This file is indexed.

/usr/share/gap/lib/csetperm.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#############################################################################
##
#W  csetperm.gi                     GAP library              Alexander Hulpke
#W                                                             Heiko Theißen
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for cosets of permutation groups
##

#############################################################################
##
#F  MinimizeExplicitTransversal( <U>, <maxmoved> )  . . . . . . . . . . local
##
InstallGlobalFunction( MinimizeExplicitTransversal, function( U, maxmoved )
    local   explicit,  lenflock,  flock,  lenblock,  index,  s;
    
    if     IsBound( U.explicit )
       and IsBound( U.stabilizer )  then
        explicit := U.explicit;
        lenflock := U.stabilizer.index * U.lenblock / Length( U.orbit );
        flock    := U.flock;
        lenblock := U.lenblock;
        index    := U.index;
        ChangeStabChain( U, [ 1 .. maxmoved ] );
        for s  in [ 1 .. Length( explicit ) ]  do
            explicit[ s ] := MinimalElementCosetStabChain( U, explicit[ s ] );
        od;
        Sort( explicit );
        U.explicit := explicit;
        U.lenflock := lenflock;
        U.flock    := flock;
        U.lenblock := lenblock;
        U.index    := index;
    fi;
end );

#############################################################################
##
#F  RightTransversalPermGroupConstructor( <filter>, <G>, <U> )  . constructor
##
MAX_SIZE_TRANSVERSAL := 100000;

BindGlobal( "RightTransversalPermGroupConstructor", function( filter, G, U )
  local GC, UC, noyet, orbs, domain, GCC, UCC, ac, nc, bpt, enum, i;

    GC := CopyStabChain( StabChainMutable( G ) );
    UC := CopyStabChain( StabChainMutable( U ) );
    noyet:=ValueOption("noascendingchain")<>true;
    if not IsTrivial( G )  then
        orbs := ShallowCopy( OrbitsDomain( U, MovedPoints( G ) ) );
        Sort( orbs, function( o1, o2 )
            return Length( o1 ) < Length( o2 ); end );
        domain := Concatenation( orbs );
	GCC:=GC;
	UCC:=UC;
        while    Length( GCC.genlabels ) <> 0
              or Length( UCC.genlabels ) <> 0  do
#Print(SizeStabChain(GCC),"/",SizeStabChain(UCC),":",
#  SizeStabChain(GCC)/SizeStabChain(UCC),"\n");
          if noyet and (
	  (SizeStabChain(GCC)/SizeStabChain(UCC)*10 >MAX_SIZE_TRANSVERSAL) or
	  (Length(UCC.genlabels)=0 and
	    SizeStabChain(GCC)>MAX_SIZE_TRANSVERSAL)
	    ) then
	    # we potentially go through many steps, making it expensive
	    ac:=AscendingChain(G,U:cheap);
	    # go in biggish steps through the chain
	    nc:=[ac[1]];
	    for i in [3..Length(ac)] do
	      if Size(ac[i])/Size(nc[Length(nc)])>MAX_SIZE_TRANSVERSAL then
		Add(nc,ac[i-1]);
	      fi;
	    od;
	    Add(nc,ac[Length(ac)]);
	    if Length(nc)>2 then
	      ac:=[];
	      for i in [Length(nc),Length(nc)-1..2] do
		Info(InfoCoset,4,"Recursive [",Size(nc[i]),",",Size(nc[i-1]));
		Add(ac,RightTransversal(nc[i],nc[i-1]
		      # do not try to factor again
		      :noascendingchain));
	      od;
	      return FactoredTransversal(G,U,ac);
	    fi;
	    noyet:=false;

	  fi;
	  bpt := First( domain, p -> not IsFixedStabilizer( GCC, p ) );
	  ChangeStabChain( GCC, [ bpt ], true  );  GCC := GCC.stabilizer;
	  ChangeStabChain( UCC, [ bpt ], false );  UCC := UCC.stabilizer;
        od;
    fi;

