This file is indexed.

/usr/share/gap/lib/ctbl.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
#############################################################################
##
#W  ctbl.gi                     GAP library                     Thomas Breuer
#W                                                           & Götz Pfeiffer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the implementations corresponding to the declarations
##  in `ctbl.gd'.
##
##  1. Some Remarks about Character Theory in GAP
##  2. Character Table Categories
##  3. The Interface between Character Tables and Groups
##  4. Operators for Character Tables
##  5. Attributes and Properties for Groups as well as for Character Tables
##  6. Attributes and Properties only for Character Tables
##  x. Operations Concerning Blocks
##  7. Other Operations for Character Tables
##  8. Creating Character Tables
##  9. Printing Character Tables
##  10. Constructing Character Tables from Others
##  11. Sorted Character Tables
##  12. Storing Normal Subgroup Information
##  13. Auxiliary Stuff
##


#############################################################################
##
##  1. Some Remarks about Character Theory in GAP
##


#############################################################################
##
##  2. Character Table Categories
##


#############################################################################
##
##  3. The Interface between Character Tables and Groups
##


#############################################################################
##
#F  CharacterTableWithStoredGroup( <G>, <tbl>[, <arec>] )
#F  CharacterTableWithStoredGroup( <G>, <tbl>, <bijection> )
##
InstallGlobalFunction( CharacterTableWithStoredGroup, function( arg )
    local G, tbl, arec, ccl, compat, new, i;

    # Get and check the arguments.
    if   Length( arg ) = 2 and IsGroup( arg[1] )
                           and IsOrdinaryTable( arg[2] ) then
      arec:= rec();
    elif Length( arg ) = 3 and IsGroup( arg[1] )
                           and IsOrdinaryTable( arg[2] )
                           and ( IsRecord( arg[3] ) or IsList(arg[3]) ) then
      arec:= arg[3];
    else
      Error( "usage: CharacterTableWithStoredGroup(<G>,<tbl>[,<arec>])" );
    fi;

    G   := arg[1];
    tbl := arg[2];

    if HasOrdinaryCharacterTable( G ) then
      Error( "<G> has already a character table" );
    fi;

    ccl:= ConjugacyClasses( G );
#T How to exploit the known character table
#T if the conjugacy classes of <G> are not yet computed?

    if IsList( arec ) then
      compat:= arec;
    else
      compat:= CompatibleConjugacyClasses( G, ccl, tbl, arec );
    fi;

    if not IsList( compat ) then
      return fail;
    fi;

    # Permute the classes if necessary.
    if compat <> [ 1 .. Length( compat ) ] then
      ccl:= ccl{ compat };
    fi;

    # Create a copy of the table.
    new:= ConvertToLibraryCharacterTableNC(
              rec( UnderlyingCharacteristic := 0 ) );

    # Set the supported attribute values.
    for i in [ 3, 6 .. Length( SupportedCharacterTableInfo ) ] do
      if Tester( SupportedCharacterTableInfo[ i-2 ] )( tbl )
         and SupportedCharacterTableInfo[ i-1 ] <> "Irr" then
        Setter( SupportedCharacterTableInfo[ i-2 ] )( new,
            SupportedCharacterTableInfo[ i-2 ]( tbl ) );
      fi;
    od;

    # Set the irreducibles.
    SetIrr( new, List( Irr( tbl ),
        chi -> Character( new, ValuesOfClassFunction( chi ) ) ) );

    # The identification is unique, store attribute values.
    SetUnderlyingGroup( new, G );
    SetConjugacyClasses( new, ccl );
    SetIdentificationOfConjugacyClasses( new, compat );
    SetOrdinaryCharacterTable( G, new );

    return new;
    end );


#############################################################################
##
#M  CompatibleConjugacyClasses( <G>, <ccl>, <tbl>[, <arec>] )
##
InstallMethod( CompatibleConjugacyClasses,
    "three argument version, call `CompatibleConjugacyClassesDefault'",
    [ IsGroup, IsList, IsOrdinaryTable ],
    function( G, ccl, tbl )
    return CompatibleConjugacyClassesDefault( G, ccl, tbl, rec() );
    end );

InstallMethod( CompatibleConjugacyClasses,
    "four argument version, call `CompatibleConjugacyClassesDefault'",
    [ IsGroup, IsList, IsOrdinaryTable, IsRecord ],
    CompatibleConjugacyClassesDefault );


#############################################################################
##
#M  CompatibleConjugacyClasses( <tbl>[, <arec>] )
##
InstallMethod( CompatibleConjugacyClasses,
    "one argument version, call `CompatibleConjugacyClassesDefault'",
    [ IsOrdinaryTable ],
    function( tbl )
    return CompatibleConjugacyClassesDefault( false, false, tbl, rec() );
    end );

InstallMethod( CompatibleConjugacyClasses,
    "two argument version, call `CompatibleConjugacyClassesDefault'",
    [ IsOrdinaryTable, IsRecord ],
    function( tbl, arec )
    return CompatibleConjugacyClassesDefault( false, false, tbl, arec );
    end );


#############################################################################
##
#F  CompatibleConjugacyClassesDefault( <G>, <ccl>, <tbl>, <arec> )
#F  CompatibleConjugacyClassesDefault( false, false, <tbl>, <arec> )
##
InstallGlobalFunction( CompatibleConjugacyClassesDefault,
    function( G, ccl, tbl, arec )

    local natchar,     # natural character (if known)
          nccl,        # no. of conjugacy classes of `G'
          pi1,         # the partition of positions in `tbl'
          pi2,         # the partition of positions in `ccl'
          bijection,   # partial bijection currently known
          refine,      # function that does the refinement
          tbl_orders,  # element orders of classes in `tbl'
          reps,        # representatives of the classes in `ccl'
          fun1, fun2,  # functions returning invariants
          tbl_classes, # class lengths in `tbl'
          degree,      # degree of the natural character
          derpos,      # positions of classes in the derived subgroup
          primes,      # primedivisors of the group order
          powerclass,
          powerclasses,
          result,      # return value
          usesymm,     # local function to use table automorphisms
          usepowers,   # local function to use power maps
          usegalois,   # local function to use Galois conjugation
          sums,        # list of lengths of entries in `equpos'
          i,
          j,
          symm,        # group of symmetries that is still available
          ords,
          p;

    if IsBound( arec.natchar ) then
      natchar:= arec.natchar;
    fi;

    nccl:= NrConjugacyClasses( tbl );

    if ccl <> false and Length( ccl ) <> nccl then
      return fail;
    fi;

    # We set up two partitions `pi1' of the column positions in `tbl'
    # and `pi2' of the positions in `ccl'
    # such that the $i$-th entries correspond to each other.
    # These partitions are successively refined
    # until either the bijection is found or no more criteria are available.
    # Uniquely identified classes are removed from `pi1' and `pi2',
    # and inserted in `bijection'.
    if IsBound( arec.bijection ) then
      bijection:= ShallowCopy( arec.bijection );
      pi1:= [ Filtered( [ 1 .. nccl ], i -> not IsBound( bijection[i] ) ) ];
      pi2:= [ Difference( [ 1 .. nccl ], bijection ) ];
    else
      bijection:= [];
      pi1:= [ [ 1 .. nccl ] ];
      pi2:= [ [ 1 .. nccl ] ];
    fi;

    # the function that does the refinement,
    # the return value `false' means that the bijection is still ambiguous,
    # `true' means that either the bijection is unique or an inconsistency
    # was detected (in the former case, `result' holds the bijection,
    # in the latter case, `result' is `fail')
    refine:= function( fun1, fun2, range )

      local newpi1, newpi2,
            i, j,
            val1, val2,
            set,
            new1, new2;

      if G = false then
        fun2:= fun1;
      fi;

      for i in range do
        newpi1:= [];
        newpi2:= [];
        val1:= List( pi1[i], fun1 );
        set:= Set( val1 );
        if Length( set ) = 1 then
          new1:= [ pi1[i] ];
          new2:= [ pi2[i] ];
        else
          val2:= List( pi2[i], fun2 );
          if set <> Set( val2 ) then
            Info( InfoCharacterTable, 2,
                  "<G> and <tbl> do not fit together" );
            result:= fail;
            return true;
          fi;
          new1:= List( set, x -> [] );
          new2:= List( set, x -> [] );
          for j in [ 1 .. Length( val1 ) ] do
            Add( new1[ Position( set, val1[j] ) ], pi1[i][j] );
            Add( new2[ Position( set, val2[j] ) ], pi2[i][j] );
          od;
        fi;
        for j in [ 1 .. Length( set ) ] do
          if Length( new1[j] ) <> Length( new2[j] ) then
            Info( InfoCharacterTable, 2,
                  "<G> and <tbl> do not fit together" );
            result:= fail;
            return true;
          fi;
          if Length( new1[j] ) = 1 then
            bijection[ new1[j][1] ]:= new2[j][1];
          else
            Add( newpi1, new1[j] );
            Add( newpi2, new2[j] );
          fi;
        od;
        Append( pi1, newpi1 );
        Append( pi2, newpi2 );
        Unbind( pi1[i] );
        Unbind( pi2[i] );
      od;

      pi1:= Compacted( pi1 );
      pi2:= Compacted( pi2 );

      if IsEmpty( pi1 ) then
        Info( InfoCharacterTable, 2, "unique identification" );
        if G = false then
          result:= [];
        else
          result:= bijection;
        fi;
        return true;
      else
        return false;
      fi;
    end;

    # Use element orders.
    Info( InfoCharacterTable, 2,
          "using element orders to identify classes" );
    tbl_orders:= OrdersClassRepresentatives( tbl );
    if G <> false then
      reps:= List( ccl, Representative );
    fi;
    fun1:= ( i -> tbl_orders[i] );
    fun2:= ( i -> Order( reps[i] ) );
    if refine( fun1, fun2, [ 1 .. Length( pi1 ) ] ) then
      return result;
    fi;

    # Use class lengths.
    Info( InfoCharacterTable, 2,
          "using class lengths to identify classes" );
    tbl_classes:= SizesConjugacyClasses( tbl );
    fun1:= ( i -> tbl_classes[i] );
    fun2:= ( i -> Size( ccl[i] ) );
    if refine( fun1, fun2, [ 1 .. Length( pi1 ) ] ) then
      return result;
    fi;

    # Distinguish classes in the derived subgroup from others.
    derpos:= ClassPositionsOfDerivedSubgroup( tbl );
    if Length( derpos ) <> nccl then

      Info( InfoCharacterTable, 2,
            "using derived subgroup to identify classes" );
      fun1:= ( i -> i in derpos );
      fun2:= ( i -> reps[i] in DerivedSubgroup( G ) );
      if refine( fun1, fun2, [ 1 .. Length( pi1 ) ] ) then
        return result;
      fi;

    fi;

    # Use the natural character if it is prescribed.
    if IsBound( natchar ) then

      Info( InfoCharacterTable, 2,
            "using natural character to identify classes" );
      degree:= natchar[1];
      fun1:= ( i -> natchar[i] );
      if   IsPermGroup( G ) then
        fun2:= ( i -> degree - NrMovedPoints( reps[i] ) );
      elif IsMatrixGroup( G ) then
        fun2:= ( i -> TraceMat( reps[i] ) );
      elif G <> false then
        Info( InfoCharacterTable, 2,
              "<G> is no perm. or matrix group, ignore natural character" );
        fun1:= ReturnTrue;
        fun2:= ReturnTrue;
      fi;
      if refine( fun1, fun2, [ 1 .. Length( pi1 ) ] ) then
        return result;
      fi;

    fi;

    # Use power maps.
    primes:= Set( Factors( Size( tbl ) ) );

    # store power maps of the group, in order to identify the class
    # of the power only once.
    powerclasses:= [];
    powerclass:= function( i, p, choice )
      if not IsBound( powerclasses[p] ) then
        powerclasses[p]:= [];
      fi;
      if not IsBound( powerclasses[p][i] ) then
        powerclasses[p][i]:= First( choice, j -> reps[i]^p in ccl[j] );
      fi;
      return powerclasses[p][i];
    end;

    usepowers:= function( p )

      local pmap, i, img1, pos, j, img2, choice, no, copypi1, k, fun1, fun2;

      Info( InfoCharacterTable, 2, " (p = ", p, ")" );

      pmap:= PowerMap( tbl, p );

      # First consider classes whose image under the bijection is known
      # but for whose `p'-th power the image is not yet known.
      for i in [ 1 .. Length( bijection ) ] do
        img1:= pmap[i];
        if IsBound( bijection[i] ) and not IsBound( bijection[ img1 ] ) then
          pos:= 0;
          for j in [ 1 .. Length( pi1 ) ] do
            if img1 in pi1[j] then
              pos:= j;
              break;
            fi;
          od;
          if G = false then
            img2:= img1;
          else
            img2:= powerclass( bijection[i], p, pi2[ pos ] );
            if img2 = fail then
              result:= fail;
              return true;
            fi;
          fi;
          bijection[ img1 ]:= img2;
          RemoveSet( pi1[ pos ], img1 );
          RemoveSet( pi2[ pos ], img2 );
          if Length( pi1[ pos ] ) = 1 then
            bijection[ pi1[ pos ][1] ]:= pi2[ pos ][1];
            Unbind( pi1[ pos ] );
            Unbind( pi2[ pos ] );
            if IsEmpty( pi1 ) then
              Info( InfoCharacterTable, 2, "unique identification" );
              if G = false then
                result:= [];
              else
                result:= bijection;
              fi;
              return true;
            fi;
            pi1:= Compacted( pi1 );
            pi2:= Compacted( pi2 );
          fi;
        fi;
      od;

      # Next consider each set of nonidentified classes
      # together with its `p'-th powers.
      copypi1:= ShallowCopy( pi1 );
      for i in [ 1 .. Length( copypi1 ) ] do

        choice:= [];
        no:= 0;
        for j in Set( pmap{ copypi1[i] } ) do
          if IsBound( bijection[j] ) then
            AddSet( choice, bijection[j] );
            no:= no + 1;
          else
            pos:= 0;
            for k in [ 1 .. Length( pi1 ) ] do
              if j in pi1[k] then
                pos:= k;
                break;
              fi;
            od;
            if not IsSubset( choice, pi2[ pos ] ) then
              no:= no + 1;
              UniteSet( choice, pi2[ pos ] );
            fi;
          fi;
        od;

        if 1 < no then

          fun1:= function( j )
            local img;
            img:= pmap[j];
            if IsBound( bijection[ img ] ) then
              return AdditiveInverse( bijection[ img ] );
            else
              return First( [ 1 .. Length( pi1 ) ], k -> img in pi1[k] );
            fi;
          end;

          fun2:= function( j )
            local img;
            img:= powerclass( j, p, choice );
            if img in bijection then
              return AdditiveInverse( img );
            else
              return First( [ 1 .. Length( pi2 ) ], k -> img in pi2[k] );
            fi;
          end;

          if refine( fun1, fun2, [ Position( pi1, copypi1[i] ) ] ) then
            return true;
          fi;

        fi;

      od;

      return false;
    end;

    # Use symmetries of the table.
    # (There may be asymmetries because of the prescribed character,
    # so we start with the partition stabilizer of `pi1'.)
    symm:= AutomorphismsOfTable( tbl );
    if IsBound( natchar ) then
      for i in pi1 do
        symm:= Stabilizer( symm, i, OnSets );
      od;
    fi;

    # Sort `pi1' and `pi2' according to decreasing element order.
    # (catch automorphisms for long orbits, hope for powers
    # if ambiguities remain)
    ords:= List( pi1, x -> - tbl_orders[ x[1] ] );
    ords:= Sortex( ords );
    pi1:= Permuted( pi1, ords );
    pi2:= Permuted( pi2, ords );

    # If all points in a part of `pi1' are in the same orbit
    # under table automorphism,
    # we may separate one point from the others.
    usesymm:= function()
      local i, tuple;
      for i in [ 1 .. Length( pi1 ) ] do
        if not IsTrivial( symm ) then
          tuple:= pi1[i];
          if     1 < Length( tuple )
             and tuple = Set( Orbit( symm, tuple[1], OnPoints ) ) then

            Info( InfoCharacterTable, 2,
                  "found useful table automorphism" );
            symm:= Stabilizer( symm, tuple[1] );
            bijection[ tuple[1] ]:= pi2[i][1];
            RemoveSet( pi1[i], pi1[i][1] );
            RemoveSet( pi2[i], pi2[i][1] );
            if Length( pi1[i] ) = 1 then
              bijection[ pi1[i][1] ]:= pi2[i][1];
              Unbind( pi1[i] );
              Unbind( pi2[i] );
            fi;

          fi;
        fi;
      od;
      if IsEmpty( pi1 ) then
        Info( InfoCharacterTable, 2, "unique identification" );
        if G = false then
          result:= [];
        else
          result:= bijection;
        fi;
        return true;
      fi;
      pi1:= Compacted( pi1 );
      pi2:= Compacted( pi2 );

      return false;
    end;

