/usr/share/gap/lib/clas.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | #############################################################################
##
#W clas.gd GAP library Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
DeclareInfoClass( "InfoClasses" );
#############################################################################
##
#R IsExternalOrbitByStabilizerRep . . . . . external orbit via transversal
##
## <ManSection>
## <Filt Name="IsExternalOrbitByStabilizerRep" Arg='obj' Type='Representation'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareRepresentation( "IsExternalOrbitByStabilizerRep",
IsExternalOrbit, [ ] );
#############################################################################
##
#R IsConjugacyClassGroupRep( <obj> )
#R IsConjugacyClassPermGroupRep( <obj> )
##
## <ManSection>
## <Filt Name="IsConjugacyClassGroupRep" Arg='obj' Type='Representation'/>
## <Filt Name="IsConjugacyClassPermGroupRep" Arg='obj' Type='Representation'/>
##
## <Description>
## is a representation of conjugacy classes, a subrepresentation for
## permutation groups is <C>IsConjugacyClassPermGroupRep</C>
## </Description>
## </ManSection>
##
DeclareRepresentation( "IsConjugacyClassGroupRep",
IsExternalOrbit, [ ] );
DeclareRepresentation( "IsConjugacyClassPermGroupRep",
IsExternalOrbitByStabilizerRep and IsConjugacyClassGroupRep, [ ] );
#############################################################################
##
#O ConjugacyClass( <G>, <g> ) . . . . . . . . . conjugacy class constructor
##
## <#GAPDoc Label="ConjugacyClass">
## <ManSection>
## <Oper Name="ConjugacyClass" Arg='G, g'/>
##
## <Description>
## creates the conjugacy class in <A>G</A> with representative <A>g</A>.
## This class is an external set, so functions such as
## <Ref Func="Representative"/> (which returns <A>g</A>),
## <Ref Func="ActingDomain"/> (which returns <A>G</A>),
## <Ref Func="StabilizerOfExternalSet"/> (which returns the centralizer of
## <A>g</A>) and <Ref Func="AsList"/> work for it.
## <P/>
## A conjugacy class is an external orbit (see <Ref Func="ExternalOrbit"/>)
## of group elements with the group acting by conjugation on it.
## Thus element tests or operation representatives can be computed.
## The attribute
## <Ref Func="Centralizer" Label="for a class of objects in a magma"/>
## gives the centralizer of the representative (which is the same result as
## <Ref Func="StabilizerOfExternalSet"/>).
## (This is a slight abuse of notation: This is <E>not</E> the centralizer
## of the class as a <E>set</E> which would be the standard behaviour of
## <Ref Func="Centralizer" Label="for a class of objects in a magma"/>.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ConjugacyClass", [ IsGroup, IsObject ] );
#############################################################################
##
#R IsRationalClassGroupRep . . . . . . . . . . . . . rational class in group
#R IsRationalClassPermGroupRep . . . . . . . . rational class in perm. group
##
## <ManSection>
## <Filt Name="IsRationalClassGroupRep" Arg='obj' Type='Representation'/>
## <Filt Name="IsRationalClassPermGroupRep" Arg='obj' Type='Representation'/>
##
## <Description>
## is a representation of rational classes, a subrepresentation for
## permutation groups is <C>IsRationalClassPermGroupRep</C>
## </Description>
## </ManSection>
##
DeclareRepresentation( "IsRationalClassGroupRep",
IsComponentObjectRep and IsAttributeStoringRep and IsExternalSet,
[ "galoisGroup", "power" ] );
DeclareRepresentation( "IsRationalClassPermGroupRep",
IsRationalClassGroupRep,
[ "galoisGroup", "power" ] );
#############################################################################
##
#M IsFinite( <cl> ) . . . . . . . . . . . . . . . . . for a rational class
##
InstallTrueMethod( IsFinite, IsRationalClassGroupRep and IsDomain );
#T The `*' in the `Size' method (file `clas.gi') indicates that infinite
#T rational classes are not allowed.