    AddCosetInfoStabChain(GC,UC,LargestMovedPoint(G));
    MinimizeExplicitTransversal(UC,LargestMovedPoint(G));

    enum := Objectify( NewType( FamilyObj( G ),
                           filter and IsList and IsDuplicateFreeList
                           and IsAttributeStoringRep ),
          rec( group := G,
            subgroup := U,
      stabChainGroup := GC,
   stabChainSubgroup := UC ) );

    return enum;
end );


#############################################################################
##
#R  IsRightTransversalPermGroupRep( <obj> ) . right transversal of perm group
##
DeclareRepresentation( "IsRightTransversalPermGroupRep",
    IsRightTransversalRep,
    [ "stabChainGroup", "stabChainSubgroup" ] );

InstallMethod( \[\],
    "for right transversal of perm. group, and pos. integer",
    true,
    [ IsList and IsRightTransversalPermGroupRep, IsPosInt ], 0,
    function( cs, num )
    return CosetNumber( cs!.stabChainGroup, cs!.stabChainSubgroup, num );
end );

InstallMethod( PositionCanonical,
    "for right transversal of perm. group, and permutation",
    IsCollsElms,
    [ IsList and IsRightTransversalPermGroupRep, IsPerm ], 0,
    function( cs, elm )
    return NumberCoset( cs!.stabChainGroup,
                        cs!.stabChainSubgroup,
                        elm );
end );

#############################################################################
##
#M  RightTransversalOp( <G>, <U> )  . . . . . . . . . . . . . for perm groups
##
InstallMethod( RightTransversalOp,
    "for two perm. groups",
    IsIdenticalObj,
    [ IsPermGroup, IsPermGroup ], 0,
    function( G, U )
    return RightTransversalPermGroupConstructor(
               IsRightTransversalPermGroupRep, G, U );
end );


#############################################################################
##
#F  AddCosetInfoStabChain( <G>, <U>, <maxmoved> ) . . . . . .  add coset info
##

InstallGlobalFunction( AddCosetInfoStabChain, function( G, U, maxmoved )
    local   orb,  pimg,  img,  vert,  s,  t,  index,
            block,  B,  blist,  pos,  sliced,  lenflock,  i,  j,
            ss,  tt,t1,t1lim;
    
    Info(InfoCoset,5,"AddCosetInfoStabChain [",
          SizeStabChain(G),",",SizeStabChain(U),"]");
    if IsEmpty( G.genlabels )  then
        U.index    := 1;
        U.explicit := [ U.identity ];
        U.lenflock := 1;
        U.flock    := U.explicit;
    else
        AddCosetInfoStabChain( G.stabilizer, U.stabilizer, maxmoved );
        
        # U.index := [G_1:U_1];
        U.index := U.stabilizer.index * Length( G.orbit ) / Length( U.orbit );
	Info(InfoCoset,5,"U.index=",U.index);
        
        # block := 1 ^ <U,G_1>; is a block for G.
        block := OrbitPerms( Concatenation( U.generators,
                 G.stabilizer.generators ), G.orbit[ 1 ] );
        U.lenblock := Length( block );
        lenflock := Length( G.orbit ) / U.lenblock;

        # For small indices,  permutations   are multiplied,  so  we  need  a
        # multiplied transversal.
        if     IsBound( U.stabilizer.explicit )
           and U.lenblock * maxmoved <= MAX_SIZE_TRANSVERSAL
           and U.index    * maxmoved <= MAX_SIZE_TRANSVERSAL * lenflock  then
            U.explicit := [  ];
            U.flock    := [ G.identity ];
            tt := [  ];  tt[ G.orbit[ 1 ] ] := G.identity;
            for t  in G.orbit  do
                tt[ t ] := tt[ t ^ G.transversal[ t ] ] /
                           G.transversal[ t ];
            od;
        fi;
        
