t. a basis
##
##  An iterator of a free left module w.r.t. a basis <B> that is *not*
##  (known to be) the basis of a full row space delegates the task to an
##  iterator <E> for the corresponding coefficient space;
##  a special method is installed for this case.
##
##  For this purpose, the following components are provided.
##  `coeffspaceiter':
##        (with value <E>)
##  `basis':
##        (with value <B>)
##
BindGlobal( "IsDoneIterator_Basis",
    iter -> IsDoneIterator( iter!.coeffspaceiter ) );

BindGlobal( "NextIterator_Basis",
    iter -> LinearCombination( iter!.basis,
                NextIterator( iter!.coeffspaceiter ) ) );

BindGlobal( "ShallowCopy_Basis",
    iter -> rec( basis          := iter!.basis,
                 coeffspaceiter := ShallowCopy(
                                       iter!.coeffspaceiter ) ) );

InstallMethod( IteratorByBasis,
    "for basis of a finite dimensional left module",
    [ IsBasis ],
    function( B )
    local V;

    # We delegate to the canonical basis of a full row module,
    # in order to avoid infinite recursion, we must guarantee
    # that `B' is not itself such a basis.
    if     ( not HasIsCanonicalBasisFullRowModule( B ) )
       and IsCanonicalBasisFullRowModule( B )
       and HasIsCanonicalBasisFullRowModule( B ) then
      return IteratorByBasis( B );
    fi;

    V:= UnderlyingLeftModule( B );
    if not IsFiniteDimensional( V ) then
      TryNextMethod();
    fi;

    return IteratorByFunctions( rec(
               IsDoneIterator := IsDoneIterator_Basis,
               NextIterator   := NextIterator_Basis,
               ShallowCopy    := ShallowCopy_Basis,

               basis          := B,
               coeffspaceiter := IteratorByBasis( CanonicalBasis(
                                     FullRowModule( LeftActingDomain( V ),
                                         Dimension( V ) ) ) ) )
                     );
    end );


#############################################################################
##
#M  StructureConstantsTable( <B> )
##
InstallMethod( StructureConstantsTable,
    "for a basis",
    [ IsBasis ],
    function( B )
    local A,        # underlying algebra
          vectors,  # basis vectors of `A'
          dim,      # dimension (length of basis)
          zero,     # zero of the field
          sctable,  # structure constants table, result
          empty,    # zero product, this entry is shared in the table
          symmetry, # symmetry flag
          calc_val, # local function
          triv,     # is the multiplication trivial?
          i, j;     # loop variables

    A:= UnderlyingLeftModule( B );
    vectors:= BasisVectors( B );
    dim:= Length( vectors );
    zero:= Zero( LeftActingDomain( A ) );

    if     HasIsZeroMultiplicationRing( A )
       and IsZeroMultiplicationRing( A ) then
      return EmptySCTable( dim, zero, "symmetric" );
    fi;

    sctable:= [];
    empty:= Immutable( [ [], [] ] );

    # Obtain (anti)symmetry information.
    if   HasIsCommutative( A ) and IsCommutative( A ) then
      symmetry:= 1;
    elif HasIsAnticommutative( A ) and IsAnticommutative( A ) then
      symmetry:= -1;
    else
      symmetry:= 0;
    fi;

    calc_val:= function ( i, j )
      local prod, pos;
      prod:= vectors[i] * vectors[j];
      prod:= Coefficients( B, prod );
      if prod = fail  then
        Error( "the module of the basis <B> must be closed ",
               "under multiplication" );
      fi;
      pos:= Filtered( [ 1 .. dim ], x -> prod[x] <> zero );
      if IsEmpty( pos ) then
        sctable[i][j]:= empty;
        return true;
      else
        sctable[i][j]:= Immutable( [ pos, prod{ pos } ] );
        return false;
      fi;
    end;

    # Compute the table entries above the diagonal.
    triv:= true;
    for i in [ 1 .. dim ] do
      sctable[i]:= [];
      for j  in [ i+1 .. dim ]  do
        triv:= calc_val( i, j ) and triv;
      od;
    od;

    # Compute the table entries on the diagonal if necessary.
    if HasIsZeroSquaredRing( A ) and IsZeroSquaredRing( A ) then
#T or (characteristic <> 2 and anticommutative)!
      for i in [ 1 .. dim ] do
        sctable[i][i] := empty;
      od;
    else
      for i in [ 1 .. dim ] do
        triv:= calc_val( i, i ) and triv;
      od;
    fi;