    # Use Galois conjugacy of classes.
    usegalois:= function()

      local galoisfams, copypi1, i, list, fam, id, im, res, pos, fun1, fun2;

      galoisfams:= GaloisMat( TransposedMat( Irr( tbl ) ) ).galoisfams;
      galoisfams:= List( Filtered( galoisfams, IsList ), x -> x[1] );

      copypi1:= ShallowCopy( pi1 );

      for i in [ 1 .. Length( copypi1 ) ] do

        list:= copypi1[i];
        fam:= First( galoisfams, x -> IsSubset( x, list ) );
        if fam <> fail then
          id:= First( fam, j -> IsBound( bijection[j] ) );
          if id <> fail then

            Info( InfoCharacterTable, 2,
                  "found useful Galois automorphism" );
            im:= bijection[ id ];
            res:= PrimeResidues( tbl_orders[ id ] );
            RemoveSet( res, 1 );
            pos:= Position( pi1, copypi1[i] );
            fun1:= ( j -> First( res, k -> PowerMap( tbl, k, id ) = j ) );
            fun2:= ( j -> First( res,
                             k -> powerclass( im, k, pi2[ pos ] ) = j ) );
            if refine( fun1, fun2, [ pos ] ) then
              return true;
            fi;

          fi;
        fi;

      od;

      return false;
    end;

    repeat

      sums:= List( pi1, Length );

      Info( InfoCharacterTable, 2,
            "trying power maps to identify classes" );
      for p in primes do
        if usepowers( p ) then
          return result;
        fi;
      od;

      if usesymm() then
        return result;
      fi;

      if usegalois() then
        return result;
      fi;

    until sums = List( pi1, Length );

    # no identification yet ...
    Info( InfoCharacterTable, 2,
          "not identified classes: ", pi1 );
    if G = false then
      return pi1;
    else
      return fail;
    fi;
end );


#############################################################################
##
##  4. Operators for Character Tables
##


#############################################################################
##
#M  \mod( <ordtbl>, <p> ) . . . . . . . . . . . . . . . . . <p>-modular table
##
InstallMethod( \mod,
    "for ord. char. table, and pos. integer (call `BrauerTable')",
    [ IsOrdinaryTable, IsPosInt ],
    BrauerTable );


#############################################################################
##
#M  \*( <tbl1>, <tbl2> )  . . . . . . . . . . . . .  direct product of tables
##
InstallOtherMethod( \*,
    "for two nearly character tables (call `CharacterTableDirectProduct')",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ],
    CharacterTableDirectProduct );


#############################################################################
##
#M  \/( <tbl>, <list> )  . . . . . . . . .  character table of a factor group
##
InstallOtherMethod( \/,
    "for char. table, and positions list (call `CharacterTableFactorGroup')",
    [ IsNearlyCharacterTable, IsList and IsCyclotomicCollection ],
    CharacterTableFactorGroup );


#############################################################################
##
##  5. Attributes and Properties for Groups as well as for Character Tables
##


#############################################################################
##
#M  CharacterDegrees( <G> ) . . . . . . . . . . . . . . . . . . . for a group
#M  CharacterDegrees( <G>, <zero> ) . . . . . . . . . .  for a group and zero
##
##  The attribute delegates to the two-argument version.
##  The two-argument version delegates to `Irr'.
##
InstallMethod( CharacterDegrees,
    "for a group (call the two-argument version)",
    [ IsGroup ],
    G -> CharacterDegrees( G, 0 ) );

InstallMethod( CharacterDegrees,
    "for a group, and zero",
    [ IsGroup, IsZeroCyc ],
    function( G, zero )

    # Force a check whether the group is solvable.
    if not HasIsSolvableGroup( G ) and IsSolvableGroup( G ) then

      # There is a better method which is now applicable.
      return CharacterDegrees( G, 0 );
    fi;

    # For nonsolvable groups, there is just the brute force method.
    return Collected( List( Irr( G ), DegreeOfCharacter ) );
    end );

InstallMethod( CharacterDegrees,
    "for a group, and positive integer",
    [ IsGroup, IsPosInt ],
    function( G, p )
    if Size( G ) mod p = 0 then
      return CharacterDegrees( CharacterTable( G, p ) );
    else
      return CharacterDegrees( G, 0 );
    fi;
    end );


#############################################################################
##
#M  CharacterDegrees( <tbl> ) . . . . . . . . . . . . . for a character table
##
##  If the table knows its group and the irreducibles are not yet stored then
##  we try to avoid the computation of the irreducibles and therefore
##  delegate to the group.
##  Otherwise we use the irreducibles.
##
InstallMethod( CharacterDegrees,
    "for a character table",
    [ IsCharacterTable ],
    function( tbl )
    if HasUnderlyingGroup( tbl ) and not HasIrr( tbl ) then
      return CharacterDegrees( UnderlyingGroup( tbl ) );
    else
      return Collected( List( Irr( tbl ), DegreeOfCharacter ) );
    fi;
    end );


#############################################################################
##
#M  CharacterDegrees( <G> ) . . . . . for group handled via nice monomorphism
##
AttributeMethodByNiceMonomorphism( CharacterDegrees, [ IsGroup ] );


#############################################################################
##
#F  CommutatorLength( <tbl> ) . . . . . . . . . . . . . for a character table
##
InstallMethod( CommutatorLength,
    "for a character table",
    [ IsCharacterTable ],
    function( tbl )

    local nccl,
          irr,
          derived,
          commut,
          other,
          n,
          G_n,
          new,
          i;

    # Compute the classes that form the derived subgroup of $G$.
    irr:= Irr( tbl );
    nccl:= Length( irr );
    derived:= Intersection( List( LinearCharacters( tbl ),
                                  ClassPositionsOfKernel ) );
    commut:= Filtered( [ 1 .. nccl ],
                 i -> Sum( irr, chi -> chi[i] / chi[1] ) <> 0 );
    other:= Difference( derived, commut );

    # Loop.
    n:= 1;
    G_n:= derived;
    while not IsEmpty( other ) do
      new:= [];
      for i in other do
        if ForAny( derived, j -> ForAny( G_n,
            k -> ClassMultiplicationCoefficient( tbl, j, k, i ) <> 0 ) ) then
          Add( new, i );
        fi;
      od;
      n:= n+1;
      UniteSet( G_n, new );
      SubtractSet( other, new );
    od;

    return n;
    end );


#############################################################################
##
#M  CommutatorLength( <G> )  . . . . . . . . . . . . . . . . . .  for a group
##
InstallMethod( CommutatorLength,
    "for a group",
    [ IsGroup ],
    G -> CommutatorLength( CharacterTable( G ) ) );


#############################################################################
##
#M  Irr( <G> )  . . . . . . . . . . . . . . . . . . . . . . . . . for a group
##
##  Delegate to the two-argument version.
##
InstallMethod( Irr,
    "for a group (call the two-argument version)",
    [ IsGroup ],
    G -> Irr( G, 0 ) );


#############################################################################
##
#M  Irr( <G>, <0> )   . . . . . . . . . . . . . . . . .  for a group and zero
##
##  We compute the character table of <G> if it is not yet stored
##  (which must be done anyhow), and then check whether the table already
##  knows its irreducibles.
##  This method is successful if the method for computing the table (head)
##  automatically computes also the irreducibles.
##
InstallMethod( Irr,
    "partial method for a group, and zero",
    [ IsGroup, IsZeroCyc ], SUM_FLAGS,
    function( G, zero )
    local tbl;
    tbl:= OrdinaryCharacterTable( G );
    if HasIrr( tbl ) then
      return Irr( tbl );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  Irr( <G>, <p> )   . . . . . . . . . . . . . . . . for a group and a prime
##
InstallMethod( Irr,
    "for a group, and a prime",
    [ IsGroup, IsPosInt ],
    function( G, p )
    return Irr( BrauerTable( G, p ) );
    end );


#############################################################################
##
#M  Irr( <modtbl> ) . . . . . . . . . . . . . for a <p>-solvable Brauer table
##
##  Compute the modular irreducibles from the ordinary irreducibles
##  using the Fong-Swan Theorem.
##
InstallMethod( Irr,
    "for a <p>-solvable Brauer table (use the Fong-Swan Theorem)",
    [ IsBrauerTable ],
    function( modtbl )
    local p,       # characteristic
          ordtbl,  # ordinary character table
          rest,    # restriction of characters to `p'-regular classes
          irr,     # list of Brauer characters
          cd,      # list of ordinary character degrees
          chars,   # nonlinear characters distributed by degree
          i,       # loop variable
          deg,     # one character degree
          pos,     # position of a degree
          list,    # characters of one degree
          dec;     # decomposition of ordinary characters
                   # into known Brauer characters

    p:= UnderlyingCharacteristic( modtbl );
    ordtbl:= OrdinaryCharacterTable( modtbl );

    if not IsPSolvableCharacterTable( ordtbl, p ) then
      TryNextMethod();
    fi;

    rest:= RestrictedClassFunctions( Irr( ordtbl ), modtbl );

    if Size( ordtbl ) mod p <> 0 then

      # Catch a trivial case.
      irr:= rest;

    else

      # Start with the linear characters.
      # (Choose the same succession as in the ordinary table,
      # in particular leave the trivial character at first position
      # if this is the case for `ordtbl'.)
      irr:= [];
      cd:= [];
      chars:= [];
      for i in rest do
        deg:= DegreeOfCharacter( i );
        if deg = 1 then
          if not i in irr then
            Add( irr, i );
          fi;
        else
          pos:= Position( cd, deg );
          if pos = fail then
            Add( cd, deg );
            Add( chars, [ i ] );
          elif not i in chars[ pos ] then
            Add( chars[ pos ], i );
          fi;
        fi;
      od;
      SortParallel( cd, chars );

      for list in chars do
        dec:= Decomposition( irr, list, "nonnegative" );
        for i in [ 1 .. Length( dec ) ] do
          if dec[i] = fail then
            Add( irr, list[i] );
          fi;
        od;
      od;

    fi;

    # Return the irreducible Brauer characters.
    return irr;
    end );


#############################################################################
##
#M  Irr( <ordtbl> ) . . . . . . . .  for an ord. char. table with known group
##
##  We must delegate this to the underlying group.
##  Note that the ordering of classes for the characters in the group
##  and the characters in the table may be different!
##  Note that <ordtbl> may have been obtained by sorting the classes of the
##  table stored as the `OrdinaryCharacterTable' value of $G$;
##  In this case, the attribute `ClassPermutation' of <ordtbl> is set.
##  (The `OrdinaryCharacterTable' value of $G$ itself does *not* have this.)
##
InstallMethod( Irr,
    "for an ord. char. table with known group (delegate to the group)",
    [ IsOrdinaryTable and HasUnderlyingGroup ],
    function( ordtbl )
    local irr, pi;
    irr:= Irr( UnderlyingGroup( ordtbl ) );
    if HasClassPermutation( ordtbl ) then
      pi:= ClassPermutation( ordtbl );
      irr:= List( irr, chi -> Character( ordtbl,
                Permuted( ValuesOfClassFunction( chi ), pi ) ) );
    fi;
    return irr;
    end );


#############################################################################
##
#M  IBr( <modtbl> ) . . . . . . . . . . . . . .  for a Brauer character table
#M  IBr( <G>, <p> ) . . . . . . . . . . . .  for a group, and a prime integer
##
InstallMethod( IBr,
    "for a Brauer table",
    [ IsBrauerTable ],
    Irr );

InstallMethod( IBr,
    "for a group, and a prime integer",
    [ IsGroup, IsPosInt ],
    function( G, p ) return Irr( G, p ); end );


#############################################################################
##
#M  LinearCharacters( <G> )
##
##  Delegate to the two-argument version, as for `Irr'.
##
InstallMethod( LinearCharacters,
    "for a group (call the two-argument version)",
    [ IsGroup ],
    G -> LinearCharacters( G, 0 ) );


#############################################################################
##
#M  LinearCharacters( <G>, 0 )
##
InstallMethod( LinearCharacters,
    "for a group, and zero",
    [ IsGroup, IsZeroCyc ],
    function( G, zero )
    local tbl, pi, img, fus;

    if HasOrdinaryCharacterTable( G ) then
      tbl:= OrdinaryCharacterTable( G );
      if HasIrr( tbl ) then
        return LinearCharacters( tbl );
      fi;
    fi;
    if IsAbelian( G ) then
      return Irr( G, 0 );
    fi;

    pi:= NaturalHomomorphismByNormalSubgroupNC( G, DerivedSubgroup( G ) );
    img:= ImagesSource( pi );
    SetIsAbelian( img, true );
#   return RestrictedClassFunctions( CharacterTable( img ),
#              Irr( img, 0 ), pi );
# We cannot use this because the source of `pi' may be not identical with `G'!
    fus:= FusionConjugacyClasses( pi );
    tbl:= CharacterTable( G );
    return List( Irr( img, 0 ), x -> Character( tbl, x{ fus } ) );
#T related to `DxLinearCharacters'?
    end );


#############################################################################
##
#M  LinearCharacters( <G>, <p> )
##
InstallMethod( LinearCharacters,
    "for a group, and positive integer",
    [ IsGroup, IsPosInt ],
    function( G, p )
    if not IsPrimeInt( p ) then
      Error( "<p> must be a prime" );
    fi;
    return Filtered( LinearCharacters( G, 0 ),
                     chi -> Conductor( chi ) mod p <> 0 );
    end );


#############################################################################
##
#M  LinearCharacters( <ordtbl> )  . . . . . . . . . . . for an ordinary table
##
InstallMethod( LinearCharacters,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( ordtbl )
    local lin, pi;
    if HasIrr( ordtbl ) then
      return Filtered( Irr( ordtbl ), chi -> chi[1] = 1 );
    elif HasUnderlyingGroup( ordtbl ) then
      lin:= LinearCharacters( UnderlyingGroup( ordtbl ) );
      if HasClassPermutation( ordtbl ) then
        pi:= ClassPermutation( ordtbl );
        lin:= List( lin, lambda -> Character( ordtbl,
                  Permuted( ValuesOfClassFunction( lambda ), pi ) ) );
      fi;
      return lin;
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  LinearCharacters( <modtbl> )  . . . . . . . . . . . .  for a Brauer table
##
InstallMethod( LinearCharacters,
    "for a Brauer table",
    [ IsBrauerTable ],
    modtbl -> DuplicateFreeList( RestrictedClassFunctions(
                  LinearCharacters( OrdinaryCharacterTable( modtbl ) ),
                  modtbl ) ) );


#############################################################################
##
#M  OrdinaryCharacterTable( <G> ) . . . . . . . . . . . . . . . . for a group
#M  OrdinaryCharacterTable( <modtbl> )  . . . .  for a Brauer character table
##
##  In the first case, we setup the table object.
##  In the second case, we delegate to `OrdinaryCharacterTable' for the
##  group.
##
InstallMethod( OrdinaryCharacterTable,
    "for a group",
    [ IsGroup ],
    function( G )
    local tbl, ccl, idpos, bijection;

    # Make the object.
    tbl:= Objectify( NewType( NearlyCharacterTablesFamily,
                              IsOrdinaryTable and IsAttributeStoringRep ),
                     rec() );

    # Store the attribute values of the interface.
    SetUnderlyingGroup( tbl, G );
    SetUnderlyingCharacteristic( tbl, 0 );
    ccl:= ConjugacyClasses( G );
    idpos:= First( [ 1 .. Length( ccl ) ],
                   i -> Order( Representative( ccl[i] ) ) = 1 );
    if idpos = 1 then
      bijection:= [ 1 .. Length( ccl ) ];
    else
      ccl:= Concatenation( [ ccl[ idpos ] ], ccl{ [ 1 .. idpos-1 ] },
                           ccl{ [ idpos+1 .. Length( ccl ) ] } );
      bijection:= Concatenation( [ idpos ], [ 1 .. idpos-1 ],
                                 [ idpos+1 .. Length( ccl ) ] );
    fi;
    SetConjugacyClasses( tbl, ccl );
    SetIdentificationOfConjugacyClasses( tbl, bijection );

    # Return the table.
    return tbl;
    end );


##############################################################################
##
#M  AbelianInvariants( <tbl> )  . . . . . . . for an ordinary character table
##
##  For all Sylow $p$ subgroups of the factor of <tbl> by the normal subgroup
##  given by `ClassPositionsOfDerivedSubgroup( <tbl> )',
##  compute the abelian invariants by repeated factoring by a cyclic group
##  of maximal order.
##
InstallMethod( AbelianInvariants,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    function( tbl )

    local kernel,  # cyclic group to be factored out
          inv,     # list of invariants, result
          primes,  # list of prime divisors of actual size
          max,     # list of actual maximal orders, for `primes'
          pos,     # list of positions of maximal orders
          orders,  # list of representative orders
          i,       # loop over classes
          j;       # loop over primes