        # flock := { G.transversal[ B[1] ] | B in block system };
        blist := BlistList( G.orbit, block );
        pos := Position( blist, false );
        while pos <> fail  do
            img := G.orbit[ pos ];
            B := block{ [ 1 .. U.lenblock ] };
            sliced := [  ];
            while img <> G.orbit[ 1 ]  do
                Add( sliced, G.transversal[ img ] );
                img := img ^ G.transversal[ img ];
            od;
            for i  in Reversed( [ 1 .. Length( sliced ) ] )  do
                for j  in [ 1 .. Length( B ) ]  do
                    B[ j ] := B[ j ] / sliced[ i ];
                od;
            od;
            Append( block, B );
            if IsBound( U.explicit )  then
                Add( U.flock, tt[ B[ 1 ] ] );
            fi;
            #UniteBlist( blist, BlistList( G.orbit, B ) );
            UniteBlistList(G.orbit, blist, B );
            pos := Position( blist, false, pos );
        od;
        G.orbit := block;
        
        # Let <s> loop over the transversal elements in the stabilizer.
        U.repsStab := List( [ 1 .. U.lenblock ], x ->
                           BlistList( [ 1 .. U.stabilizer.index ], [  ] ) );
        U.repsStab[ 1 ] := BlistList( [ 1 .. U.stabilizer.index ],
                                      [ 1 .. U.stabilizer.index ] );
        index := U.stabilizer.index * lenflock;
        s := 1;
        
        # For  large  indices, store only   the  numbers of  the  transversal
        # elements needed.
        if not IsBound( U.explicit )  then

            # If  the   stabilizer   is the   topmost  level   with  explicit
            # transversal, this must contain minimal coset representatives.
            MinimizeExplicitTransversal( U.stabilizer, maxmoved );
            
	    # if there are over 200 points, do a cheap test first.
	    t1lim:=Length(G.orbit);
	    if t1lim>200 then
	      t1lim:=50;
	    fi;

            orb := G.orbit{ [ 1 .. U.lenblock ] };
            pimg := [  ];
            while index < U.index  do
                pimg{ orb } := CosetNumber( G.stabilizer, U.stabilizer, s,
                                       orb );
                t := 2;
                while t <= U.lenblock  and  index < U.index  do

		    # do not test all points first if not necessary
		    # (test only at most t1lim points, if the test succeeds,
		    # test the rest)
		    # this gives a major speedup.
		    t1:=Minimum(t-1,t1lim);
                    # For this point  in the  block,  find the images  of the
                    # earlier points under the representative.
                    vert := G.orbit{ [ 1 .. t1 ] };
                    img := G.orbit[ t ];
                    while img <> G.orbit[ 1 ]  do
                        vert := OnTuples( vert, G.transversal[ img ] );
                        img  := img           ^ G.transversal[ img ];
                    od;

                    # If $Ust = Us't'$ then $1t'/t/s in 1U$. Also if $1t'/t/s
                    # in 1U$ then $st/t' =  u.g_1$ with $u  in U, g_1 in G_1$
                    # and $g_1  =  u_1.s'$ with $u_1  in U_1,  s' in S_1$, so
                    # $Ust = Us't'$.
                    if ForAll( [ 1 .. t1 ], i -> not IsBound
                       ( U.translabels[ pimg[ vert[ i ] ] ] ) )  then

		      # do all points
		      if t1<t-1 then
			vert := G.orbit{ [ 1 .. t - 1 ] };
			img := G.orbit[ t ];
			while img <> G.orbit[ 1 ]  do
			    vert := OnTuples( vert, G.transversal[ img ] );
			    img  := img           ^ G.transversal[ img ];
			od;
			if ForAll( [ t1+1 .. t - 1 ], i -> not IsBound
			  ( U.translabels[ pimg[ vert[ i ] ] ] ) )  then
			    U.repsStab[ t ][ s ] := true;
			    index := index + lenflock;
			fi;
		      else
                        U.repsStab[ t ][ s ] := true;
                        index := index + lenflock;
		      fi;
                    fi;

                    t := t + 1;
                od;
                s := s + 1;
            od;
            
        # For small indices, store a transversal explicitly.
        else
            for ss  in U.stabilizer.flock  do
                Append( U.explicit, U.stabilizer.explicit * ss );
            od;
            while index < U.index  do
                t := 2;
                while t <= U.lenblock  and  index < U.index  do
                    ss := U.explicit[ s ] * tt[ G.orbit[ t ] ];
                    if ForAll( [ 1 .. t - 1 ], i -> not IsBound
                           ( U.translabels[ G.orbit[ i ] / ss ] ) )  then
                        U.repsStab[ t ][ s ] := true;
                        Add( U.explicit, ss );
                        index := index + lenflock;
                    fi;
                    t := t + 1;
                od;
                s := s + 1;
            od;
            Unbind( U.stabilizer.explicit );
            Unbind( U.stabilizer.flock    );
        fi;
                    
    fi;
end );