    # Compute/set the table entries below the diagonal.
    if   symmetry = 1 then
      for i in [ 1 .. dim ] do
        for j in [ 1 .. i-1 ] do
          sctable[i][j]:= sctable[j][i];
        od;
      od;
    elif symmetry = -1 then
      for i in [ 1 .. dim ] do
        for j in [ 1 .. i-1 ] do
          sctable[i][j]:= Immutable(
                              [ sctable[j][i][1], -sctable[j][i][2] ] );
        od;
      od;
    else
      for i in [ 1 .. dim ] do
        for j in [ 1 .. i-1 ] do
          triv:= calc_val( i, j ) and triv;
        od;
      od;
    fi;

    # If the multiplication is trivial then the table is symmetric.
    if triv then
      SetIsZeroMultiplicationRing( A, true );
      symmetry:= 1;
    fi;

    # Add the identification entries (symmetry flag and zero).
    sctable[ dim+1 ]:= symmetry;
    sctable[ dim+2 ]:= zero;

    # Return the table.
    MakeImmutable( sctable );
    return sctable;
    end );


#############################################################################
##
##  Default methods for relative bases
##

#############################################################################
##
#M  Coefficients( <B>, <v> )  . . . . . . . . . . . . . .  for relative basis
##
InstallMethod( Coefficients,
    "for relative basis and vector",
    IsCollsElms,
    [ IsBasis and IsRelativeBasisDefaultRep, IsVector ],
    function( B, v )
    v:= Coefficients( B!.basis, v );
    if v <> fail then
      v:= v * B!.basechangeMatrix;
    fi;
    return v;
    end );


#############################################################################
##
#M  Basis( <V>, <gens> )
#M  BasisNC( <V>, <gens> )
##
##  The default for this is a relative basis.
##
InstallMethod( Basis,
    "method returning a relative basis",
    IsIdenticalObj,
    [ IsFreeLeftModule, IsHomogeneousList ],
    function( V, gens )
    return RelativeBasis( Basis( V ), gens );
    end );

InstallMethod( BasisNC,
    "method returning a relative basis",
    IsIdenticalObj,
    [ IsFreeLeftModule, IsHomogeneousList ],
    function( V, gens )
    UseBasis( V, gens );
    return RelativeBasisNC( Basis( V ), gens );
    end );


#############################################################################
##
##  Default methods for bases handled by nice bases
##

#############################################################################
##
#F  InstallHandlingByNiceBasis( <name>, <record> )
##
InstallGlobalFunction( "InstallHandlingByNiceBasis",
    function( name, record )

    local filter, entry;

    # Check the arguments.
    if not IsString( name ) then
      Error( "<name> must be a string" );
    elif not IsSubset( RecNames( record ),
                       [ "detect",
                         "NiceFreeLeftModuleInfo",
                         "NiceVector", "UglyVector" ] ) then
      Error( "<record> has not all necessary components" );
    fi;

    # Get the filter.
    filter:= ValueGlobal( name );

    # Install the detection of the filter.
    entry:= First( NiceBasisFiltersInfo,
                   x -> IsIdenticalObj( filter, x[1] ) );
    Add( entry, record.detect );
    InstallTrueMethod( IsHandledByNiceBasis, filter );
    filter:= IsFreeLeftModule and filter;

    # Install the methods.
    InstallMethod( NiceFreeLeftModuleInfo,
        Concatenation( "for left module in `", name, "'" ),
        [ filter ],
        record.NiceFreeLeftModuleInfo );

    InstallMethod( NiceVector,
        Concatenation( "for left module in `", name, "', and object" ),
        [ filter, IsObject ],
        record.NiceVector );

    InstallMethod( UglyVector,
        Concatenation( "for left module in `", name, "', and object" ),
        [ filter, IsObject ],
        record.UglyVector );
end );


#############################################################################
##
#F  CheckForHandlingByNiceBasis( <F>, <gens>, <V>, <zero> )
##
InstallGlobalFunction( "CheckForHandlingByNiceBasis",
    function( F, gens, V, zero )
    local triple, value;
    if not IsHandledByNiceBasis( V ) then
      for triple in NiceBasisFiltersInfo do
        value:= triple[3]( F, gens, V, zero );
        if value = true then
          SetFilterObj( V, triple[1] );
          return;
        elif value = fail then
          return;
        fi;
      od;
    fi;
end );