#############################################################################
##
#O RationalClass( <G>, <g> ) . . . . . . . . . . rational class constructor
##
## <#GAPDoc Label="RationalClass">
## <ManSection>
## <Oper Name="RationalClass" Arg='G, g'/>
##
## <Description>
## creates the rational class in <A>G</A> with representative <A>g</A>.
## A rational class consists of all elements that are conjugate to
## <A>g</A> or to an <M>i</M>-th power of <A>g</A> where <M>i</M> is coprime
## to the order of <M>g</M>.
## Thus a rational class can be interpreted as a conjugacy class of cyclic
## subgroups.
## A rational class is an external set (<Ref Func="IsExternalSet"/>) of
## group elements with the group acting by conjugation on it, but not an
## external orbit.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "RationalClass", [ IsGroup, IsObject ] );
#############################################################################
##
#O DecomposedRationalClass( <c> )
##
## <ManSection>
## <Oper Name="DecomposedRationalClass" Arg='c'/>
##
## <Description>
## For a rational class <A>c</A> this attribute contains a list of the ordinary
## classes contained therein.
## </Description>
## </ManSection>
##
DeclareAttribute( "DecomposedRationalClass",IsRationalClassGroupRep );
#############################################################################
##
#A GaloisGroup( <ratcl> )
##
## <#GAPDoc Label="GaloisGroup:clas">
## <ManSection>
## <Attr Name="GaloisGroup" Arg='ratcl'
## Label="of rational class of a group"/>
##
## <Description>
## Suppose that <A>ratcl</A> is a rational class of a group <M>G</M> with
## representative <M>g</M>.
## The exponents <M>i</M> for which <M>g^i</M> lies already in the ordinary
## conjugacy class of <M>g</M>, form a subgroup of the
## <E>prime residue class group</E> <M>P_n</M>
## (see <Ref Func="PrimitiveRootMod"/>),
## the so-called <E>Galois group</E> of the rational class.
## The prime residue class group <M>P_n</M> is obtained in
## &GAP; as <C>Units( Integers mod <A>n</A> )</C>,
## the unit group of a residue class ring.
## The Galois group of a rational class <A>ratcl</A> is stored in the
## attribute <Ref Func="GaloisGroup" Label="of rational class of a group"/>
## as a subgroup of this group.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GaloisGroup", IsRationalClassGroupRep );
#############################################################################
##
#F ConjugacyClassesByRandomSearch( <G> )
##
## <#GAPDoc Label="ConjugacyClassesByRandomSearch">
## <ManSection>
## <Func Name="ConjugacyClassesByRandomSearch" Arg='G'/>
##
## <Description>
## computes the classes of the group <A>G</A> by random search.
## This works very efficiently for almost simple groups.
## <P/>
## This function is also accessible via the option <C>random</C> to
## the function <Ref Func="ConjugacyClass"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConjugacyClassesByRandomSearch" );
#############################################################################
##
#F ConjugacyClassesByOrbits( <G> )