    # Do all computations modulo the derived subgroup.
    kernel:= ClassPositionsOfDerivedSubgroup( tbl );
    if 1 < Length( kernel ) then
      tbl:= tbl / kernel;
    fi;
#T cheaper to use only orders and power maps,
#T and to avoid computing several tables!
#T (especially avoid to compute the irreducibles of the original
#T table if they are not known!)

    inv:= [];

    while 1 < Size( tbl ) do

      # For all prime divisors $p$ of the size,
      # compute the element of maximal $p$ power order.
      primes:= Set( FactorsInt( Size( tbl ) ) );
      max:= List( primes, x -> 1 );
      pos:= [];
      orders:= OrdersClassRepresentatives( tbl );
      for i in [ 2 .. Length( orders ) ] do
        if IsPrimePowerInt( orders[i] ) then
          j:= 1;
          while orders[i] mod primes[j] <> 0 do
            j:= j+1;
          od;
          if orders[i] > max[j] then
            max[j]:= orders[i];
            pos[j]:= i;
          fi;
        fi;
      od;

      # Update the list of invariants.
      Append( inv, max );

      # Factor out the cyclic subgroup.
      tbl:= tbl / ClassPositionsOfNormalClosure( tbl, pos );

    od;

    return AbelianInvariantsOfList( inv );
#T if we call this function anyhow, we can also take factors by the largest
#T cyclic subgroup of the commutator factor group!
    end );


#############################################################################
##
#M  Exponent( <tbl> ) . . . . . . . . . . . . for an ordinary character table
##
InstallMethod( Exponent,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> Lcm( OrdersClassRepresentatives( tbl ) ) );


#############################################################################
##
#M  IsAbelian( <tbl> )  . . . . . . . . . . . for an ordinary character table
##
InstallMethod( IsAbelian,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> Size( tbl ) = NrConjugacyClasses( tbl ) );


#############################################################################
##
#M  IsCyclic( <tbl> ) . . . . . . . . . . . . for an ordinary character table
##
InstallMethod( IsCyclic,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> Size( tbl ) in OrdersClassRepresentatives( tbl ) );


#############################################################################
##
#M  IsElementaryAbelian( <tbl> )  . . . . . . for an ordinary character table
##
InstallMethod( IsElementaryAbelian,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> Size( tbl ) = 1 or
           ( IsAbelian( tbl ) and IsPrimeInt( Exponent( tbl ) ) ) );


#############################################################################
##
#M  IsFinite( <tbl> ) . . . . . . . . . . . . for an ordinary character table
##
InstallMethod( IsFinite,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> IsInt( Size( tbl ) ) );


#############################################################################
##
#M  IsMonomialCharacterTable( <tbl> ) . . . . for an ordinary character table
##
InstallMethod( IsMonomialCharacterTable,
    "for an ordinary character table with underlying group",
    [ IsOrdinaryTable and HasUnderlyingGroup ],
    tbl -> IsMonomialGroup( UnderlyingGroup( tbl ) ) );


#############################################################################
##
#F  CharacterTable_IsNilpotentFactor( <tbl>, <N> )
##
InstallGlobalFunction( CharacterTable_IsNilpotentFactor, function( tbl, N )
    local series;
    series:= CharacterTable_UpperCentralSeriesFactor( tbl, N );
    return Length( series[ Length( series ) ] ) = NrConjugacyClasses( tbl );
    end );


#############################################################################
##
#F  CharacterTable_IsNilpotentNormalSubgroup( <tbl>, <N> )
##
InstallGlobalFunction( CharacterTable_IsNilpotentNormalSubgroup,
    function( tbl, N )

    local classlengths,  # class lengths
          orders,        # orders of class representatives
          ppow,          # list of classes of prime power order
          part,          # one pair `[ prime, exponent ]'
          classes;       # classes of p power order for a prime p

    # Take the classes of prime power order.
    classlengths:= SizesConjugacyClasses( tbl );
    orders:= OrdersClassRepresentatives( tbl );
    ppow:= Filtered( N, i -> IsPrimePowerInt( orders[i] ) );

    for part in Collected( FactorsInt( Sum( classlengths{ N }, 0 ) ) ) do

      # Check whether the Sylow p subgroup of `N' is normal in `N',
      # i.e., whether the number of elements of p-power is equal to
      # the size of a Sylow p subgroup.
      classes:= Filtered( ppow, i -> orders[i] mod part[1] = 0 );
      if part[1] ^ part[2] <> Sum( classlengths{ classes }, 0 ) + 1 then
        return false;
      fi;

    od;
    return true;
    end );


#############################################################################
##
#M  IsNilpotentCharacterTable( <tbl> )
##
InstallMethod( IsNilpotentCharacterTable,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    function( tbl )
    local series;
    series:= ClassPositionsOfUpperCentralSeries( tbl );
    return Length( series[ Length( series ) ] ) = NrConjugacyClasses( tbl );
    end );


#############################################################################
##
#M  IsPerfectCharacterTable( <tbl> )  . . . . for an ordinary character table
##
InstallMethod( IsPerfectCharacterTable,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> Number( Irr( tbl ), chi -> chi[1] = 1 ) = 1 );


#############################################################################
##
#M  IsSimpleCharacterTable( <tbl> ) . . . . . for an ordinary character table
##
InstallMethod( IsSimpleCharacterTable,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> Length( ClassPositionsOfNormalSubgroups( tbl ) ) = 2 );


#############################################################################
##
#M  IsAlmostSimpleCharacterTable( <tbl> ) . . for an ordinary character table
##
##  <ManSection>
##  <Meth Name="IsAlmostSimpleCharacterTable" Arg="tbl"/>
##
##  <Description>
##  Given the ordinary character table of a group <M>G</M>,
##  we can check whether <M>G</M> has a unique minimal normal subgroup.
##  <P/>
##  The simplicity and nonabelianness of this normal subgroup can be verified
##  by showing that its order occurs as the order of
##  a nonabelian simple group.
##  Note that any minimal normal subgroup is the direct product of
##  isomorphic simple groups,
##  and by a result in <Cite Key="KimmerleLyonsSandlingTeague90"/>,
##  no proper power of the order of a simple group is the order of a simple
##  group.
##  <P/>
##  A finite group is almost simple if and only if it has a unique minimal
##  normal subgroup <M>N</M> with the property that <M>N</M> is nonabelian
##  and simple.
##  (Note that in the this case, the centralizer of <M>N</M> is trivial,
##  because otherwise it would contain a minimal normal subgroup different
##  from <M>N</M>; so <M>G / N</M> acts as a group of outer automorphisms on
##  <M>N</M>.)
##  </Description>
##  </ManSection>
##
##  Note that we could detect also whether a table belongs to an extension of
##  a simple group of prime order by outer automorphisms.
##  (These groups are not regarded as almost simple.)
##  Namely, such a group has a unique minimal normal subgroup <M>N</M> of
##  prime order <M>p</M>, say,
##  and all nontrivial conjugacy classes of <M>G</M> inside <M>N</M>
##  have length <M>[G:N]</M>.
##
InstallMethod( IsAlmostSimpleCharacterTable,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    function( ordtbl )
    local nsg, orbs;

    nsg:= ClassPositionsOfMinimalNormalSubgroups( ordtbl );
    if Length( nsg ) <> 1 then
      return false;
    fi;
    orbs:= SizesConjugacyClasses( ordtbl ){ nsg[1] };
    nsg:= Sum( orbs );

    # An extension of a group of prime order by a subgroup of its
    # automorphism group is *not* regarded as an almost simple group.
    # (We could detect these groups from `orbs', i.e., the class lengths
    # in the minimal normal subgroup.)
    return     ( not IsPrimeInt( nsg ) )
           and IsomorphismTypeInfoFiniteSimpleGroup( nsg ) <> fail;
    end );


#############################################################################
##
#M  IsSolvableCharacterTable( <tbl> ) . . . . for an ordinary character table
##
InstallMethod( IsSolvableCharacterTable,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> IsPSolvableCharacterTable( tbl, 0 ) );


#############################################################################
##
#M  IsSporadicSimpleCharacterTable( <tbl> ) . for an ordinary character table
##
##  Note that by the classification of finite simple groups, the sporadic
##  simple groups are determined by their orders.
##
InstallMethod( IsSporadicSimpleCharacterTable,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    function( tbl )
    local info;

    if IsSimpleCharacterTable( tbl ) then
      info:= IsomorphismTypeInfoFiniteSimpleGroup( Size( tbl ) );
      return     info <> fail
             and IsBound( info.series )
             and info.series = "Spor";
    fi;
    return false;
    end );


#############################################################################
##
#M  IsSupersolvableCharacterTable( <tbl> )  . for an ordinary character table
##
InstallMethod( IsSupersolvableCharacterTable,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> Size( ClassPositionsOfSupersolvableResiduum( tbl ) ) = 1 );


#############################################################################
##
#F  IsomorphismTypeInfoFiniteSimpleGroup( <tbl> )
##
##  The simplicity of the group with character table <A>tbl</A> can be
##  checked.
##  If there is only one simple group of the given order then we are done.
##  Otherwise there are exactly two possibilities,
##  and we distinguish them using the same arguments as in the function for
##  groups.
##  Namely, the group <M>A_8</M> contains an element (of order <M>5</M>)
##  whose centralizer order is <M>15</M>, whereas the group <M>L_3(4)</M>
##  does not have an element with this centralizer order,
##  and the groups in the two infinite series <M>O(2n+1,q)</M> and
##  <M>S(2n,q)</M>, where <M>q</M> is a power of the (odd) prime <M>p</M>,
##  can be distinguished by the fact that in the latter group, any
##  element of order <M>p</M> in the centre of the Sylow <M>p</M> subgroup
##  has centralizer order divisible by <M>q^{{2n-2}} - 1</M>, whereas no such
##  elements exist in the former group.
##  (Note that <M>n</M> and <M>p</M> can be computed from the order of
##  <M>O(2n+1,q)</M> or <M>S(2n,q)</M>).
##
InstallMethod( IsomorphismTypeInfoFiniteSimpleGroup,
    [ "IsOrdinaryTable" ],
    function( tbl )
    local size, type, n, q, p, sylord, pos;

    if not IsSimpleCharacterTable( tbl ) then
      return fail;
    fi;
    size:= Size( tbl );
    type:= IsomorphismTypeInfoFiniteSimpleGroup( size );
    if IsRecord( type ) and not IsBound( type.series ) then
      # There are two simple groups of the given order.
      if size <> 20160 then
        # Distinguish the two possibilities in the same way as the groups
        # are distinguished by `IsomorphismTypeInfoFiniteSimpleGroup'.
        n:= type.parameter[1];
        q:= type.parameter[2];
        p:= Factors( q )[1];
        sylord:= 1;
        while size mod p = 0 do
          sylord:= sylord * p;
          size:= size / p;
        od;
        pos:= First( [ 1 .. NrConjugacyClasses( tbl ) ],
                     i ->     OrdersClassRepresentatives( tbl )[i] = p
                          and SizesCentralizers( tbl )[i] mod sylord = 0 );
        if SizesCentralizers( tbl )[ pos ] mod (q^(2*n-2)-1) <> 0 then
          type:= rec( series:= "B",
                      parameter:= [ n, q ],
                      name:= Concatenation( "B(", String(n), ",", String(q),
                                            ") ", "= O(", String(2*n+1), ",",
                                            String(q), ")" ) );
        else
          type:= rec( series:= "C",
                      parameter:= [ n, q ],
                      name:= Concatenation( "C(", String(n), ",", String(q),
                                            ") ", "= S(", String(2*n), ",",
                                            String(q), ")" ) );
        fi;
      elif 15 in SizesCentralizers( tbl ) then
        type:= rec( series:= "A",
                    parameter:= 8,
                    name:= Concatenation( "A(8) ", "~ A(3,2) = L(4,2) ",
                                          "~ D(3,2) = O+(6,2)" ) );
      else
        type:= rec( series:= "L",
                    parameter:= [ 3, 4 ],
                    name:= "A(2,4) = L(3,4)" );
      fi;
    fi;
    return type;
    end );


#############################################################################
##
#M  NrConjugacyClasses( <ordtbl> )  . . . . . for an ordinary character table
#M  NrConjugacyClasses( <modtbl> )  . . . . . .  for a Brauer character table
#M  NrConjugacyClasses( <G> )
##
##  We delegate from <tbl> to the underlying group in the general case.
##  If we know the centralizer orders or class lengths, however, we use them.
##
##  If the argument is a group, we can use the known class lengths of the
##  known ordinary character table.
##
InstallMethod( NrConjugacyClasses,
    "for an ordinary character table with underlying group",
    [ IsOrdinaryTable and HasUnderlyingGroup ],
    ordtbl -> NrConjugacyClasses( UnderlyingGroup( ordtbl ) ) );

InstallMethod( NrConjugacyClasses,
    "for a Brauer character table",
    [ IsBrauerTable ],
    modtbl -> Length( GetFusionMap( modtbl,
                                    OrdinaryCharacterTable( modtbl ) ) ) );

InstallMethod( NrConjugacyClasses,
    "for a character table with known centralizer orders",
    [ IsNearlyCharacterTable and HasSizesCentralizers ],
    tbl -> Length( SizesCentralizers( tbl ) ) );

InstallMethod( NrConjugacyClasses,
    "for a character table with known class lengths",
    [ IsNearlyCharacterTable and HasSizesConjugacyClasses ],
    tbl -> Length( SizesConjugacyClasses( tbl ) ) );

InstallMethod( NrConjugacyClasses,
    "for a group with known ordinary character table",
    [ IsGroup and HasOrdinaryCharacterTable ],
    function( G )
    local tbl;
    tbl:= OrdinaryCharacterTable( G );
    if HasNrConjugacyClasses( tbl ) then
      return NrConjugacyClasses( tbl );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  Size( <tbl> ) . . . . . . . . . . . . . . . . . . . for a character table
#M  Size( <G> )
##
##  We delegate from <tbl> to the underlying group if this is stored.
##  If we know the centralizer orders or class lengths, we may use them.
##
##  If the argument is a group <G>, we can use the known size of the
##  known ordinary character table of <G>.
##
InstallMethod( Size,
    "for a character table",
    [ IsNearlyCharacterTable ],
    function( tbl )
    if HasSizesCentralizers( tbl ) then
      return SizesCentralizers( tbl )[1];
    elif HasUnderlyingGroup( tbl ) and HasSize( UnderlyingGroup( tbl ) ) then
      return Size( UnderlyingGroup( tbl ) );
    elif HasSizesConjugacyClasses( tbl ) then
      return Sum( SizesConjugacyClasses( tbl ) );
    elif HasIrr( tbl ) then
      return SizesCentralizers( tbl )[1];
    elif HasUnderlyingGroup( tbl ) then
      return Size( UnderlyingGroup( tbl ) );
    else
      TryNextMethod();
    fi;
    end );

InstallMethod( Size,
    "for a group with known ordinary character table",
    [ IsGroup and HasOrdinaryCharacterTable ],
    function( G )
    local tbl;
    tbl:= OrdinaryCharacterTable( G );
    if HasSize( tbl ) then
      return Size( tbl );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
##  6. Attributes and Properties only for Character Tables
##

#############################################################################
##
#M  OrdersClassRepresentatives( <ordtbl> )  . for an ordinary character table
#M  OrdersClassRepresentatives( <modtbl> )  . .  for a Brauer character table
##
##  We delegate from <tbl> to the underlying group in the general case.
##  If we know the class lengths, however, we use them.
##
InstallMethod( OrdersClassRepresentatives,
    "for a Brauer character table (delegate to the ordinary table)",
    [ IsBrauerTable ],
    function( modtbl )
    local ordtbl;
    ordtbl:= OrdinaryCharacterTable( modtbl );
    return OrdersClassRepresentatives( ordtbl ){ GetFusionMap( modtbl,
               ordtbl ) };
    end );

InstallMethod( OrdersClassRepresentatives,
    "for a character table with known group",
    [ IsNearlyCharacterTable and HasUnderlyingGroup ],
    tbl -> List( ConjugacyClasses( tbl ),
                 c -> Order( Representative( c ) ) ) );

InstallMethod( OrdersClassRepresentatives,
    "for a character table, use known power maps",
    [ IsNearlyCharacterTable ],
    function( tbl )

    local pow, ord, p;