#############################################################################
##
#F  NiceFreeLeftModuleInfo( <V> )
#F  NiceVector( <V>, <v> )
#F  UglyVector( <V>, <r> )
##
##  A finite vector space can be handled via the mechanism of nice bases.
##  We exclude the situation that all given generators are zero (and thus the
##  vector space is trivial) because such a space should be handled be the
##  mechanism that deals with nontrivial spaces caontaining it,
##  for example in order to admit a consistent ordering of spaces via `\<'.
##
InstallHandlingByNiceBasis( "IsGenericFiniteSpace", rec(
    detect:= function( R, gens, V, zero )
      return not IsMagma( V ) and IsFinite( R ) and IsFinite( gens );
      end,

    NiceFreeLeftModuleInfo:= function( V )
      local elms,      # set of elements, result
            base,      # list of basis vectors
            fieldelms, # elements set of the coefficients field of `V'
            gen,       # loop over generators
            i,         # loop over field elements
            new,       # intermediate elements list
            numbers,   # list of positions of elements w.r. to construction
            B;         # basis record, result

      elms := [ Zero( V ) ];
      base := [];

      fieldelms:= Enumerator( LeftActingDomain( V ) );

      # Form all linear combinations of the generators.
      for gen in GeneratorsOfLeftModule( V ) do
        if not gen in elms then

          # Form the closure with `gen'
          Add( base, gen );
          new:= [];
          for i in fieldelms do
            Append( new, List( elms, x -> x + i * gen ) );
          od;
          elms:= new;

        fi;
      od;

      # Compute the coefficients information.
      numbers:= [ 1 .. Length( elms ) ];
      SortParallel( elms, numbers );

      return rec( elements         := elms,
                  numbers          := numbers,
                  q                := Length( fieldelms ),
                  fieldelements    := fieldelms,
                  base             := base );
      end,

    NiceVector:= function( V, v )
      local info, pos, n, coeffs, q, i;

      info:= NiceFreeLeftModuleInfo( V );

      # Compute the $q$-adic expression.
      pos:= Position( info.elements, v );
      if pos = fail then
        return fail;
      fi;
      n:= info.numbers[ pos ] - 1;
      coeffs:= [];
      q:= info.q;
      for i in [ 1 .. Length( info.base ) ] do
        Add( coeffs, RemInt( n, q ) + 1 );
        n:= QuoInt( n, q );
      od;

      # Compute and return the coefficients vector itself.
      return info.fieldelements{ coeffs };
      end,

    UglyVector:= function( V, r )
      local vectors;
      vectors:= NiceFreeLeftModuleInfo( V ).base;
      if Length( vectors ) = Length( r ) then
        return LinearCombination( r, vectors );
      else
        return fail;
      fi;
      end ) );


#############################################################################
##
#M  NiceFreeLeftModule( <V> )
##
##  This is the rare case where the `NiceFreeLeftModule' value is a full row
##  space.
##
InstallMethod( NiceFreeLeftModule,
    "for generic finite space (use that this is a full row module)",
    [ IsFreeLeftModule and IsGenericFiniteSpace ],
    V -> FullRowSpace( LeftActingDomain( V ),
                       Length( NiceFreeLeftModuleInfo( V ).base ) ) );


#############################################################################
##
#M  NiceFreeLeftModuleInfo( <V> )
#M  NiceVector( <V>, <v> )
#M  UglyVector( <V>, <r> )
##
##  A finite dimensional vector space of rational functions is handled via
##  the mechanism of nice bases.
##
InstallHandlingByNiceBasis( "IsSpaceOfRationalFunctions", rec(
    detect := function( F, gens, V, zero )
      return     IsRationalFunctionCollection( V ) and
         ( not IsFLMLOR( V ) or ( HasGeneratorsOfFLMLOR( V )
               and ForAll( GeneratorsOfFLMLOR( V ),
                           IsConstantRationalFunction ) ) );
      end,

    NiceFreeLeftModuleInfo := function( V )
      local gens,
            nums,
            dens,
            denom,
            monomials,
            gen,
            list,
            i,
            zero,
            info;

      gens:= GeneratorsOfLeftModule( V );