#############################################################################
##
#F  NumberCoset( <G>, <U>, <r> )  . . . . . . . . . . . . . . coset to number
##
InstallGlobalFunction( NumberCoset, function( G, U, r )
    local   num,  b,  t,  u,  g1,  pnt,  bpt;
    
    if IsEmpty( G.genlabels )  or  U.index = 1  then
        return 1;
    fi;
    
    # Find the block number of $r$.
    bpt := G.orbit[ 1 ];
    b := QuoInt( Position( G.orbit, bpt ^ r ) - 1, U.lenblock );
        
    # For small indices, look at the explicit transversal.
    if IsBound( U.explicit )  then
        return b * U.lenflock + Position( U.explicit,
               MinimalElementCosetStabChain( U, r / U.flock[ b + 1 ] ) );
    fi;
        
    pnt := G.orbit[ b * U.lenblock + 1 ];
    while pnt <> bpt  do
        r   := r   * G.transversal[ pnt ];
        pnt := pnt ^ G.transversal[ pnt ];
    od;
    
    # Now $r$ stabilises the block. Find the first $t in G/G_1$ such that $Ur
    # = Ust$ for $s in G_1$. In this code, G.orbit[ <t> ] = bpt ^ $t$.
    num := b * U.stabilizer.index * U.lenblock / Length( U.orbit );
             # \_________This is [<U,G_1>:U] = U.lenflock_________/
    t := 1;
    pnt := G.orbit[ t ] / r;
    while not IsBound( U.translabels[ pnt ] )  do
        num := num + SizeBlist( U.repsStab[ t ] );
        t := t + 1;
        pnt := G.orbit[ t ] / r;
    od;
        
    # $r/t = u.g_1$ with $u in U, g_1 in G_1$, hence $t/r.u = g_1^-1$.
    u := U.identity;
    while pnt ^ u <> bpt  do
        u := u * U.transversal[ pnt ^ u ];
    od;
    g1 := LeftQuotient( u, r );  # Now <g1> = $g_1.t = u mod r$.
    while bpt ^ g1 <> bpt  do
        g1 := g1 * G.transversal[ bpt ^ g1 ];
    od;
                
    # The number of $r$  is the number of $g_1$  plus an offset <num> for
    # the earlier values of $t$.
    return num + SizeBlist( U.repsStab[ t ]{ [ 1 ..
                   NumberCoset( G.stabilizer, U.stabilizer, g1 ) ] } );

end );

#############################################################################
##
#F  CosetNumber( <arg> )  . . . . . . . . . . . . . . . . . . number to coset
##
InstallGlobalFunction( CosetNumber, function( arg )
    local   G,  U,  num,  tup,  b,  t,  rep,  pnt,  bpt,  index,  len;

    # Get the arguments.
    G := arg[ 1 ];  U := arg[ 2 ];  num := arg[ 3 ];
    if Length( arg ) > 3  then  tup := arg[ 4 ];
                          else  tup := false;     fi;

    if num = 1  then
        if tup = false  then  return G.identity;
                        else  return tup;         fi;
    fi;
    
    # Find the block $b$ addressed by <num>.
    if IsBound( U.explicit )  then
        index := U.lenflock;
    else
        index := U.stabilizer.index * U.lenblock / Length( U.orbit );
               # \_________This is [<U,G_1>:U] = U.lenflock_________/
    fi;
    b := QuoInt( num - 1, index );
    num := ( num - 1 ) mod index + 1;
        
    # For small indices, look at the explicit transversal.
    if IsBound( U.explicit )  then
        if tup = false  then
            return U.explicit[ num ] * U.flock[ b + 1 ];
        else
            return List( tup, t -> t / U.flock[ b + 1 ] / U.explicit[ num ] );
        fi;
    fi;
        