    # Compute the orders as determined by the known power maps.
    pow:= ComputedPowerMaps( tbl );
    if IsEmpty( pow ) then
      return fail;
    fi;
    ord:= ElementOrdersPowerMap( pow );
    if ForAll( ord, IsInt ) then
      return ord;
    fi;

    # If these maps do not suffice, compute the missing power maps
    # and then try again.
    for p in Set( Factors( Size( tbl ) ) ) do
      PowerMap( tbl, p );
    od;
    ord:= ElementOrdersPowerMap( ComputedPowerMaps( tbl ) );
    Assert( 2, ForAll( ord, IsInt ),
            "computed power maps should determine element orders" );

    return ord;
    end );


#############################################################################
##
#M  SizesCentralizers( <ordtbl> ) . . . . . . for an ordinary character table
#M  SizesCentralizers( <modtbl> ) . . . . . . .  for a Brauer character table
##
##  If we know the class lengths or the irreducible characters,
##  we prefer them to using a perhaps known group.
##
InstallMethod( SizesCentralizers,
    "for a Brauer character table",
    [ IsBrauerTable ],
    function( modtbl )
    local ordtbl;
    ordtbl:= OrdinaryCharacterTable( modtbl );
    return SizesCentralizers( ordtbl ){ GetFusionMap( modtbl, ordtbl ) };
    end );

InstallMethod( SizesCentralizers,
    "for a character table",
    [ IsNearlyCharacterTable ],
    function( tbl )
    local classlengths, size;

    if HasSizesConjugacyClasses( tbl ) then
      classlengths:= SizesConjugacyClasses( tbl );
      size:= Sum( classlengths, 0 );
      return List( classlengths, s -> size / s );
    elif HasIrr( tbl ) then
      return Sum( List( Irr( tbl ),
                        x -> List( x, y -> y * ComplexConjugate( y ) ) ) );
    elif HasUnderlyingGroup( tbl ) then
      size:= Size( tbl );
      return List( ConjugacyClasses( tbl ), c -> size / Size( c ) );
    fi;

    # Give up.
    TryNextMethod();
    end );


#############################################################################
##
#M  SizesConjugacyClasses( <ordtbl> ) . . . . for an ordinary character table
#M  SizesConjugacyClasses( <modtbl> ) . . . . .  for a Brauer character table
##
##  If we know the centralizer orders or the irreducible characters,
##  we prefer them to using a perhaps known group.
##
InstallMethod( SizesConjugacyClasses,
    "for a Brauer character table",
    [ IsBrauerTable ],
    function( modtbl )
    local ordtbl;
    ordtbl:= OrdinaryCharacterTable( modtbl );
    return SizesConjugacyClasses( ordtbl ){ GetFusionMap( modtbl,
                                                          ordtbl ) };
    end );

InstallMethod( SizesConjugacyClasses,
    "for a character table ",
    [ IsNearlyCharacterTable ],
    function( tbl )
    local centsizes, size;

    if HasSizesCentralizers( tbl ) or HasIrr( tbl ) then
      centsizes:= SizesCentralizers( tbl );
      size:= centsizes[1];
      return List( centsizes, s -> size / s );
    elif HasUnderlyingGroup( tbl ) then
      return List( ConjugacyClasses( tbl ), Size );
    fi;

    # Give up.
    TryNextMethod();
    end );


#############################################################################
##
#M  AutomorphismsOfTable( <tbl> ) . . . . . . . . . . . for a character table
##
InstallMethod( AutomorphismsOfTable,
    "for a character table",
    [ IsCharacterTable ],
    tbl -> TableAutomorphisms( tbl, Irr( tbl ) ) );


#############################################################################
##
#M  AutomorphismsOfTable( <modtbl> )  . . . for Brauer table & good reduction
##
##  The automorphisms may be stored already on the ordinary table.
##
InstallMethod( AutomorphismsOfTable,
    "for a Brauer table in the case of good reduction",
    [ IsBrauerTable ],
    function( modtbl )
    if Size( modtbl ) mod UnderlyingCharacteristic( modtbl ) = 0 then
      TryNextMethod();
    else
      return AutomorphismsOfTable( OrdinaryCharacterTable( modtbl ) );
    fi;
    end );


#############################################################################
##
#M  ClassNames( <tbl> )  . . . . . . . . . . class names of a character table
#M  ClassNames( <tbl>, \"ATLAS\" ) . . . . . class names of a character table
##
InstallMethod( ClassNames,
    [ IsNearlyCharacterTable ],
    tbl -> ClassNames( tbl, "default" ) );

InstallMethod( ClassNames,
    [ IsNearlyCharacterTable, IsString ],
    function( tbl, string )

    local i,        # loop variable
          alpha,    # alphabet
          lalpha,   # length of the alphabet
          number,   # at position <i> the current number of
                    # classes of order <i>
          unknown,  # number of next unknown element order
          names,    # list of classnames, result
          name,     # local function returning right combination of letters
          orders;   # list of representative orders

    if LowercaseString( string ) = "atlas" then

      alpha:= [ "A","B","C","D","E","F","G","H","I","J","K","L","M",
                "N","O","P","Q","R","S","T","U","V","W","X","Y","Z" ];

      name:= function( n )
        local m;
        if n <= lalpha then
          return alpha[n];
        else
          m:= (n-1) mod lalpha + 1;
          n:= ( n - m ) / lalpha;
          return Concatenation( alpha[m], String( n ) );
        fi;
      end;

    else

      alpha:= [ "a","b","c","d","e","f","g","h","i","j","k","l","m",
                "n","o","p","q","r","s","t","u","v","w","x","y","z" ];

      name:= function(n)
        local name;
        name:= "";
        while 0 < n do
          name:= Concatenation( alpha[ (n-1) mod lalpha + 1 ], name );
          n:= QuoInt( n-1, lalpha );
        od;
        return name;
      end;

    fi;

    lalpha:= Length( alpha );
    names:= [];

    if IsCharacterTable( tbl ) or HasOrdersClassRepresentatives( tbl ) then

      # A character table can be asked for representative orders,
      # also if they are not yet stored.
      orders:= OrdersClassRepresentatives( tbl );
      number:= [];
      unknown:= 1;
      for i in [ 1 .. NrConjugacyClasses( tbl ) ] do
        if IsInt( orders[i] ) then
          if not IsBound( number[ orders[i] ] ) then
            number[ orders[i] ]:= 1;
          fi;
          names[i]:= Concatenation( String( orders[i] ),
                                    name( number[ orders[i] ] ) );
          number[ orders[i] ]:= number[ orders[i] ] + 1;
        else
          names[i]:= Concatenation( "?", name( unknown ) );
          unknown:= unknown + 1;
        fi;
      od;

    else

      names[1]:= Concatenation( "1", alpha[1] );
      for i in [ 2 .. NrConjugacyClasses( tbl ) ] do
        names[i]:= Concatenation( "?", name( i-1 ) );
      od;

    fi;

    # Return the list of classnames.
    return names;
    end );


#############################################################################
##
#M  CharacterNames( <tbl> )  . . . . . . character names of a character table
##
InstallMethod( CharacterNames,
    [ IsNearlyCharacterTable ],
    tbl -> List( [ 1 .. NrConjugacyClasses( tbl ) ],
                 i -> Concatenation( "X.", String( i ) ) ) );


#############################################################################
##
#M  \.( <tbl>, <name> ) . . . . . . . . . position of a class with given name
##
##  If <name> is a class name of the character table <tbl> as computed by
##  `ClassNames', `<tbl>.<name>' is the position of the class with this name.
##
InstallMethod( \.,
    "for class names of a nearly character table",
    [ IsNearlyCharacterTable, IsInt ],
    function( tbl, name )
    local pos;
    name:= NameRNam( name );
    pos:= Position( ClassNames( tbl ), name );
    if pos = fail then
      TryNextMethod();
    else
      return pos;
    fi;
    end );

#############################################################################
##
#F  ColumnCharacterTable( <tbl>,<nr> )
##
InstallGlobalFunction(ColumnCharacterTable,function(T,n)
  return Irr(T){[1..Length(Irr(T))]}[n];
end);


#############################################################################
##
#M  ClassPositionsOfNormalSubgroups( <tbl> )
##
InstallMethod( ClassPositionsOfNormalSubgroups,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    function( tbl )
    local kernels,  # list of kernels of irreducible characters
          normal,   # list of normal subgroups, result
          ker1,     # loop variable
          ker2,     # loop variable
          inter;    # intersection of two kernels

    # Get the kernels of irreducible characters.
    kernels:= Set( List( Irr( tbl ), ClassPositionsOfKernel ) );

    # Form all possible intersections of the kernels.
    normal:= ShallowCopy( kernels );
    for ker1 in normal do
      for ker2 in kernels do
        inter:= Intersection( ker1, ker2 );
        if not inter in normal then
          Add( normal, inter );
        fi;
      od;
    od;

    # Sort the list of normal subgroups (first lexicographically,
    # then --stable sort-- according to length and thus inclusion).
    normal:= SSortedList( normal );
    Sort( normal, function( x, y ) return Length(x) < Length(y); end );

    # Represent the lists as ranges if possible.
    # (It is not possible to do this earlier since the representation
    # as a range may get lost in the `Intersection' call.)
    for ker1 in normal do
      ConvertToRangeRep( ker1 );
    od;

    # Return the list of normal subgroups.
    return normal;
    end );


#############################################################################
##
#M  ClassPositionsOfMaximalNormalSubgroups( <tbl> )
##
##  *Note* that the maximal normal subgroups of a group <G> can be computed
##  easily if the character table of <G> is known.  So if you need the table
##  anyhow, you should compute it before computing the maximal normal
##  subgroups of the group.
##
InstallMethod( ClassPositionsOfMaximalNormalSubgroups,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    function( tbl )
    local normal,    # list of all kernels
          maximal,   # list of maximal kernels
          k;         # one kernel

    # Every normal subgroup is an intersection of kernels of characters,
    # so maximal normal subgroups are kernels of irreducible characters.
    normal:= Set( List( Irr( tbl ), ClassPositionsOfKernel ) );

    # Remove non-maximal kernels
    RemoveSet( normal, [ 1 .. NrConjugacyClasses( tbl ) ] );
    Sort( normal, function(x,y) return Length(x) > Length(y); end );
    maximal:= [];
    for k in normal do
      if ForAll( maximal, x -> not IsSubsetSet( x, k ) ) then

        # new maximal element found
        Add( maximal, k );

      fi;
    od;

    return maximal;
    end );


#############################################################################
##
#M  ClassPositionsOfMinimalNormalSubgroups( <tbl> )
##
##  *Note* that the minimal normal subgroups of a group <G> can be computed
##  easily if the character table of <G> is known.  So if you need the table
##  anyhow, you should compute it before computing the minimal normal
##  subgroups of the group.
##
InstallMethod( ClassPositionsOfMinimalNormalSubgroups,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    function( tbl )
    local normal,    # list of all kernels
          minimal,   # list of minimal kernels
          k;         # one kernel

    # Every normal subgroup is an intersection of kernels of characters,
    # so maximal normal subgroups are kernels of irreducible characters.
    normal:= Set( ClassPositionsOfNormalSubgroups( tbl ) );

    # Remove non-minimal kernels
    RemoveSet( normal, [ 1 ] );
    Sort( normal, function(x,y) return Length(x) < Length(y); end );
    minimal:= [];
    for k in normal do
      if ForAll( minimal, x -> not IsSubsetSet( k, x ) ) then

        # new minimal element found
        Add( minimal, k );

      fi;
    od;

    return minimal;
    end );


#############################################################################
##
#M  ClassPositionsOfAgemo( <tbl>, <p> )
##
InstallMethod( ClassPositionsOfAgemo,
    "for an ordinary table",
    [ IsOrdinaryTable, IsPosInt ],
    function( tbl, p )
    return ClassPositionsOfNormalClosure( tbl, Set( PowerMap( tbl, p ) ) );
    end );


#############################################################################
##
#M  ClassPositionsOfCentre( <tbl> )
##
InstallMethod( ClassPositionsOfCentre,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    local classes;
    classes:= SizesConjugacyClasses( tbl );
    return Filtered( [ 1 .. NrConjugacyClasses( tbl ) ],
                     x -> classes[x] = 1 );
    end );


#############################################################################
##
#M  ClassPositionsOfDirectProductDecompositions( <tbl> )
#M  ClassPositionsOfDirectProductDecompositions( <tbl>, <nclasses> )
##
BindGlobal( "DirectProductDecompositionsLocal",
    function( nsg, classes, size )

    local sizes, decomp, i, quot, pos;

    nsg:= Difference( nsg, [ [ 1 ] ] );
    sizes:= List( nsg, x -> Sum( classes{ x }, 0 ) );
    SortParallel( sizes, nsg );

    decomp:= [];
    for i in [ 1 .. Length( nsg ) ] do
      quot:= size / sizes[i];
      if quot < sizes[i] then
        break;
      fi;
      pos:= Position( sizes, quot );
      while pos <> fail do
        if Length( Intersection( nsg[i], nsg[ pos ] ) ) = 1 then
          Add( decomp, [ nsg[i], nsg[ pos ] ] );
        fi;
        pos:= Position( sizes, quot, pos );
      od;
    od;

    for i in decomp do
      ConvertToRangeRep( i[1] );
      ConvertToRangeRep( i[2] );
    od;

    return decomp;
end );

InstallMethod( ClassPositionsOfDirectProductDecompositions,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    tbl -> DirectProductDecompositionsLocal(
        ShallowCopy( ClassPositionsOfNormalSubgroups( tbl ) ),
        SizesConjugacyClasses( tbl ),
        Size( tbl ) ) );

InstallMethod( ClassPositionsOfDirectProductDecompositions,
    "for an ordinary table, and a list of positive integers",
    [ IsOrdinaryTable, IsList and IsCyclotomicCollection ],
    function( tbl, nclasses )
    local classes;
    classes:= SizesConjugacyClasses( tbl );
    return DirectProductDecompositionsLocal(
        Filtered( ClassPositionsOfNormalSubgroups( tbl ),
                      list -> IsSubset( nclasses, list ) ),
        classes,
        Sum( classes{ nclasses }, 0 ) );
    end );


#############################################################################
##
#M  ClassPositionsOfDerivedSubgroup( <tbl> )
##
##  The derived subgroup is the intersection of the kernels of all linear
##  characters.
##
InstallMethod( ClassPositionsOfDerivedSubgroup,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    local der,   # derived subgroup, result
          chi;   # one linear character

    der:= [ 1 .. NrConjugacyClasses( tbl ) ];
    for chi in LinearCharacters( tbl ) do
      IntersectSet( der, ClassPositionsOfKernel( chi ) );
    od;
    ConvertToRangeRep( der );
    return der;
    end );


#############################################################################
##
#M  ClassPositionsOfElementaryAbelianSeries( <tbl> )
##
InstallMethod( ClassPositionsOfElementaryAbelianSeries,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    local elab,         # el. ab. series, result
          nsg,          # list of normal subgroups of `tbl'
          actsize,      # size of actual normal subgroup
          classes,      # conjugacy class lengths
          next,         # next smaller normal subgroup
          nextsize;     # size of next smaller normal subgroup

    # The trivial group has too few normal subgroups.
    if Size( tbl ) = 1 then
      return [ [ 1 ] ];
    fi;

    # Sort normal subgroups according to decreasing number of classes.
    nsg:= ShallowCopy( ClassPositionsOfNormalSubgroups( tbl ) );

    elab:= [ [ 1 .. NrConjugacyClasses( tbl ) ] ];
    Unbind( nsg[ Length( nsg ) ] );

    actsize:= Size( tbl );
    classes:= SizesConjugacyClasses( tbl );

    repeat

      next:= nsg[ Length( nsg ) ];
      nextsize:= Sum( classes{ next }, 0 );
      Add( elab, next );
      Unbind( nsg[ Length( nsg ) ] );
      nsg:= Filtered( nsg, x -> IsSubset( next, x ) );

      if not IsPrimePowerInt( actsize / nextsize ) then
        # `tbl' is not the table of a solvable group.
        return fail;
      fi;

      actsize:= nextsize;

    until Length( nsg ) = 0;

    return elab;
    end );


#############################################################################
##
#M  ClassPositionsOfFittingSubgroup( <tbl> )
##
##  The Fitting subgroup is the maximal nilpotent normal subgroup, that is,
##  the product of all normal subgroups of prime power order.
##
InstallMethod( ClassPositionsOfFittingSubgroup,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    local nsg,      # all normal subgroups of `tbl'
          classes,  # class lengths
          ppord,    # classes in normal subgroups of prime power order
          n;        # one normal subgroup of `tbl'