      # Compute the product of denominators.
      nums:= List( gens, NumeratorOfRationalFunction );
      dens:= List( gens, DenominatorOfRationalFunction );
      denom:= Product( dens, One( Zero( V ) ) );

      monomials:= [];

      for gen in gens do
        list:= ExtRepPolynomialRatFun( gen * denom );
        UniteSet( monomials, list{ [ 1, 3 .. Length( list ) - 1 ] } );
      od;

      zero:= Zero( LeftActingDomain( V ) );
      info:= rec( monomials := monomials,
                  denom     := denom,
                  zerocoeff := zero,
                  family    := ElementsFamily( FamilyObj( V ) ) );

      # For the zero row vector, catch the case of empty `monomials' list.
      if IsEmpty( monomials ) then
        info.zerovector := [ zero ];
      else
        info.zerovector := ListWithIdenticalEntries( Length( monomials ),
                                                     zero );
      fi;

      return info;
      end,

    NiceVector := function( V, v )
      local info, c, monomials, i, pos;
      info:= NiceFreeLeftModuleInfo( V );
      c:= ShallowCopy( info.zerovector );
      v:= v * info.denom;
      if not IsPolynomial( v ) then
        return fail;
      fi;
      v:= ExtRepPolynomialRatFun( v );
      monomials:= info.monomials;
      for i in [ 2, 4 .. Length( v ) ] do
        pos:= Position( monomials, v[ i-1 ] );
        if pos = fail then
          return fail;
        fi;
        c[ pos ]:= v[i];
      od;
      return c;
      end,

    UglyVector := function( V, r )
      local info, list, i;
      info:= NiceFreeLeftModuleInfo( V );
      if Length( r ) <> Length( info.zerovector ) then
        return fail;
      elif IsEmpty( info.monomials ) then
        if IsZero( r ) then
          return Zero( V );
        else
          return fail;
        fi;
      fi;
      list:= [];
      for i in [ 1 .. Length( r ) ] do
        if r[i] <> info.zerocoeff then
          Add( list, info.monomials[i] );
          Add( list, r[i] );
        fi;
      od;
      return PolynomialByExtRep( info.family, list ) / info.denom;
      end ) );


#############################################################################
##
#M  NiceBasis( <B> )
##
InstallMethod( NiceBasis,
    "for basis by nice basis",
    [ IsBasisByNiceBasis ],
    function( B )
    local V;
    V:= UnderlyingLeftModule( B );
    if HasBasisVectors( B ) then
      return Basis( NiceFreeLeftModule( V ),
                    List( BasisVectors( B ), v -> NiceVector( V, v ) ) );
    else
      return Basis( NiceFreeLeftModule( V ) );
    fi;
    end );


#############################################################################
##
#M  NiceBasisNC( <B> )
##
InstallMethod( NiceBasisNC,
    "for basis by nice basis with precomputed basis",
    [ IsBasisByNiceBasis and HasNiceBasis ],
    NiceBasis );

InstallMethod( NiceBasisNC,
    "for basis by nice basis",
    [ IsBasisByNiceBasis ],
    function( B )
    local A, V;
    V:= UnderlyingLeftModule( B );
    if HasBasisVectors( B ) then
      A:= BasisNC( NiceFreeLeftModule( V ),
                   List( BasisVectors( B ), v -> NiceVector( V, v ) ) );
    else
      A:= Basis( NiceFreeLeftModule( V ) );
    fi;
    SetNiceBasis( B, A );
    return A;
    end );
#T is this operation meaningful at all??


#############################################################################
##
#M  BasisVectors( <B> )
##
InstallMethod( BasisVectors,
    "for basis by nice basis",
    [ IsBasisByNiceBasis ],
    function( B )
    local V;
    V:= UnderlyingLeftModule( B );
    return List( BasisVectors( NiceBasis( B ) ),
                 v -> UglyVector( V, v ) );
    end );