##
## <#GAPDoc Label="ConjugacyClassesByOrbits">
## <ManSection>
## <Func Name="ConjugacyClassesByOrbits" Arg='G'/>
##
## <Description>
## computes the classes of the group <A>G</A> as orbits of <A>G</A> on its
## elements.
## This can be quick but unsurprisingly may also take a lot of memory if
## <A>G</A> becomes larger.
## All the classes will store their element list and
## thus a membership test will be quick as well.
## <P/>
## This function is also accessible via the option <C>action</C> to
## the function <Ref Func="ConjugacyClass"/>.
## <P/>
## Typically, for small groups (roughly of order up to <M>10^3</M>)
## the computation of classes as orbits under the action is fastest;
## memory restrictions (and the increasing cost of eliminating duplicates)
## make this less efficient for larger groups.
## <P/>
## Calculation by random search has the smallest memory requirement, but in
## generally performs worse, the more classes are there.
## <P/>
## The following example shows the effect of this for a small group
## with many classes:
## <P/>
## <!-- this example is time and load-status dependent. No point in testing -->
## <Log><![CDATA[
## gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:noaction);;time;
## 110
## gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:random);;time;
## 300
## gap> h:=Group((4,5)(6,7,8),(1,2,3)(5,6,9));;ConjugacyClasses(h:action);;time;
## 30
## ]]></Log>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConjugacyClassesByOrbits" );
# This function computes the classes by orbits if the group is small and the
# `noaction' option is not set, otherwise it returns `fail'.
DeclareGlobalFunction( "ConjugacyClassesForSmallGroup" );
DeclareGlobalFunction( "GroupByPrimeResidues" );
DeclareGlobalFunction( "ConjugacyClassesTry" );
DeclareGlobalFunction( "RationalClassesTry" );
DeclareGlobalFunction( "RationalClassesInEANS" );
DeclareGlobalFunction( "SubspaceVectorSpaceGroup" );
DeclareGlobalFunction( "CentralStepConjugatingElement" );
DeclareGlobalFunction( "KernelHcommaC" );
DeclareGlobalFunction( "OrderModK" );
DeclareGlobalFunction( "CentralStepRatClPGroup" );
DeclareGlobalFunction( "CentralStepClEANS" );
DeclareGlobalFunction( "CorrectConjugacyClass" );
DeclareGlobalFunction( "GeneralStepClEANS" );
#############################################################################
##
#F ClassesSolvableGroup(<G>, <mode>[, <opt>]) . . . . .
##
## <#GAPDoc Label="ClassesSolvableGroup">
## <ManSection>
## <Func Name="ClassesSolvableGroup" Arg='G, mode[, opt]'/>
##
## <Description>
## computes conjugacy classes and centralizers in solvable groups. <A>G</A> is
## the acting group. <A>mode</A> indicates the type of the calculation:
## <P/>
## 0 Conjugacy classes
## <P/>
## 4 Conjugacy test for the two elements in <A>opt</A><C>.candidates</C>
## <P/>
## In mode 0 the function returns a list of records containing components
## <A>representative</A> and <A>centralizer</A>.
## In mode 4 it returns a conjugating element.
## <P/>
## The optional record <A>opt</A> may contain the following components
## that will affect the algorithm's behaviour:
## <P/>
## <List>
## <Mark><C>pcgs</C></Mark>
## <Item>
## is a pcgs that will be used for the calculation.
## The attribute <Ref Func="EANormalSeriesByPcgs"/> must return an
## appropriate series of normal subgroups with elementary abelian factors
## among them. The algorithm will step down this series.
## In the case of
## the calculation of rational classes, it must be a pcgs refining a
## central series.
## </Item>
## <Mark><C>candidates</C></Mark>
## <Item>
## is a list of elements for which canonical representatives
## are to be computed or for which a conjugacy test is performed. They must
## be given in mode 4. In mode 0 a list of classes corresponding to
## <C>candidates</C> is returned (which may contain duplicates). The
## <C>representative</C>s chosen are canonical with respect to <C>pcgs</C>.
## The records returned also contain components <C>operator</C>
## such that
## <C>candidate ^ operator = representative</C>.
## </Item>
## <Mark><C>consider</C></Mark>
## <Item>
## is a function <C>consider( fhome, rep, cenp, K, L )</C>. Here
## <C>fhome</C> is a home pcgs for the factor group <M>F</M> in which the
## calculation currently takes place,
## <C>rep</C> is an element of the factor and <C>cenp</C> is a
## pcgs for the centralizer of <C>rep</C> modulo <C>K</C>.
## In mode 0, when lifting from <M>F</M>/<C>K</C> to <M>F</M>/<C>L</C>
## (note: for efficiency reasons, <M>F</M> can be different from <A>G</A> or
## <C>L</C> might be not trivial) this function is called
## before performing the actual lifting and only those representatives for
## which it returns <K>true</K> are passed to the next level.
## This permits for example the calculation of only those classes
## with small centralizers or classes of restricted orders.
## </Item>
## </List>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ClassesSolvableGroup" );
#############################################################################
##
#F RationalClassesSolvableGroup(<G>, <mode> [,<opt>]) . . . . .