    # Compute all normal subgroups.
    nsg:= ClassPositionsOfNormalSubgroups( tbl );

    # Take the union of classes in all normal subgroups of prime power order.
    classes:= SizesConjugacyClasses( tbl );
    ppord:= [ 1 ];
    for n in nsg do
      if IsPrimePowerInt( Sum( classes{n}, 0 ) ) then
        UniteSet( ppord, n );
      fi;
    od;

    # Return the normal closure.
    return ClassPositionsOfNormalClosure( tbl, ppord );
    end );


#############################################################################
##
#A  ClassPositionsOfSolvableRadical( <ordtbl> )
##
InstallMethod( ClassPositionsOfSolvableRadical,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    local nsg, classes, N, sizeN, nextN;

    nsg:= ClassPositionsOfNormalSubgroups( tbl );
    classes:= SizesConjugacyClasses( tbl );
    nextN:= [ 1 ];
    repeat
      N:= nextN;
      sizeN:= Sum( classes{ N } );
      nsg:= Filtered( nsg, x -> IsSubset( x, N ) );
      nextN:= First( nsg,
                     x -> IsPrimePowerInt( Sum( classes{ x } ) / sizeN ) );
    until nextN = fail;

    return N;
    end );


#############################################################################
##
#M  ClassPositionsOfLowerCentralSeries( <tbl> )
##
##  Let <tbl> the character table of the group $G$.
##  The lower central series $[ K_1, K_2, \ldots, K_n ]$ of $G$ is defined
##  by $K_1 = G$, and $K_{i+1} = [ K_i, G ]$.
##  `LowerCentralSeries( <tbl> )' is a list
##  $[ C_1, C_2, \ldots, C_n ]$ where $C_i$ is the set of positions of
##  $G$-conjugacy classes contained in $K_i$.
##
##  Given an element $x$ of $G$, then $g\in G$ is conjugate to $[x,y]$ for
##  an element $y\in G$ if and only if
##  $\sum_{\chi\in Irr(G)} \frac{|\chi(x)|^2 \overline{\chi(g)}}{\chi(1)}
##  \not= 0$, or equivalently, if the structure constant
##  $a_{x,\overline{x},g}$ is nonzero.
##
##  Thus $K_{i+1}$ consists of all classes $Cl(g)$ in $K_i$ for that there
##  is an $x\in K_i$ such that $a_{x,\overline{x},g}$ is nonzero.
##
InstallMethod( ClassPositionsOfLowerCentralSeries,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    local series,     # list of normal subgroups, result
          K,          # actual last element of `series'
          inv,        # list of inverses of classes of `tbl'
          mat,        # matrix of structure constants
          i, j,       # loop over `mat'
          running,    # loop not yet terminated
          new;        # next element in `series'

    series:= [];
    series[1]:= [ 1 .. NrConjugacyClasses( tbl ) ];
    K:= ClassPositionsOfDerivedSubgroup( tbl );
    if K = series[1] then
      return series;
    fi;
    series[2]:= K;

    # Compute the structure constants $a_{x,\overline{x},g}$ with $g$ and $x$
    # in $K_2$.
    # Put them into a matrix, the rows indexed by $g$, the columns by $x$.
    inv:= InverseClasses( tbl );
    mat:= List( K, x -> [] );
    for i in [ 2 .. Length( K ) ] do
      for j in K do
        mat[i][j]:= ClassMultiplicationCoefficient( tbl, K[i], j, inv[j] );
      od;
    od;

    running:= true;

    while running do

      new:= [ 1 ];
      for i in [ 2 .. Length( mat ) ] do
        if ForAny( K, x -> mat[i][x] <> 0 ) then
          Add( new, i );
        fi;
      od;

      if Length( new ) = Length( K ) then
        running:= false;
      else
        mat:= mat{ new };
        K:= K{ new };
        Add( series, new );
      fi;

    od;

    return series;
    end );


#############################################################################
##
#F  CharacterTable_UpperCentralSeriesFactor( <tbl>, <N> )
##
InstallGlobalFunction( CharacterTable_UpperCentralSeriesFactor,
    function( tbl, N )

    local Z,      # result list
          n,      # number of conjugacy classes
          M,      # actual list of pairs kernel/centre of characters
          nextM,  # list of pairs in next iteration
          kernel, # kernel of a character
          centre, # centre of a character
          i,      # loop variable
          chi;    # loop variable

    n:= NrConjugacyClasses( tbl );
    N:= Set( N );

    # instead of the irreducibles store pairs $[ \ker(\chi), Z(\chi) ]$.
    # `Z' will be the list of classes forming $Z_1 = Z(G/N)$.
    M:= [];
    Z:= [ 1 .. n ];
    for chi in Irr( tbl ) do
      kernel:= ClassPositionsOfKernel( chi );
      if IsSubsetSet( kernel, N ) then
        centre:= ClassPositionsOfCentre( chi );
        AddSet( M, [ kernel, centre ] );
        IntersectSet( Z, centre );
      fi;
    od;

    Z:= [ Z ];
    i:= 0;

    repeat
      i:= i+1;
      nextM:= [];
      Z[i+1]:= [ 1 .. n ];
      for chi in M do
        if IsSubsetSet( chi[1], Z[i] ) then
          Add( nextM, chi );
          IntersectSet( Z[i+1], chi[2] );
        fi;
      od;
      M:= nextM;
    until Z[i+1] = Z[i];
    Unbind( Z[i+1] );

    return Z;
end );


#############################################################################
##
#M  ClassPositionsOfUpperCentralSeries( <tbl> )
##
InstallMethod( ClassPositionsOfUpperCentralSeries,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    tbl -> CharacterTable_UpperCentralSeriesFactor( tbl, [1] ) );


#############################################################################
##
#M  ClassPositionsOfSolvableResiduum( <tbl> )
##
InstallMethod( ClassPositionsOfSolvableResiduum,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    local nsg,       # list of all normal subgroups
          i,         # loop variable, position in `nsg'
          N,         # one normal subgroup
          posN,      # position of `N' in `nsg'
          size,      # size of `N'
          nextsize,  # size of largest normal subgroup contained in `N'
          classes;   # class lengths

    nsg:= ClassPositionsOfNormalSubgroups( tbl );

    # Go down a chief series, starting with the whole group,
    # until there is no step of prime order.
    i:= Length( nsg );
    nextsize:= Size( tbl );
    classes:= SizesConjugacyClasses( tbl );

    while 1 < i do

      posN:= i;
      N:= nsg[ posN ];
      size:= nextsize;

      # Get the largest normal subgroup contained in `N' \ldots
      i:= posN - 1;
      while not IsSubsetSet( N, nsg[ i ] ) do i:= i-1; od;

      # \ldots and its size.
      nextsize:= Sum( classes{ nsg[i] }, 0 );

      if not IsPrimePowerInt( size / nextsize ) then

        # The chief factor `N / nsg[i]' is not of prime power order,
        # i.e., `N' is the solvable residuum.
        return N;

      fi;

    od;

    # The group is solvable.
    return [ 1 ];
    end );


#############################################################################
##
#M  ClassPositionsOfSupersolvableResiduum( <tbl> )
##
InstallMethod( ClassPositionsOfSupersolvableResiduum,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    local nsg,       # list of all normal subgroups
          i,         # loop variable, position in `nsg'
          N,         # one normal subgroup
          posN,      # position of `N' in `nsg'
          size,      # size of `N'
          nextsize,  # size of largest normal subgroup contained in `N'
          classes;   # class lengths

    nsg:= ClassPositionsOfNormalSubgroups( tbl );

    # Go down a chief series, starting with the whole group,
    # until there is no step of prime order.
    i:= Length( nsg );
    nextsize:= Size( tbl );
    classes:= SizesConjugacyClasses( tbl );

    while 1 < i do

      posN:= i;
      N:= nsg[ posN ];
      size:= nextsize;

      # Get the largest normal subgroup contained in `N' \ldots
      i:= posN - 1;
      while not IsSubsetSet( N, nsg[ i ] ) do i:= i-1; od;

      # \ldots and its size.
      nextsize:= Sum( classes{ nsg[i] }, 0 );

      if not IsPrimeInt( size / nextsize ) then

        # The chief factor `N / nsg[i]' is not of prime order,
        # i.e., `N' is the supersolvable residuum.
        return N;

      fi;

    od;

    # The group is supersolvable.
    return [ 1 ];
    end );


#############################################################################
##
#F  ClassPositionsOfPCore( <ordtbl>, <p> )
##
InstallMethod( ClassPositionsOfPCore, 
    "for an ordinary table and a pos. integer",
    [ IsOrdinaryTable, IsPosInt ],
    function( ordtbl, p )
    local nsg, op, opsizeexp, classes, n, nsize;

    if not IsPrimeInt( p ) then
      Error( "<p> must be a prime" );
    fi;

    nsg:= ClassPositionsOfNormalSubgroups( ordtbl );
    op:= [ 1 ];
    opsizeexp:= 0;
    classes:= SizesConjugacyClasses( ordtbl );
    for n in nsg do
      nsize:= Collected( Factors( Sum( classes{ n }, 0 ) ) );
      if Length( nsize ) = 1 and nsize[1][1] = p
                             and opsizeexp < nsize[1][2] then
        op:= n;
        opsizeexp:= nsize[1][2];
      fi;
    od;

    return op;
    end );


#############################################################################
##
#M  ClassPositionsOfNormalClosure( <tbl>, <classes> )
##
InstallMethod( ClassPositionsOfNormalClosure,
    "for an ordinary table",
    [ IsOrdinaryTable, IsHomogeneousList and IsCyclotomicCollection ],
    function( tbl, classes )
    local closure,   # classes forming the normal closure, result
          chi,       # one irreducible character of `tbl'
          ker;       # classes forming the kernel of `chi'

    closure:= [ 1 .. NrConjugacyClasses( tbl ) ];
    for chi in Irr( tbl ) do
      ker:= ClassPositionsOfKernel( chi );
      if IsSubset( ker, classes ) then
        IntersectSet( closure, ker );
      fi;
    od;

    return closure;
    end );


#############################################################################
##
#M  Identifier( <tbl> ) . . . . . . . . . . . . . . . . for an ordinary table
##
##  Note that library tables have an `Identifier' value by construction.
##
InstallMethod( Identifier,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )

    # Construct an identifier that is unique in the current session.
    LARGEST_IDENTIFIER_NUMBER[1]:= LARGEST_IDENTIFIER_NUMBER[1] + 1;
    tbl:= Concatenation( "CT", String( LARGEST_IDENTIFIER_NUMBER[1] ) );
    ConvertToStringRep( tbl );
    return tbl;
    end );


#############################################################################
##
#M  Identifier( <tbl> ) . . . . . . . . . . . . . . . . .  for a Brauer table
##
InstallMethod( Identifier,
    "for a Brauer table",
    [ IsBrauerTable ],
    tbl -> Concatenation( Identifier( OrdinaryCharacterTable( tbl ) ),
                          "mod",
                          String( UnderlyingCharacteristic( tbl ) ) ) );


#############################################################################
##
#M  InverseClasses( <tbl> ) . . .  method for an ord. table with irreducibles
##
InstallMethod( InverseClasses,
    "for a character table with known irreducibles",
    [ IsCharacterTable and HasIrr ],
    function( tbl )
    local nccl,
          irreds,
          inv,
          isinverse,
          chi,
          remain,
          i, j;

    nccl:= NrConjugacyClasses( tbl );
    irreds:= Irr( tbl );
    inv:= [ 1 ];

    isinverse:= function( i, j )         # is `j' the inverse of `i' ?
    for chi in irreds do
      if not IsRat( chi[i] ) and chi[i] <> GaloisCyc( chi[j], -1 ) then
        return false;
      fi;
    od;
    return true;
    end;

    remain:= [ 2 .. nccl ];
    for i in [ 2 .. nccl ] do
      if i in remain then
        for j in remain do
          if isinverse( i, j ) then
            inv[i]:= j;
            inv[j]:= i;
            SubtractSet( remain, Set( [ i, j ] ) );
            break;
          fi;
        od;
      fi;
    od;

    return inv;
    end );


#############################################################################
##
#M  InverseClasses( <tbl> ) . . . . . . . . . .  method for a character table
##
##  Note that `PowerMap' may use `InverseClasses',
##  so `InverseClasses' must not call `PowerMap( <tbl>, -1 )'.
##
InstallMethod( InverseClasses,
    "for a character table",
    [ IsCharacterTable ],
    function( tbl )
    local orders;

    orders:= OrdersClassRepresentatives( tbl );
    return List( [ 1 .. Length( orders ) ],
                 i -> PowerMap( tbl, orders[i]-1, i ) );
    end );


#############################################################################
##
#M  RealClasses( <tbl> )  . . . . . . . . . . . . . . the real-valued classes
##
InstallMethod( RealClasses,
    "for a character table",
    [ IsCharacterTable ],
    function( tbl )
    local inv;
    inv:= InverseClasses( tbl );
    return Filtered( [ 1 .. NrConjugacyClasses( tbl ) ], i -> inv[i] = i );
    end );


#############################################################################
##
#M  ClassOrbit( <tbl>, <cc> ) . . . . . . . . .  classes of a cyclic subgroup
##
InstallMethod( ClassOrbit,
    "for a character table, and a positive integer",
    [ IsCharacterTable, IsPosInt ],
    function( tbl, cc )
    local i, oo, res;

    res:= [ cc ];
    oo:= OrdersClassRepresentatives( tbl )[cc];

    # find all generators of <cc>
    for i in [ 2 .. oo-1 ] do
       if GcdInt(i, oo) = 1 then
          AddSet( res, PowerMap( tbl, i, cc ) );
       fi;
    od;

    return res;
    end );


#############################################################################
##
#M  ClassRoots( <tbl> ) . . . . . . . . . . . .  nontrivial roots of elements
##
InstallMethod( ClassRoots,
    "for a character table",
    [ IsCharacterTable ],
    function( tbl )

    local i, nccl, orders, p, pmap, root;

    nccl   := NrConjugacyClasses( tbl );
    orders := OrdersClassRepresentatives( tbl );
    root   := List([1..nccl], x->[]);

    for p in Set( Factors( Size( tbl ) ) ) do
       pmap:= PowerMap( tbl, p );
       for i in [1..nccl] do
          if i <> pmap[i] and orders[i] <> orders[pmap[i]] then
             AddSet(root[pmap[i]], i);
          fi;
       od;
    od;

    return root;
    end );


#############################################################################
##
##  x. Operations Concerning Blocks
##


#############################################################################
##
#T  SameBlock( <tbl>, <p>, <omega1>, <omega2>, <relevant>, <exponents> )
#F  SameBlock( <p>, <omega1>, <omega2>, <relevant> )
##
##  See the comments for the `PrimeBlocksOp' method.
##
#T After the release of GAP 4.4, remove the six argument variant!
#T InstallGlobalFunction( SameBlock, function( p, omega1, omega2, relevant )
#T     local i, value;
InstallGlobalFunction( SameBlock, function( arg )
    local p, omega1, omega2, relevant, i, value;

    if Length( arg ) = 4 then
      p        := arg[1];
      omega1   := arg[2];
      omega2   := arg[3];
      relevant := arg[4];
    elif Length( arg ) = 6 then
      p        := arg[2];
      omega1   := arg[3];
      omega2   := arg[4];
      relevant := arg[5];
    else
      Error( "usage: SameBlock( <p>, <omega1>, <omega2>, <relevant> )" );
    fi;

    for i in relevant do
      value:= omega1[i] - omega2[i];
      if IsInt( value ) then
        if value mod p <> 0 then
          return false;
        fi;
      elif IsCyc( value ) then
        # This works even if the value is not an algebraic integer.
        if not IsZero( List( COEFFS_CYC( value ), x -> x mod p ) ) then
          return false;
        fi;
      else
        # maybe an unknown ...
        return false;
      fi;
    od;
    return true;
end );


#############################################################################
##
#M  PrimeBlocks( <tbl>, <p> )
##
InstallMethod( PrimeBlocks,
    "for an ordinary table, and a positive integer",
    [ IsOrdinaryTable, IsPosInt ],
    function( tbl, p )

    local known, erg;

    if not IsPrimeInt( p ) then
      Error( "<p> a prime" );
    fi;

    known:= ComputedPrimeBlockss( tbl );

    # Start storing only after the result has been computed.
    # This avoids errors if a calculation had been interrupted.
    if not IsBound( known[p] ) then
      erg:= PrimeBlocksOp( tbl, p );
      known[p]:= erg;
    fi;

    return known[p];
    end );