#############################################################################
##
#M  Coefficients( <B>, <v> )  . . . . . . . . for basis handled by nice basis
##
##  delegates this task to the associated basis of the nice free left module.
##
InstallMethod( Coefficients,
    "for basis handled by nice basis, and vector",
    IsCollsElms,
    [ IsBasisByNiceBasis, IsVector ],
    function( B, v )
    local n;
    n:= NiceVector( UnderlyingLeftModule( B ), v );
    if n = fail then
      return fail;
    fi;
    n:= Coefficients( NiceBasisNC( B ), n );
    if n = fail then
      return fail;
    fi;
    if LinearCombination( B, n ) = v then
      return n;
    else
      return fail;
    fi;
    end );


#############################################################################
##
#M  CanonicalBasis( <V> ) . . . . . . . for free module handled by nice basis
##
##  For a free left module that is handled via nice bases, the canonical
##  basis is defined as the preimage of the canonical basis of the
##  nice free left module.
##
InstallMethod( CanonicalBasis,
    "for free module that is handled by a nice basis",
    [ IsFreeLeftModule and IsHandledByNiceBasis ],
    function( V )

    local N,   # associated nice space of `V'
          B;   # canonical basis of `V', result

    N:= NiceFreeLeftModule( V );
    B:= BasisNC( V, List( BasisVectors( CanonicalBasis( N ) ),
                              v -> UglyVector( V, v ) ) );
    SetIsCanonicalBasis( B, true );
    return B;
    end );


#############################################################################
##
#M  IsCanonicalBasis( <B> ) . . . . . . . . . for basis handled by nice basis
##
InstallMethod( IsCanonicalBasis,
    "for a basis handled by a nice basis",
    [ IsBasisByNiceBasis ],
    function( B )
    local V;
    V:= UnderlyingLeftModule( B );
    B:= BasisNC( V, List( BasisVectors( B ), v -> NiceVector( V, v ) ) );
    return IsCanonicalBasis( B );
    end );


#############################################################################
##
#M  Basis( <V> )  . . . . . . . . . . . for free module handled by nice basis
##
BasisForFreeModuleByNiceBasis:= function( V )
    local B;
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsBasisByNiceBasis
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    return B;
end;

InstallMethod( Basis,
    "for free module that is handled by a nice basis",
    [ IsFreeLeftModule and IsHandledByNiceBasis ],
    BasisForFreeModuleByNiceBasis );


#############################################################################
##
#M  Basis( <V>, <vectors> )
#M  BasisNC( <V>, <vectors> )
##
InstallMethod( Basis,
    "for free module that is handled by a nice basis, and hom. list",
    IsIdenticalObj,
    [ IsFreeLeftModule and IsHandledByNiceBasis, IsHomogeneousList ],
    function( V, vectors )
    local B;

    # Create the basis object.
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsBasisByNiceBasis
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, vectors );

    # Check whether the vectors in fact form a basis.
    if NiceBasis( B ) = fail then
      return fail;
    fi;

    # Use the basis information.
    UseBasis( V, vectors );

    # Return the result.
    return B;
    end );

InstallMethod( BasisNC,
    "for free module that is handled by a nice basis, and hom. list",
    IsIdenticalObj,
    [ IsFreeLeftModule and IsHandledByNiceBasis, IsHomogeneousList ],
    function( V, vectors )
    local B;

    # Create the basis object.
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsBasisByNiceBasis
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, vectors );

    # Use the basis information.
    UseBasis( V, vectors );

    # Return the result.
    return B;
    end );


#############################################################################
##
#M  NiceFreeLeftModule( <V> )
##
##  There are two default methods.
##
##  The first is available if left module generators for <V> are known;
##  it returns the free left module generated by the nice vectors
##  of the left module generators of <V>.
##
##  The second is available if <V> is a FLMLOR for which left operator
##  ring(-with-one) generators are known;
##  it computes left module generators of <V> via the process of
##  closing a basis under multiplications.
##
InstallMethod( NiceFreeLeftModule,
    "for free module that is handled by a nice basis",
    [ IsFreeLeftModule and HasGeneratorsOfLeftModule
                       and IsHandledByNiceBasis ],
    function( V )
    local gens;

    gens:= GeneratorsOfLeftModule( V );
    if IsEmpty( gens ) then
      return LeftModuleByGenerators( LeftActingDomain( V ), [],
                          NiceVector( V, Zero( V ) ) );
    else
      return LeftModuleByGenerators( LeftActingDomain( V ),
                          List( gens, v -> NiceVector( V, v ) ) );
    fi;
    end );