    # Otherwise, find the point $t$ addressed by <num>.
    t := 1;
    len := SizeBlist( U.repsStab[ t ] );
    while num > len  do
        num := num - len;
        t := t + 1;
        len := SizeBlist( U.repsStab[ t ] );
    od;
    if len < U.stabilizer.index  then
        num := PositionNthTrueBlist( U.repsStab[ t ], num );
    fi;
        
    # Find the representative $s$ in   the stabilizer addressed by <num>  and
    # return $st$.
    rep := G.identity;
    bpt := G.orbit[ 1 ];
    if tup = false  then
        pnt := G.orbit[ b * U.lenblock + 1 ];
        while pnt <> bpt  do
            rep := rep * G.transversal[ pnt ];
            pnt := pnt ^ G.transversal[ pnt ];
        od;
        pnt := G.orbit[ t ];
        while pnt <> bpt  do
            rep := rep * G.transversal[ pnt ];
            pnt := pnt ^ G.transversal[ pnt ];
        od;
        return CosetNumber( G.stabilizer, U.stabilizer, num ) / rep;
    else
        pnt := G.orbit[ b * U.lenblock + 1 ];
        while pnt <> bpt  do
            tup := OnTuples( tup, G.transversal[ pnt ] );
            pnt := pnt ^ G.transversal[ pnt ];
        od;
        pnt := G.orbit[ t ];
        while pnt <> bpt  do
            tup := OnTuples( tup, G.transversal[ pnt ] );
            pnt := pnt ^ G.transversal[ pnt ];
        od;
        return CosetNumber( G.stabilizer, U.stabilizer, num, tup );
    fi;
end );

#############################################################################
##
#M  AscendingChainOp(<G>,<pnt>) . . . approximation of
##
InstallMethod( AscendingChainOp, "PermGroup", IsIdenticalObj,
  [IsPermGroup,IsPermGroup],0,
function(G,U)
local s,c,mp,o,i,step;
  s:=G;
  c:=[G];
  repeat
    mp:=MovedPoints(s);
    o:=ShallowCopy(OrbitsDomain(s,mp));
    Sort(o,function(a,b) return Length(a)<Length(b);end);
    i:=1;
    step:=false;
    while i<=Length(o) and step=false do
      if not IsTransitive(U,o[i]) then
	Info(InfoCoset,2,"AC: orbit");
	o:=ShallowCopy(OrbitsDomain(U,o[i]));
	Sort(o,function(a,b) return Length(a)<Length(b);end);
	s:=Stabilizer(s,Set(o[1]),OnSets);
	step:=true;
      elif Index(G,U)>NrMovedPoints(U) 
	  and IsPrimitive(s,o[i]) and not IsPrimitive(U,o[i]) then
	Info(InfoCoset,2,"AC: blocks");
	s:=Stabilizer(s,Set(List(MaximalBlocks(U,o[i]),Set)),
                      OnSetsDisjointSets);
	step:=true;
      else
	i:=i+1;
      fi;
    od;
    if step then
      Add(c,s);
    fi;
  until step=false or Index(s,U)=1; # we could not refine better
  if Index(s,U)>1 then
    Add(c,U);
  fi;
  Info(InfoCoset,2,"Indices",List([1..Length(c)-1],i->Index(c[i],c[i+1])));
  return RefinedChain(G,Reversed(c));
end);

InstallMethod(CanonicalRightCosetElement,"Perm",IsCollsElms,
  [IsPermGroup,IsPerm],0,
function(U,e)
  return MinimalElementCosetStabChain(MinimalStabChain(U),e);
end);

InstallMethod(\<,"RightCosets of perm group",IsIdenticalObj,
  [IsRightCoset and IsPermCollection,IsRightCoset and IsPermCollection],0,
function(a,b)
  # for permutation groups the canonical rep is the smallest element of the
  # coset
  if ActingDomain(a)<>ActingDomain(b) then
    return ActingDomain(a)<ActingDomain(b);
  fi;
  return CanonicalRepresentativeOfExternalSet(a)
         <CanonicalRepresentativeOfExternalSet(b);
end);


#############################################################################
##
#E  csetperm.gi . . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##