#############################################################################
##
#M  PrimeBlocksOp( <tbl>, <p> )
##
##  Following the proof in~\cite[p.~271]{Isa76},
##  two ordinary irreducible characters $\chi$, $\psi$ of a group $G$ lie in
##  the same $p$-block if and only if there is a positive integer $n$
##  such that $(\omega_{\chi}(g) - \omega_{\psi}(g))^n / p$ is an algebraic
##  integer.  (A sufficient value for $n$ is $\varphi(|g|)$.)
##
##  According to Feit, p.~150, it is sufficient to test $p$-regular classes.
##
##  H.~Pahlings mentioned that no ramification can occur for $p$-regular
##  classes, that is, one can always choose $n = 1$ for such classes.
##  Namely, if $g$ has order $m$ not divisible by $p$ then the ideal $p \Z$
##  splits into distinct prime ideals $Q_i$ (i.e., with exponent $1$ each)
##  in the ring $\Z[\zeta_m]$ of algebraic integers in the $m$-th cyclotomic
##  field (see, e.g., p.~78 and Theorem~24 on p.~72 in~\cite{Marcus77}).
##  So the ideal spanned by an algebraic integer $\alpha$ lies in the same
##  $Q_i$ as the ideal spanned by $\alpha^k$,
##  which implies that $\alpha^k \in p \Z[\zeta_m]$ holds if and only if
##  $\alpha \in p \Z[\zeta_m]$ holds.
##
##  (In the literature this fact is not mentioned, presumably because the
##  setup in~\cite[p.~271]{Isa76} does not mention that only $p$-regular
##  classes need to be considered, and the setup in Feit's book does not
##  mention the congruence modulo $p$ of some power of the difference of
##  central character values.)
##
##  The test must be performed only for one class in each Galois family
##  since each Galois automorphism fixes the ring of algebraic integers.
##
##  Each character $\chi$ for which $p$ does not divide $|G| / \chi(1)$
##  (a so-called *defect zero character*) forms a block of its own.
##
InstallMethod( PrimeBlocksOp,
    "for an ordinary table, and a positive integer",
    [ IsOrdinaryTable, IsPosInt ],
    function( tbl, p )
    local i, j, k,
          characters,
          nccl,
          classes,
          tbl_orders,
          primeblocks,
          blockreps,
          families,
          representatives,
          sameblock,
          central,
          found,
          ppart,
          inverse,
          d,
          filt,
          pos;

    characters:= List( Irr( tbl ), ValuesOfClassFunction );
    nccl:= Length( characters[1] );
    classes:= SizesConjugacyClasses( tbl );
    tbl_orders:= OrdersClassRepresentatives( tbl );

    # Compute a representative for each Galois family
    # of `p'-regular classes.
    families:= GaloisMat( TransposedMat( characters ) ).galoisfams;
#T better introduce attribute `RepCycSub' ?
    representatives:= Filtered( [ 2 .. nccl ],
                                x ->     families[x] <> 0
                                     and tbl_orders[x] mod p <> 0 );

    blockreps:= [];
    primeblocks:= rec( block            := [],
                       defect           := [],
                       height           := [],
                       relevant         := representatives,
                       centralcharacter := blockreps );

    # Compute the order of the Sylow `p' subgroup of `tbl'.
    ppart:= 1;
    d:= Size( tbl ) / p;
    while IsInt( d ) do
      ppart:= ppart * p;
      d:= d / p;
    od;

    # Distribute the characters into blocks.
    for i in [ 1 .. Length( characters ) ] do

      central:= [];                       # the central character
      for j in representatives do
        central[j]:= classes[j] * characters[i][j] / characters[i][1];
        if not IsCycInt( central[j] ) then
          Error( "central character ", i,
                 " is not an algebraic integer at class ", j );
        fi;
      od;

      if characters[i][1] mod ppart = 0 then

        # defect zero character (new?)
        pos:= Position( characters, characters[i] );
        if pos = i then
          Add( blockreps, central );
          primeblocks.block[i]:= Length( blockreps );
        else
          primeblocks.block[i]:= primeblocks.block[ pos ];
        fi;

      else

        j:= 1;
        found:= false;
        while j <= Length( blockreps ) and not found do
          if SameBlock( p, central, blockreps[j], representatives ) then
            primeblocks.block[i]:= j;
            found:= true;
          fi;
          j:= j + 1;
        od;
        if not found then
          Add( blockreps, central );
          primeblocks.block[i]:= Length( blockreps );
        fi;

      fi;

    od;

    # Compute the defects.
    inverse:= InverseMap( primeblocks.block );
    for i in inverse do
      if IsInt( i ) then
        Add( primeblocks.defect, 0 );    # defect zero character
        Info( InfoCharacterTable, 2,
              "defect 0: X[", i, "]" );
        primeblocks.height[i]:= 0;
      else
        d:= ppart;
        for j in i do
          d:= GcdInt( d, characters[j][1] );
        od;
        if d = ppart then
          d:= 0;
        else
          d:= Length( FactorsInt( ppart / d ) );              # the defect
        fi;
        Add( primeblocks.defect, d );

        # print defect and heights
        Info( InfoCharacterTable, 2,
              "defect ", d, ";" );

        for j in [ 0 .. d ] do
          filt:= Filtered( i, x -> GcdInt( ppart, characters[x][1] )
                                   = ppart / p^(d-j) );
          if not IsEmpty( filt ) then
            for k in filt do
              primeblocks.height[k]:= j;
            od;
            Info( InfoCharacterTable, 2,
                  "    height ", j, ": X", filt );
          fi;
        od;

      fi;
    od;

    # Return the result.
    return primeblocks;
    end );


#############################################################################
##
#M  ComputedPrimeBlockss( <tbl> )
##
InstallMethod( ComputedPrimeBlockss,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    tbl -> [] );


#############################################################################
##
#M  BlocksInfo( <modtbl> )
##
InstallMethod( BlocksInfo,
    "generic method for a Brauer character table",
    [ IsBrauerTable ],
    function( modtbl )

    local ordtbl, prime, modblocks, decinv, k, ilist, ibr, rest, pblocks,
          ordchars, decmat, nccmod, modchars;

    ordtbl    := OrdinaryCharacterTable( modtbl );
    prime     := UnderlyingCharacteristic( modtbl );
    modblocks := [];

    if Size( ordtbl ) mod prime <> 0 then

      # If characteristic and group order are coprime then all blocks
      # are trivial.
      # (We do not need the Brauer characters.)
      decinv:= [ [ 1 ] ];
      MakeImmutable( decinv );
      for k in [ 1 .. NrConjugacyClasses( ordtbl ) ] do

        ilist:= [ k ];
        MakeImmutable( ilist );

        modblocks[k]:= rec( defect   := 0,
                            ordchars := ilist,
                            modchars := ilist,
                            basicset := ilist,
                            decinv   := decinv );

      od;

    else

      # We use the irreducible Brauer characters.
      ibr      := Irr( modtbl );
      rest     := RestrictedClassFunctions( Irr( ordtbl ), modtbl );
      pblocks  := PrimeBlocks( ordtbl, prime );
      ordchars := InverseMap( pblocks.block );
      decmat   := Decomposition( ibr, rest, "nonnegative" );
      nccmod   := Length( decmat[1] );
      for k in [ 1 .. Length( ordchars ) ] do
        if IsInt( ordchars[k] ) then
          ordchars[k]:= [ ordchars[k] ];
        fi;
      od;
      MakeImmutable( ordchars );

      for k in [ 1 .. Length( pblocks.defect ) ] do

        modchars:= Filtered( [ 1 .. nccmod ],
                             j -> ForAny( ordchars[k],
                                          i -> decmat[i][j] <> 0 ) );
        MakeImmutable( modchars );

        modblocks[k]:= rec( defect   := pblocks.defect[k],
                            ordchars := ordchars[k],
                            modchars := modchars );

      od;

    fi;

    # Return the blocks information.
    return modblocks;
    end );


#############################################################################
##
#M  DecompositionMatrix( <modtbl> )
##
InstallMethod( DecompositionMatrix,
    "for a Brauer table",
    [ IsBrauerTable ],
    function( modtbl )
    local ordtbl;
    ordtbl:= OrdinaryCharacterTable( modtbl );
    return Decomposition( List( Irr( modtbl ), ValuesOfClassFunction ),
               RestrictedClassFunctions( ordtbl,
                   List( Irr( ordtbl ), ValuesOfClassFunction ), modtbl ),
               "nonnegative" );
    end );


#############################################################################
##
#M  DecompositionMatrix( <modtbl>, <blocknr> )
##
InstallMethod( DecompositionMatrix,
    "for a Brauer table, and a positive integer",
    [ IsBrauerTable, IsPosInt ],
    function( modtbl, blocknr )

    local ordtbl,    # corresponding ordinary table
          block,     # block information
          fus,       # class fusion from `modtbl' to `ordtbl'
          ordchars,  # restrictions of ord. characters in the block
          modchars;  # Brauer characters in the block

    block:= BlocksInfo( modtbl );

    if blocknr <= Length( block ) then
      block:= block[ blocknr ];
    else
      Error( "<blocknr> must be in the range [ 1 .. ",
             Length( block ), " ]" );
    fi;

    if not IsBound( block.decmat ) then

      if block.defect = 0 then
        block.decmat:= [ [ 1 ] ];
      else
        ordtbl:= OrdinaryCharacterTable( modtbl );
        fus:= GetFusionMap( modtbl, ordtbl );
        ordchars:= List( Irr( ordtbl ){ block.ordchars },
                         chi -> ValuesOfClassFunction( chi ){ fus } );
        modchars:= List( Irr( modtbl ){ block.modchars },
                         ValuesOfClassFunction );
        block.decmat:= Decomposition( modchars, ordchars, "nonnegative" );
      fi;
      MakeImmutable( block.decmat );

    fi;

    return block.decmat;
    end );


#############################################################################
##
#F  LaTeXStringDecompositionMatrix( <modtbl>[, <blocknr>][, <options>] )
##
InstallGlobalFunction( LaTeXStringDecompositionMatrix, function( arg )

    local modtbl,        # Brauer character table, first argument
          blocknr,       # number of the block, optional second argument
          options,       # record with labels, optional third argument
          decmat,        # decomposition matrix
          block,         # block information on `modtbl'
          collabels,     # indices of Brauer characters
          rowlabels,     # indices of ordinary characters
          phi,           # string used for Brauer characters
          chi,           # string used for ordinary irreducibles
          hlines,        # explicitly wanted horizontal lines
          ulc,           # text for the upper left corner
          r,
          k,
          n,
          rowportions,
          colportions,
          str,           # string containing the text
          i,             # loop variable
          val;           # one value in the matrix

    # Get and check the arguments.
    if   Length( arg ) = 2 and IsBrauerTable( arg[1] )
                           and IsRecord( arg[2] ) then

      options := arg[2];

    elif Length( arg ) = 2 and IsBrauerTable( arg[1] )
                           and IsInt( arg[2] ) then

      blocknr := arg[2];
      options := rec();

    elif Length( arg ) = 3 and IsBrauerTable( arg[1] )
                           and IsInt( arg[2] )
                           and IsRecord( arg[3] ) then

      blocknr := arg[2];
      options := arg[3];

    elif Length( arg ) = 1 and IsBrauerTable( arg[1] ) then

      options := rec();

    else
      Error( "usage: LatexStringDecompositionMatrix(",
             " <modtbl>[, <blocknr>][, <options>] )" );
    fi;

    # Compute the decomposition matrix.
    modtbl:= arg[1];
    if IsBound( options.decmat ) then
      decmat:= options.decmat;
    elif IsBound( blocknr ) then
      decmat:= DecompositionMatrix( modtbl, blocknr );
    else
      decmat:= DecompositionMatrix( modtbl );
    fi;

    # Choose default labels if necessary.
    rowportions:= [ [ 1 .. Length( decmat ) ] ];
    colportions:= [ [ 1 .. Length( decmat[1] ) ] ];

    phi:= "{\\tt Y}";
    chi:= "{\\tt X}";

    hlines:= [];
    ulc:= "";

    # Construct the labels if necessary.
    if IsBound( options.phi ) then
      phi:= options.phi;
    fi;
    if IsBound( options.chi ) then
      chi:= options.chi;
    fi;
    if IsBound( options.collabels ) then
      collabels:= options.collabels;
      if ForAll( collabels, IsInt ) then
        collabels:= List( collabels,
            i -> Concatenation( phi, "_{", String(i), "}" ) );
      fi;
    fi;
    if IsBound( options.rowlabels ) then
      rowlabels:= options.rowlabels;
      if ForAll( rowlabels, IsInt ) then
        rowlabels:= List( rowlabels,
            i -> Concatenation( chi, "_{", String(i), "}" ) );
      fi;
    fi;

    # Distribute to row and column portions if necessary.
    if IsBound( options.nrows ) then
      if IsInt( options.nrows ) then
        r:= options.nrows;
        n:= Length( decmat );
        k:= Int( n / r );
        rowportions:= List( [ 1 .. k ], i -> [ 1 .. r ] + (i-1)*r );
        if n > k*r then
          Add( rowportions, [ k*r + 1 .. n ] );
        fi;
      else
        rowportions:= options.nrows;
      fi;
    fi;
    if IsBound( options.ncols ) then
      if IsInt( options.ncols ) then
        r:= options.ncols;
        n:= Length( decmat[1] );
        k:= Int( n / r );
        colportions:= List( [ 1 .. k ], i -> [ 1 .. r ] + (i-1)*r );
        if n > k*r then
          Add( colportions, [ k*r + 1 .. n ] );
        fi;
      else
        colportions:= options.ncols;
      fi;
    fi;

    # Check for horizontal lines.
    if IsBound( options.hlines ) then
      hlines:= options.hlines;
    fi;

    # Check for text in the upper left corner.
    if IsBound( options.ulc ) then
      ulc:= options.ulc;
    fi;

    Add( hlines, Length( decmat ) );

    # Construct the labels if they are still missing.
    if not IsBound( collabels ) then

      if IsBound( blocknr ) then
        block     := BlocksInfo( modtbl )[ blocknr ];
        collabels := List( block.modchars, String );
      else
        collabels := List( [ 1 .. Length( decmat[1] ) ], String );
      fi;
      collabels:= List( collabels, i -> Concatenation( phi,"_{",i,"}" ) );

    fi;
    if not IsBound( rowlabels ) then

      if IsBound( blocknr ) then
        block     := BlocksInfo( modtbl )[ blocknr ];
        rowlabels := List( block.ordchars, String );
      else
        rowlabels := List( [ 1 .. Length( decmat ) ], String );
      fi;
      rowlabels:= List( rowlabels, i -> Concatenation( chi,"_{",i,"}" ) );

    fi;

    # Construct the string.
    str:= "";

    for r in rowportions do

      for k in colportions do

        # Append the header of the array.
        Append( str,  "\\[\n" );
        Append( str,  "\\begin{array}{r|" );
        for i in k do
          Add( str, 'r' );
        od;
        Append( str, "} \\hline\n" );

        # Append the text in the upper left corner.
        if not IsEmpty( ulc ) then
          if r = rowportions[1] and k = colportions[1] then
            Append( str, ulc );
          else
            Append( str, Concatenation( "(", ulc, ")" ) );
          fi;
        fi;

        # The first line contains the Brauer character numbers.
        for i in collabels{ k } do
          Append( str, " & " );
          Append( str, String( i ) );
          Append( str, "\n" );
        od;
        Append( str, " \\rule[-7pt]{0pt}{20pt} \\\\ \\hline\n" );

        # Append the matrix itself.
        for i in r do

          # The first column contains the numbers of ordinary irreducibles.
          Append( str, String( rowlabels[i] ) );

          for val in decmat[i]{ k } do
            Append( str, " & " );
            if val = 0 then
              Append( str, "." );
            else
              Append( str, String( val ) );
            fi;
          od;

          if i = r[1] or i-1 in hlines then
            Append( str, " \\rule[0pt]{0pt}{13pt}" );
          fi;
          if i = r[ Length( r ) ] or i in hlines then
            Append( str, " \\rule[-7pt]{0pt}{5pt}" );
          fi;

          Append( str, " \\\\\n" );

          if i in hlines then
            Append( str, "\\hline\n" );
          fi;

        od;

        # Append the tail of the array
        Append( str,  "\\end{array}\n" );
        Append( str,  "\\]\n\n" );

      od;

    od;

    Unbind( str[ Length( str ) ] );
    ConvertToStringRep( str );

    # Return the result.
    return str;
end );


#############################################################################
##
##  7. Other Operations for Character Tables
##


#############################################################################
##
#O  Index( <tbl>, <subtbl> )
#O  IndexOp( <tbl>, <subtbl> )
#O  IndexNC( <tbl>, <subtbl> )
##
InstallMethod( Index,
    "for two character tables",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ],
    function( tbl, subtbl )
    return Size( tbl ) / Size( subtbl );
    end );

InstallMethod( IndexOp,
    "for two character tables",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ],
    function( tbl, subtbl )
    return Size( tbl ) / Size( subtbl );
    end );