BindGlobal( "NiceFreeLeftModuleForFLMLOR", function( A, side )

    local Agens,     # algebra generators of `A'
          F,         # left acting domain of `A'
          MB,        # mutable basis, result
          Vgens,     # left module generators
          v;         # loop variable

    # No closure under action is necessary if module generators are known.
    if HasGeneratorsOfLeftModule( A ) then
      TryNextMethod();
    fi;

    # Get the algebra generators.
    Agens:= GeneratorsOfLeftOperatorRing( A );
    F:= LeftActingDomain( A );

    # Compute a mutable basis for `A'.
    # If `A' is associative or a Lie algebra then we may use
    # `MutableBasisOfClosureUnderAction', otherwise we need
    # `MutableBasisOfNonassociativeAlgebra'.
    if ( HasIsAssociative( A ) and IsAssociative( A ) )
       or ( HasIsLieAlgebra( A ) and IsLieAlgebra( A ) ) then
      MB:= MutableBasisOfClosureUnderAction( F,
                                             Agens,
                                             side,
                                             Agens,
                                             \*,
                                             Zero( A ),
                                             infinity );
    else
      MB:= MutableBasisOfNonassociativeAlgebra( F,
                                                Agens,
                                                Zero( A ),
                                                infinity );
    fi;

    # Store left module generators.
    Vgens:= BasisVectors( ImmutableBasis( MB ) );
    UseBasis( A, Vgens );

    # (Now `A' knows left module generators.)
    if IsEmpty( Vgens ) then
      return LeftModuleByGenerators( F, [],
                          NiceVector( A, Zero( A ) ) );
    else
      return LeftModuleByGenerators( F,
                          List( Vgens, v -> NiceVector( A, v ) ) );
    fi;
end );

InstallMethod( NiceFreeLeftModule,
    "for FLMLOR that is handled by a nice basis",
    [ IsFLMLOR and IsHandledByNiceBasis ],
    A -> NiceFreeLeftModuleForFLMLOR( A, "both" ) );

InstallMethod( NiceFreeLeftModule,
    "for associative FLMLOR that is handled by a nice basis",
    [ IsFLMLOR and IsAssociative and IsHandledByNiceBasis ],
    A -> NiceFreeLeftModuleForFLMLOR( A, "left" ) );

InstallMethod( NiceFreeLeftModule,
    "for anticommutative FLMLOR that is handled by a nice basis",
    [ IsFLMLOR and IsAnticommutative and IsHandledByNiceBasis ],
    A -> NiceFreeLeftModuleForFLMLOR( A, "left" ) );

InstallMethod( NiceFreeLeftModule,
    "for commutative FLMLOR that is handled by a nice basis",
    [ IsFLMLOR and IsCommutative and IsHandledByNiceBasis ],
    A -> NiceFreeLeftModuleForFLMLOR( A, "left" ) );


#############################################################################
##
#M  \in( <v>, <V> )
##
InstallMethod( \in,
    "for vector and free left module that is handled by a nice basis",
    IsElmsColls,
    [ IsVector, IsFreeLeftModule and IsHandledByNiceBasis ],
    function( v, V )
    local W, a;
    W:= NiceFreeLeftModule( V );
    a:= NiceVector( V, v );
    if a = fail then
      return false;
    else
      return a in W and v = UglyVector( V, a );
    fi;
    end );


#############################################################################
##
##  Methods for empty bases.
##
##  For the construction of empty bases, default methods are sufficient.
##  Note that we would need extra methods for each representation of bases
##  otherwise, because of the family predicate.
##
##  The methods that access empty bases are there mainly to keep this
##  special case away from other bases (installation with `SUM_FLAGS').
#T is this allowed?
#T (strictly speaking, may other bases assume that these special methods
#T will catch the special situation?)
##
InstallMethod( Basis,
    "for trivial free left module",
    [ IsFreeLeftModule and IsTrivial ],
    function( V )
    local B;
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsEmpty
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    return B;
    end );

InstallMethod( Basis,
    "for free left module and empty list",
    [ IsFreeLeftModule, IsList and IsEmpty ],
    function( V, empty )
    local B;

    if not IsTrivial( V ) then
      Error( "<V> is not trivial" );
    fi;

    # Construct an empty basis.
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsEmpty
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, empty );