##
## <ManSection>
## <Func Name="RationalClassesSolvableGroup" Arg='G, mode [,opt]'/>
##
## <Description>
## computes rational classes and centralizers in solvable groups. <A>G</A> is
## the acting group. <A>mode</A> indicates the type of the calculation:
## <P/>
## 1 Rational classes of a <M>p</M>-group (mode 3 is used internally as well)
## <P/>
## In mode 0 the function returns a list of records containing components
## <A>representative</A> and <A>centralizer</A>. In mode 1 the records in addition
## contain the component <A>galoisGroup</A>.
## <P/>
## The optional record <A>opt</A> may contain the following components that will
## affect the algorithms behaviour:
## <P/>
## <List>
## <Mark><C>pcgs</C></Mark>
## <Item>
## s a pcgs that will be used for the calculation. In the case of
## the calculation of rational classes, it must be a pcgs refining a
## central series. The attribute <C>CentralNormalSeriesByPcgs</C> must return an
## appropriate series of normal subgroups with elementary abelian factors
## among them. The algorithm will step down this series.
## </Item>
## <Mark><C>candidates</C></Mark>
## <Item>
## s a list of elements for which canonical representatives
## are to be computed or for which a conjugacy test is performed. They must
## be given in mode 4. In modes 0 and 1 a list of classes corresponding to
## <A>candidates</A> is returned (which may contain duplicates). The
## <A>representative</A>s chosen are canonical with respect to <A>pcgs</A>. The
## records returned also contain components <A>operator</A> and (in mode 1)
## <A>exponent</A> such that
## (<A>candidate</A> <C>^</C> <A>operator</A>) <C>^</C> <A>exponent</A>=<A>representative</A>.
## </Item>
## <Mark>%<C>consider</C></Mark>
## <Item>
## s a function <A>consider</A>(<A>rep</A>,<A>cen</A>,<A>K</A>,<A>L</A>). Here <A>rep</A> is
## <!-- %an element of <A>G</A> and <A>cen</A>/<A>K</A> is the centralizer of <A>rep</A><A>K</A> modulo -->
## <!-- %<A>K</A>. In mode 0 when lifting from <A>G</A>/<A>K</A> to <A>G</A>/<A>L</A> this function is -->
## <!-- %called before performing the actual lifting and only those -->
## <!-- %representatives for which it returns <K>true</K> are passed to the next -->
## <!-- %level. This permits the calculation of only those classes with say small -->
## %centralizers or classes of restricted orders.
## </Item>
## </List>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "RationalClassesSolvableGroup" );
#############################################################################
##
#F CentralizerSizeLimitConsiderFunction(<sz>)
##
## <#GAPDoc Label="CentralizerSizeLimitConsiderFunction">
## <ManSection>
## <Func Name="CentralizerSizeLimitConsiderFunction" Arg='sz'/>
##
## <Description>
## returns a function (with arguments <C>fhome</C>, <C>rep</C>, <C>cen</C>,
## <C>K</C>, <C>L</C>)
## that can be used in <Ref Func="ClassesSolvableGroup"/> as the
## <C>consider</C> component of the options record.
## It will restrict the lifting to those classes,
## for which the size of the centralizer (in the factor) is at most
## <A>sz</A>.
## <P/>
## See also <Ref Func="SubgroupsSolvableGroup"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CentralizerSizeLimitConsiderFunction" );
DeclareGlobalFunction( "CompleteGaloisGroupPElement" );
DeclareGlobalFunction( "RatClasPElmArrangeClasses" );
DeclareGlobalFunction( "SortRationalClasses" );
DeclareGlobalFunction( "FusionRationalClassesPSubgroup" );
DeclareGlobalFunction( "RationalClassesPElements" );
DeclareGlobalFunction( "RationalClassesPermGroup" );
#############################################################################
##
#E
|