InstallMethod( IndexNC,
    "for two character tables",
    [ IsNearlyCharacterTable, IsNearlyCharacterTable ],
    function( tbl, subtbl )
    return Size( tbl ) / Size( subtbl );
    end );


#############################################################################
##
#M  IsInternallyConsistent( <tbl> ) . . . . . for an ordinary character table
##
##  Check consistency of information in the head of the character table
##  <tbl>, and check if the first orthogonality relation is satisfied.
#T also check the interface between table and group if the classes are stored?
##
##  <#GAPDoc Label="IsInternallyConsistent!for_character_tables">
##  <ManSection>
##  <Meth Name="IsInternallyConsistent"
##   Arg='tbl' Label="for character tables"/>
##
##  <Description>
##  For an <E>ordinary</E> character table <A>tbl</A>,
##  <Ref Oper="IsInternallyConsistent"/>
##  checks the consistency of the following attribute values (if stored).
##  <List>
##  <Item>
##    <Ref Attr="Size"/>, <Ref Attr="SizesCentralizers"/>,
##    and <Ref Attr="SizesConjugacyClasses"/>.
##  </Item>
##  <Item>
##    <Ref Attr="SizesCentralizers"/> and
##    <Ref Attr="OrdersClassRepresentatives"/>.
##  </Item>
##  <Item>
##    <Ref Attr="ComputedPowerMaps"/> and
##    <Ref Attr="OrdersClassRepresentatives"/>.
##  </Item>
##  <Item>
##    <Ref Attr="SizesCentralizers"/>
##    and <Ref Attr="Irr" Label="for a character table"/>.
##  </Item>
##  <Item>
##    <Ref Attr="Irr" Label="for a character table"/>
##    (first orthogonality relation).
##  </Item>
##  </List>
##  <P/>
##  For a <E>Brauer</E> table <A>tbl</A>,
##  <Ref Meth="IsInternallyConsistent" Label="for character tables"/>
##  checks the consistency of the following attribute values (if stored).
##  <List>
##  <Item>
##    <Ref Attr="Size"/>, <Ref Attr="SizesCentralizers"/>,
##    and <Ref Attr="SizesConjugacyClasses"/>.
##  </Item>
##  <Item>
##    <Ref Attr="SizesCentralizers"/> and
##    <Ref Attr="OrdersClassRepresentatives"/>.
##  </Item>
##  <Item>
##    <Ref Attr="ComputedPowerMaps"/> and
##    <Ref Attr="OrdersClassRepresentatives"/>.
##  </Item>
##  <Item>
##    <Ref Attr="Irr" Label="for a character table"/>
##    (closure under complex conjugation and Frobenius map).
##  </Item>
##  </List>
##  <P/>
##  If no inconsistency occurs, <K>true</K> is returned,
##  otherwise each inconsistency is printed to the screen if the level of
##  <Ref InfoClass="InfoWarning"/> is at least <M>1</M>
##  (see&nbsp;<Ref Sect="Info Functions"/>),
##  and <K>false</K> is returned at the end.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( IsInternallyConsistent,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    function( tbl )
    local flag, centralizers, order, nccl, classes, orders, i, j, powermap,
          comp, characters, map, row, sum;

    flag:= true;

    # Check that `Size', `SizesCentralizers', `SizesConjugacyClasses'
    # are consistent.
    centralizers:= SizesCentralizers( tbl );
    order:= centralizers[1];
    if HasSize( tbl ) then
      if Size( tbl ) <> order then
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  centralizer of identity not equal to group order" );
        flag:= false;
      fi;
    fi;

    nccl:= Length( centralizers );
    if HasSizesConjugacyClasses( tbl ) then
      classes:= SizesConjugacyClasses( tbl );
      if classes <> List( centralizers, x -> order / x ) then
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  centralizers and class lengths inconsistent" );
        flag:= false;
      fi;
      if Length( classes ) <> nccl then
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  number of classes and centralizers inconsistent" );
        flag:= false;
      fi;
    else
      classes:= List( centralizers, x -> order / x );
    fi;

    if Sum( classes, 0 ) <> order then
      Info( InfoWarning, 1,
            "IsInternallyConsistent(", tbl, "):\n",
            "#I  sum of class lengths not equal to group order" );
      flag:= false;
    fi;

    if HasOrdersClassRepresentatives( tbl ) then
      orders:= OrdersClassRepresentatives( tbl );
      if nccl <> Length( orders ) then
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  number of classes and orders inconsistent" );
        flag:= false;
      else
        for i in [ 1 .. nccl ] do
          if centralizers[i] mod orders[i] <> 0 then
            Info( InfoWarning, 1,
                  "IsInternallyConsistent(", tbl, "):\n",
                  "#I  not all representative orders divide ",
                  "the corresponding centralizer order" );
            flag:= false;
          fi;
        od;
      fi;
    fi;

    if HasComputedPowerMaps( tbl ) then

      powermap:= ComputedPowerMaps( tbl );
      for map in Set( powermap ) do
        if nccl <> Length( map ) then
          Info( InfoWarning, 1,
                "IsInternallyConsistent(", tbl, "):\n",
                "#I  lengths of power maps and classes inconsistent" );
          flag:= false;
        fi;
      od;

      # If the power maps of all prime divisors of the order are stored,
      # check if they are consistent with the representative orders.
      if     IsBound( orders )
         and ForAll( Set( FactorsInt( order ) ), x -> IsBound(powermap[x]) )
         and orders <> ElementOrdersPowerMap( powermap ) then
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  representative orders and power maps inconsistent" );
        flag:= false;
      fi;

      # Check that the composed power maps are consistent with the power maps
      # for primes.
      for i in [ 2 .. Length( powermap ) ] do
        if IsBound( powermap[i] ) and not IsPrimeInt( i ) then
          comp:= PowerMapByComposition( tbl, i );
          if comp <> fail and comp <> powermap[i] then
            Info( InfoWarning, 1,
                  "IsInternallyConsistent(", tbl, "):\n",
                  "#I  ", Ordinal( i ),
                  " power map inconsistent with composition from others" );
            flag:= false;
          fi;
        fi;
      od;

    fi;

    # From here on, we check the irreducible characters.
    if flag = false then
      Info( InfoWarning, 1,
            "IsInternallyConsistent(", tbl, "):\n",
            "#I  corrupted table, no test of orthogonality" );
      return false;
    fi;

    if HasIrr( tbl ) then
      characters:= List( Irr( tbl ), ValuesOfClassFunction );
      for i in [ 1 .. Length( characters ) ] do
        row:= [];
        for j in [ 1 .. Length( characters[i] ) ] do
          row[j]:= GaloisCyc( characters[i][j], -1 ) * classes[j];
        od;
        for j in [ 1 .. i ] do
          sum:= row * characters[j];
          if ( i = j and sum <> order ) or ( i <> j and sum <> 0 ) then
            if flag then
              # Print a warning only once.
              Info( InfoWarning, 1,
                    "IsInternallyConsistent(", tbl, "):\n",
                    "#I  Scpr( ., X[", i, "], X[", j, "] ) = ", sum / order );
            fi;
            flag:= false;
          fi;
        od;
      od;

      if centralizers <> Sum( characters,
                              x -> List( x, y -> y * GaloisCyc(y,-1) ),
                              0 ) then
        flag:= false;
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  centralizer orders inconsistent with irreducibles" );
      fi;

#T what about indicators, p-blocks, computability of power maps?
    fi;

    return flag;
    end );


#############################################################################
##
#M  IsInternallyConsistent( <tbl> ) . . . . . . . . . . .  for a Brauer table
##
##  Check consistency of information in the head of the character table
##  <tbl>,
##  and check necessary conditions on Galois conjugacy.
#T what about tensor products, indicators, p-blocks?
##
InstallMethod( IsInternallyConsistent,
    "for a Brauer table",
    [ IsBrauerTable ],
    function( tbl )

    local flag,            # `true' if no inconsistency occurred yet
          centralizers,
          order,
          nccl,
          classes,
          orders,
          i,
          chi,
          powermap,
          characters,
          prime,
          map;

    flag:= true;

    # Check that `Size', `SizesCentralizers', `SizesConjugacyClasses'
    # are consistent.
    centralizers:= SizesCentralizers( tbl );
    order:= centralizers[1];
    if HasSize( tbl ) then
      if Size( tbl ) <> order then
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  centralizer of identity not equal to group order" );
        flag:= false;
      fi;
    fi;

    nccl:= Length( centralizers );
    if HasSizesConjugacyClasses( tbl ) then
      classes:= SizesConjugacyClasses( tbl );
      if classes <> List( centralizers, x -> order / x ) then
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  centralizers and class lengths inconsistent" );
        flag:= false;
      fi;
    else
      classes:= List( centralizers, x -> order / x );
    fi;

    if HasOrdersClassRepresentatives( tbl ) then
      orders:= OrdersClassRepresentatives( tbl );
      if nccl <> Length( orders ) then
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  number of classes and orders inconsistent" );
        flag:= false;
      else
        for i in [ 1 .. nccl ] do
          if centralizers[i] mod orders[i] <> 0 then
            Info( InfoWarning, 1,
                  "IsInternallyConsistent(", tbl, "):\n",
                  "#I  not all representative orders divide ",
                  "the corresponding centralizer order" );
            flag:= false;
            break;
          fi;
        od;
      fi;
    fi;

    if HasComputedPowerMaps( tbl ) then
      powermap:= ComputedPowerMaps( tbl );
      for map in Set( powermap ) do
        if nccl <> Length( map ) then
          Info( InfoWarning, 1,
                "IsInternallyConsistent(", tbl, "):\n",
                "#I  lengths of power maps and classes inconsistent" );
          flag:= false;
          break;
        fi;
      od;

      # If the power maps of all prime divisors of the order are stored,
      # check if they are consistent with the representative orders.
      if     IsBound( orders )
         and ForAll( Set( FactorsInt( order ) ), x -> IsBound(powermap[x]) )
         and orders <> ElementOrdersPowerMap( powermap ) then
        flag:= false;
        Info( InfoWarning, 1,
              "IsInternallyConsistent(", tbl, "):\n",
              "#I  representative orders and power maps inconsistent" );
      fi;

    fi;

    # From here on, we check the irreducible characters.
    if flag = false then
      Info( InfoWarning, 1,
            "IsInternallyConsistent(", tbl, "):\n",
            "#I  corrupted table, no test of irreducibles" );
      return false;
    fi;

    if HasIrr( tbl ) then
      prime:= UnderlyingCharacteristic( tbl );
      characters:= List( Irr( tbl ), ValuesOfClassFunction );
      for chi in characters do
        if not GaloisCyc( chi, -1 ) in characters then
          flag:= false;
          Info( InfoWarning, 1,
                "IsInternallyConsistent(", tbl, "):\n",
                "#I  irreducibles not closed under complex conjugation" );
          break;
        fi;
        if not GaloisCyc( chi, prime ) in characters then
          flag:= false;
          Info( InfoWarning, 1,
                "IsInternallyConsistent(", tbl, "):\n",
                "#I  irreducibles not closed under Frobenius map" );
          break;
        fi;
      od;
    fi;

    return flag;
    end );


#############################################################################
##
#M  IsPSolvableCharacterTable( <tbl>, <p> )
##
InstallMethod( IsPSolvableCharacterTable,
    "for ord. char. table, and zero (call `IsPSolvableCharacterTableOp')",
    [ IsOrdinaryTable, IsZeroCyc ],
    IsPSolvableCharacterTableOp );

InstallMethod( IsPSolvableCharacterTable,
    "for ord. char. table knowing `IsSolvableCharacterTable', and zero",
    [ IsOrdinaryTable and HasIsSolvableCharacterTable, IsZeroCyc ],
    function( tbl, zero )
    return IsSolvableCharacterTable( tbl );
    end );

InstallMethod( IsPSolvableCharacterTable,
    "for ord.char.table, and pos.int. (call `IsPSolvableCharacterTableOp')",
    [ IsOrdinaryTable, IsPosInt ],
    function( tbl, p )
    local known, erg;

    if not IsPrimeInt( p ) then
      Error( "<p> must be zero or a prime integer" );
    fi;

    known:= ComputedIsPSolvableCharacterTables( tbl );

    # Start storing only after the result has been computed.
    # This avoids errors if a calculation had been interrupted.
    if not IsBound( known[p] ) then
      erg:= IsPSolvableCharacterTableOp( tbl, p );
      known[p]:= erg;
    fi;

    return known[p];
    end );


#############################################################################
##
#M  IsPSolvableCharacterTableOp( <tbl>, <p> )
##
InstallMethod( IsPSolvableCharacterTableOp,
    "for an ordinary character table, an an integer",
    [ IsOrdinaryTable, IsInt ],
    function( tbl, p )
    local nsg,       # list of all normal subgroups
          i,         # loop variable, position in `nsg'
          n,         # one normal subgroup
          posn,      # position of `n' in `nsg'
          size,      # size of `n'
          nextsize,  # size of smallest normal subgroup containing `n'
          classes,   # class lengths
          facts;     # set of prime factors of a chief factor

    nsg:= ClassPositionsOfNormalSubgroups( tbl );

    # Go up a chief series, starting with the trivial subgroup
    i:= 1;
    nextsize:= 1;
    classes:= SizesConjugacyClasses( tbl );

    while i < Length( nsg ) do

      posn:= i;
      n:= nsg[ posn ];
      size:= nextsize;

      # Get the smallest normal subgroup containing `n' \ldots
      i:= posn + 1;
      while not IsSubsetSet( nsg[ i ], n ) do i:= i+1; od;

      # \ldots and its size.
      nextsize:= Sum( classes{ nsg[i] }, 0 );

      facts:= Set( FactorsInt( nextsize / size ) );
      if 1 < Length( facts ) and ( p = 0 or p in facts ) then

        # The chief factor `nsg[i] / n' is not a prime power,
        # and our `p' divides its order.
        return false;

      fi;

    od;
    return true;
    end );


#############################################################################
##
#M  ComputedIsPSolvableCharacterTables( <tbl> )
##
InstallMethod( ComputedIsPSolvableCharacterTables,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> [] );


#############################################################################
##
#F  IsClassFusionOfNormalSubgroup( <subtbl>, <fus>, <tbl> )
##
InstallGlobalFunction( IsClassFusionOfNormalSubgroup,
    function( subtbl, fus, tbl )

    local classlen, subclasslen, sums, i;

    # Check the arguments.
    if not ( IsOrdinaryTable( subtbl ) and IsOrdinaryTable( tbl ) ) then
      Error( "<subtbl>, <tbl> must be an ordinary character tables" );
    elif not ( IsList( fus ) and ForAll( fus, IsPosInt ) ) then
      Error( "<fus> must be a list of positive integers" );
    fi;

    classlen:= SizesConjugacyClasses( tbl );
    subclasslen:= SizesConjugacyClasses( subtbl );
    sums:= ListWithIdenticalEntries( NrConjugacyClasses( tbl ), 0 );
    for i in [ 1 .. Length( fus ) ] do
      sums[ fus[i] ]:= sums[ fus[i] ] + subclasslen[i];
    od;
    for i in [ 1 .. Length( sums ) ] do
      if sums[i] <> 0 and sums[i] <> classlen[i] then
        return false;
      fi;
    od;

    return true;
end );


#############################################################################
##
#M  Indicator( <tbl>, <n> )
#M  Indicator( <modtbl>, 2 )
##
InstallMethod( Indicator,
    "for a character table, and a positive integer",
    [ IsCharacterTable, IsPosInt ],
    function( tbl, n )

    local known, erg;

    if IsBrauerTable( tbl ) and n <> 2 then
      TryNextMethod();
    fi;

    known:= ComputedIndicators( tbl );

    # Start storing only after the result has been computed.
    # This avoids errors if a calculation had been interrupted.
    if not IsBound( known[n] ) then
      erg:= IndicatorOp( tbl, Irr( tbl ), n );
      known[n]:= erg;
    fi;

    return known[n];
    end );


#############################################################################
##
#M  Indicator( <tbl>, <characters>, <n> )
##
InstallMethod( Indicator,
    "for a character table, a homogeneous list, and a positive integer",
    [ IsCharacterTable, IsHomogeneousList, IsPosInt ],
    IndicatorOp );


#############################################################################
##
#M  IndicatorOp( <ordtbl>, <characters>, <n> )
#M  IndicatorOp( <modtbl>, <characters>, 2 )
##
InstallMethod( IndicatorOp,
    "for an ord. character table, a hom. list, and a pos. integer",
    [ IsOrdinaryTable, IsHomogeneousList, IsPosInt ],
    function( tbl, characters, n )
    local principal, map;

    principal:= List( [ 1 .. NrConjugacyClasses( tbl ) ], x -> 1 );
    map:= PowerMap( tbl, n );
    return List( characters,
                 chi -> ScalarProduct( tbl, chi{ map }, principal ) );
    end );