    # Return the basis.
    return B;
    end );

InstallMethod( BasisNC,
    "for free left module and empty list",
    [ IsFreeLeftModule, IsList and IsEmpty ],
    function( V, empty )
    local B;

    # Construct an empty basis.
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsEmpty
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, empty );

    # Return the basis.
    return B;
    end );

InstallMethod( SemiEchelonBasis,
    "for free left module and empty list",
    [ IsFreeLeftModule, IsList and IsEmpty ],
    function( V, empty )
    local B;

    if not IsTrivial( V ) then
      Error( "<V> is not trivial" );
    fi;

    # Construct an empty basis.
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsEmpty
                            and IsSemiEchelonized
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, empty );

    # Return the basis.
    return B;
    end );

InstallMethod( SemiEchelonBasisNC,
    "for free left module and empty list",
    [ IsFreeLeftModule, IsList and IsEmpty ],
    function( V, empty )
    local B;

    # Construct an empty basis.
    B:= Objectify( NewType( FamilyObj( V ),
                                IsFiniteBasisDefault
                            and IsEmpty
                            and IsSemiEchelonized
                            and IsAttributeStoringRep ),
                   rec() );
    SetUnderlyingLeftModule( B, V );
    SetBasisVectors( B, empty );

    # Return the basis.
    return B;
    end );

InstallMethod( BasisVectors,
    "for empty basis",
    [ IsBasis and IsEmpty ], SUM_FLAGS,
    B -> [] );

InstallMethod( Coefficients,
    "for empty basis and vector",
    IsCollsElms,
    [ IsBasis and IsEmpty, IsVector ], SUM_FLAGS,
    function( B, v )
    if v = Zero( UnderlyingLeftModule( B ) ) then
      return [];
    else
      return fail;
    fi;
    end );

InstallMethod( LinearCombination,
    "for empty basis and empty list",
    [ IsBasis and IsEmpty, IsList and IsEmpty ], SUM_FLAGS,
    function( B, v )
    return Zero( UnderlyingLeftModule( B ) );
    end );

InstallMethod( SiftedVector,
    "for empty basis and vector",
    IsCollsElms,
    [ IsBasis and IsEmpty, IsVector ], SUM_FLAGS,
    function( B, v )
    return v;
    end );


#############################################################################
##
#R  IsBasisWithReplacedLeftModuleRep( <B> )
##
DeclareRepresentation( "IsBasisWithReplacedLeftModuleRep",
    IsAttributeStoringRep, [ "basisWithWrongModule" ] );


#############################################################################
##
#F  BasisWithReplacedLeftModule( <B>, <V> )
##
InstallGlobalFunction( BasisWithReplacedLeftModule, function( B, V )
    local new;

    new:= Objectify( NewType( FamilyObj( B ),
                                  IsFiniteBasisDefault
                              and IsBasisWithReplacedLeftModuleRep ),
                     rec() );
    SetUnderlyingLeftModule( new, V );
    new!.basisWithWrongModule:= B;

    return new;
end );


#############################################################################
##
#M  BasisVectors( <B> )
##
InstallMethod( BasisVectors,
    "for a basis with replaced left module",
    [ IsBasis and IsBasisWithReplacedLeftModuleRep ],
    B -> BasisVectors( B!.basisWithWrongModule ) );


#############################################################################
##
#M  Coefficients( <B>, <v> )
##
InstallMethod( Coefficients,
    "for a basis with replaced left module, and a vector",
    IsCollsElms,
    [ IsBasis and IsBasisWithReplacedLeftModuleRep, IsVector ],
    function( B, v )
    return Coefficients( B!.basisWithWrongModule, v );
    end );


#############################################################################
##
#M  LinearCombination( <B>, <v> )
##
InstallMethod( LinearCombination,
    "for a basis with replaced left module, and a hom. list",
    [ IsBasis and IsBasisWithReplacedLeftModuleRep, IsHomogeneousList ],
    function( B, v )
    return LinearCombination( B!.basisWithWrongModule, v );
    end );


#############################################################################
##
#M  IsCanonicalBasis( <B> )
##
InstallMethod( IsCanonicalBasis,
    "for a basis with replaced left module, and a vector",
    [ IsBasis and IsBasisWithReplacedLeftModuleRep ],
    B -> IsCanonicalBasis( B!.basisWithWrongModule ) );


#############################################################################
##
#E