InstallMethod( IndicatorOp,
    "for a Brauer character table and <n> = 2",
    [ IsBrauerTable, IsHomogeneousList, IsPosInt ],
    function( modtbl, ibr, n )
    local ordtbl,
          irr,
          ordindicator,
          fus,
          indicator,
          i,
          j,
          odd;

    if   n <> 2 then
      Error( "for Brauer table <modtbl> only for <n> = 2" );
    elif UnderlyingCharacteristic( modtbl ) = 2 then
      Error( "for Brauer table <modtbl> only in odd characteristic" );
    fi;

    ordtbl:= OrdinaryCharacterTable( modtbl );
    irr:= Irr( ordtbl );
    ordindicator:= Indicator( ordtbl, irr, 2 );
    fus:= GetFusionMap( modtbl, ordtbl );

    # compute indicators block by block
    indicator:= [];

    for i in BlocksInfo( modtbl ) do
      if not IsBound( i.decmat ) then
        i.decmat:= Decomposition( ibr{ i.modchars },
                         List( irr{ i.ordchars },
                               x -> x{ fus } ), "nonnegative" );
      fi;
      for j in [ 1 .. Length( i.modchars ) ] do
        if ForAny( ibr[ i.modchars[j] ],
                   x -> not IsInt(x) and GaloisCyc(x,-1) <> x ) then

          # indicator of a Brauer character is 0 iff it has
          # at least one nonreal value
          indicator[ i.modchars[j] ]:= 0;

        else

          # indicator is equal to the indicator of any real ordinary
          # character containing it as constituent, with odd multiplicity
          odd:= Filtered( [ 1 .. Length( i.decmat ) ],
                          x -> i.decmat[x][j] mod 2 <> 0 );
          odd:= List( odd, x -> ordindicator[ i.ordchars[x] ] );
          indicator[ i.modchars[j] ]:= First( odd, x -> x <> 0 );

        fi;
      od;
    od;

    return indicator;
    end );


#############################################################################
##
#M  ComputedIndicators( <tbl> )
##
InstallMethod( ComputedIndicators,
    "for a character table",
    [ IsCharacterTable ],
    tbl -> [] );


#############################################################################
##
#F  NrPolyhedralSubgroups( <tbl>, <c1>, <c2>, <c3>)  . # polyhedral subgroups
##
InstallGlobalFunction( NrPolyhedralSubgroups, function(tbl, c1, c2, c3)
    local orders, res, ord;

    orders:= OrdersClassRepresentatives( tbl );

    if orders[c1] = 2 then
       res:= ClassMultiplicationCoefficient(tbl, c1, c2, c3)
             * SizesConjugacyClasses( tbl )[c3];
       if orders[c2] = 2 then
          if orders[c3] = 2 then   # V4
             ord:= Length(Set([c1, c2, c3]));
             if ord = 2 then
                res:= res * 3;
             elif ord = 3 then
                res:= res * 6;
             fi;
             res:= res / 6;
             if not IsInt(res) then
                Error("noninteger result");
             fi;
             return rec(number:= res, type:= "V4");
          elif orders[c3] > 2 then   # D2n
             ord:= orders[c3];
             if c1 <> c2 then
                res:= res * 2;
             fi;
             res:= res * Length(ClassOrbit(tbl,c3))/(ord*Phi(ord));
             if not IsInt(res) then
                Error("noninteger result");
             fi;
             return rec(number:= res,
                        type:= Concatenation("D" ,String(2*ord)));
          fi;
       elif orders[c2] = 3 then
          if orders[c3] = 3 then   # A4
             res:= res * Length(ClassOrbit(tbl, c3)) / 24;
             if not IsInt(res) then
                Error("noninteger result");
             fi;
             return rec(number:= res, type:= "A4");
          elif orders[c3] = 4 then   # S4
             res:= res / 24;
             if not IsInt(res) then
                Error("noninteger result");
             fi;
             return rec(number:= res, type:= "S4");
          elif orders[c3] = 5 then   # A5
             res:= res * Length(ClassOrbit(tbl, c3)) / 120;
             if not IsInt(res) then
                Error("noninteger result");
             fi;
             return rec(number:= res, type:= "A5");
          fi;
       fi;
    fi;
    return fail;
end );


#############################################################################
##
#M  ClassMultiplicationCoefficient( <ordtbl>, <c1>, <c2>, <c3> )
##
InstallMethod( ClassMultiplicationCoefficient,
    "for an ord. table, and three pos. integers",
    [ IsOrdinaryTable, IsPosInt, IsPosInt, IsPosInt ], 10,
    function( ordtbl, c1, c2, c3 )
    local res, chi, char, classes;

    res:= 0;
    for chi in Irr( ordtbl ) do
       char:= ValuesOfClassFunction( chi );
       res:= res + char[c1] * char[c2] * GaloisCyc(char[c3], -1) / char[1];
    od;
    classes:= SizesConjugacyClasses( ordtbl );
    return classes[c1] * classes[c2] * res / Size( ordtbl );
    end );


#############################################################################
##
#F  MatClassMultCoeffsCharTable( <tbl>, <class> )
##
InstallGlobalFunction( MatClassMultCoeffsCharTable, function( tbl, class )
    local nccl;

    nccl:= NrConjugacyClasses( tbl );
    return List( [ 1 .. nccl ],
                 j -> List( [ 1 .. nccl ],
                 k -> ClassMultiplicationCoefficient( tbl, class, j, k ) ) );
end );


#############################################################################
##
#F  ClassStructureCharTable(<tbl>,<classes>)  . gener. class mult. coefficent
##
InstallGlobalFunction( ClassStructureCharTable, function( tbl, classes )
    local exp;

    exp:= Length( classes ) - 2;
    if exp < 0 then
      Error( "length of <classes> must be at least 2" );
    fi;

    return Sum( Irr( tbl ),
                chi -> Product( chi{ classes }, 1 ) / ( chi[1] ^ exp ),
                0 )
           * Product( SizesConjugacyClasses( tbl ){ classes }, 1 )
           / Size( tbl );
end );


#############################################################################
##
##  8. Creating Character Tables
##


#############################################################################
##
#M  CharacterTable( <G> ) . . . . . . . . . . ordinary char. table of a group
#M  CharacterTable( <G>, <p> )  . . . . . characteristic <p> table of a group
#M  CharacterTable( <ordtbl>, <p> )
##
##  We delegate to `OrdinaryCharacterTable' or `BrauerTable'.
##
InstallMethod( CharacterTable,
    "for a group (delegate to `OrdinaryCharacterTable')",
    [ IsGroup ],
    OrdinaryCharacterTable );

InstallMethod( CharacterTable,
    "for a group, and a prime integer",
    [ IsGroup, IsInt ],
    function( G, p )
    if p = 0 then
      return OrdinaryCharacterTable( G );
    else
      return BrauerTable( OrdinaryCharacterTable( G ), p );
    fi;
    end );

InstallMethod( CharacterTable,
    "for an ordinary table, and a prime integer",
    [ IsOrdinaryTable, IsPosInt ],
    BrauerTable );


#############################################################################
##
#M  CharacterTable( <name> )  . . . . . . . . . library table with given name
#M  CharacterTable( <series>, <param> )
#M  CharacterTable( <series>, <param1>, <param2> )
##
##  These methods are used in the &GAP; Character Table Library.
##  The dummy function `CharacterTableFromLibrary' is replaced by
##  a meaningful function when this package is loaded.
##
InstallMethod( CharacterTable,
    "for a string",
    [ IsString ],
    str -> CharacterTableFromLibrary( str ) );

InstallOtherMethod( CharacterTable,
    "for a string and an object",
    [ IsString, IsObject ],
    function( str, obj )
    return CharacterTableFromLibrary( str, obj );
    end );

InstallOtherMethod( CharacterTable,
    "for a string and two objects",
    [ IsString, IsObject, IsObject ],
    function( str, obj1, obj2 )
    return CharacterTableFromLibrary( str, obj1, obj2 );
    end );


#############################################################################
##
#M  BrauerTable( <ordtbl>, <p> )  . . . . . . . . . . . . . <p>-modular table
#M  BrauerTable( <G>, <p> )
##
##  Note that Brauer tables are stored in the ordinary table and not in the
##  group.
##
InstallMethod( BrauerTable,
    "for a group, and a prime (delegate to the ord. table of the group)",
    [ IsGroup, IsPosInt ],
    function( G, p )
    return BrauerTable( OrdinaryCharacterTable( G ), p );
    end );

InstallMethod( BrauerTable,
    "for an ordinary table, and a prime",
    [ IsOrdinaryTable, IsPosInt ],
    function( ordtbl, p )

    local known, erg;

    if not IsPrimeInt( p ) then
      Error( "<p> must be a prime" );
    fi;

    known:= ComputedBrauerTables( ordtbl );

    # Start storing only after the result has been computed.
    # This avoids errors if a calculation had been interrupted.
    if not IsBound( known[p] ) then
      erg:= BrauerTableOp( ordtbl, p );
      known[p]:= erg;
    fi;

    return known[p];
    end );


#############################################################################
##
#M  BrauerTableOp( <ordtbl>, <p> )  . . . . . . . . . . . . <p>-modular table
##
##  Note that we do not need a method for the first argument a group,
##  since `BrauerTable' delegates this to the ordinary table.
##
##  This is a ``last resort'' method that returns `fail' if <ordtbl> is not
##  <p>-solvable.
##  (It assumes that a method for library tables is of higher rank.)
##
InstallMethod( BrauerTableOp,
    "for ordinary character table, and positive integer",
    [ IsOrdinaryTable, IsPosInt ],
    function( tbl, p )
    local result, modtbls, id, fusions, pos, source;

    result:= fail;

    if IsPSolvableCharacterTable( tbl, p ) then
      result:= CharacterTableRegular( tbl, p );
    elif HasFactorsOfDirectProduct( tbl ) then
      modtbls:= List( FactorsOfDirectProduct( tbl ),
                      t -> BrauerTable( t, p ) );
      if not fail in modtbls then
        result:= CallFuncList( CharacterTableDirectProduct, modtbls );
        id:= Identifier( OrdinaryCharacterTable( result ) );
        ResetFilterObj( result, HasOrdinaryCharacterTable );
        SetOrdinaryCharacterTable( result, tbl );
        fusions:= ComputedClassFusions( result );
        pos:= PositionProperty( fusions, x -> x.name = id );
        fusions[ pos ]:= ShallowCopy( fusions[ pos ] );
        fusions[ pos ].name:= Identifier( tbl );
        MakeImmutable( fusions[ pos ] );

        # Adjust the identifier.
        ResetFilterObj( result, HasIdentifier );
        SetIdentifier( result,
            Concatenation( Identifier( tbl ), "mod", String( p ) ) );
      fi;
    elif HasSourceOfIsoclinicTable( tbl ) then
      # Compute the isoclinic table of the Brauer table of the source table,
      # i.e., use the alternative path in the commutative diagram that is
      # given by forming the Brauer table and the isoclinic table.
      source:= SourceOfIsoclinicTable( tbl );
      modtbls:= BrauerTable( source[1], p );
      if modtbls <> fail then
        # (This function takes care of a class permutation in `tbl'.)
        result:= CharacterTableIsoclinic( modtbls, tbl );
      fi;
    fi;

    if HasClassParameters( tbl ) and result <> fail then
      SetClassParameters( result,
          ClassParameters( tbl ){ GetFusionMap( result, tbl ) } );
    fi;

    return result;
    end );


#############################################################################
##
#M  ComputedBrauerTables( <ordtbl> )  . . . . . . for an ord. character table
##
InstallMethod( ComputedBrauerTables,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    ordtbl -> [] );


#############################################################################
##
#F  CharacterTableRegular( <ordtbl>, <p> )  . restriction to <p>-reg. classes
##
InstallGlobalFunction( CharacterTableRegular,
    function( ordtbl, prime )

    local fusion,
          inverse,
          orders,
          i,
          regular,
          power;

    if not IsPrimeInt( prime ) then
      Error( "<prime> must be a prime" );
    elif IsBrauerTable( ordtbl ) then
      Error( "<ordtbl> is already a Brauer table" );
    fi;

    fusion:= [];
    inverse:= [];
    orders:= OrdersClassRepresentatives( ordtbl );
    for i in [ 1 .. Length( orders ) ] do
      if orders[i] mod prime <> 0 then
        Add( fusion, i );
        inverse[i]:= Length( fusion );
      fi;
    od;

    regular:= rec(
       Identifier                 := Concatenation( Identifier( ordtbl ),
                                         "mod", String( prime ) ),
       UnderlyingCharacteristic   := prime,
       Size                       := Size( ordtbl ),
       OrdersClassRepresentatives := orders{ fusion },
       SizesCentralizers          := SizesCentralizers( ordtbl ){ fusion },
       ComputedPowerMaps          := [],
       OrdinaryCharacterTable     := ordtbl
      );

    # Transfer known power maps.
    # (Missing power maps can be computed later.)
    power:= ComputedPowerMaps( ordtbl );
    for i in [ 1 .. Length( power ) ] do
      if IsBound( power[i] ) then
        regular.ComputedPowerMaps[i]:= inverse{ power[i]{ fusion } };
      fi;
    od;

    regular:= ConvertToCharacterTableNC( regular );
    StoreFusion( regular, rec( map:= fusion, type:= "choice" ), ordtbl );

    return regular;
    end );


#############################################################################
##
#F  ConvertToCharacterTable( <record> ) . . . . create character table object
#F  ConvertToCharacterTableNC( <record> ) . . . create character table object
##
InstallGlobalFunction( ConvertToCharacterTableNC, function( record )

    local names,    # list of component names
          i;        # loop over `SupportedCharacterTableInfo'

    names:= RecNames( record );

    # Make the object.
    if not IsBound( record.UnderlyingCharacteristic ) then
      Error( "<record> needs component `UnderlyingCharacteristic'" );
    elif record.UnderlyingCharacteristic = 0 then
      Objectify( NewType( NearlyCharacterTablesFamily,
                          IsOrdinaryTable and IsAttributeStoringRep ),
                 record );
    else
      Objectify( NewType( NearlyCharacterTablesFamily,
                          IsBrauerTable and IsAttributeStoringRep ),
                 record );
    fi;

    # Enter the properties and attributes.
    for i in [ 1, 4 .. Length( SupportedCharacterTableInfo ) - 2 ] do
      if     SupportedCharacterTableInfo[ i+1 ] in names
         and SupportedCharacterTableInfo[ i+1 ] <> "Irr" then
        Setter( SupportedCharacterTableInfo[i] )( record,
            record!.( SupportedCharacterTableInfo[ i+1 ] ) );
      fi;
    od;

    # Make the lists of character values into character objects.
    if "Irr" in names then
      SetIrr( record, List( record!.Irr,
                            chi -> Character( record, chi ) ) );
    fi;

    # Return the object.
    return record;
end );

InstallGlobalFunction( ConvertToCharacterTable, function( record )

    # Check the argument record.

    if not IsBound( record!.UnderlyingCharacteristic ) then
      Info( InfoCharacterTable, 1,
            "no underlying characteristic stored" );
      return fail;
    fi;

    # If a group is entered, check that the interface between group
    # and table is complete.
    if IsBound( record!.UnderlyingGroup ) then
      if not IsBound( record!.ConjugacyClasses ) then
        Info( InfoCharacterTable, 1,
              "group stored but no conjugacy classes!" );
        return fail;
      elif not IsBound( record!.IdentificationOfClasses ) then
        Info( InfoCharacterTable, 1,
              "group stored but no identification of classes!" );
        return fail;
      fi;
    fi;

#T more checks!

    # Call the no-check-function.
    return ConvertToCharacterTableNC( record );
end );


#############################################################################
##
#F  ConvertToLibraryCharacterTableNC( <record> )
##
InstallGlobalFunction( ConvertToLibraryCharacterTableNC, function( record )

    # Make the object.
    if IsBound( record.isGenericTable ) and record.isGenericTable then
      Objectify( NewType( NearlyCharacterTablesFamily,
                          IsGenericCharacterTableRep ),
                 record );
    else
      ConvertToCharacterTableNC( record );
      SetFilterObj( record, IsLibraryCharacterTableRep );
    fi;

    # Return the object.
    return record;
end );


#############################################################################
##
##  9. Printing Character Tables
##


#############################################################################
##
#M  ViewObj( <tbl> )  . . . . . . . . . . . . . . . . . for a character table
##
InstallMethod( ViewObj,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    Print( "CharacterTable( " );
    if HasUnderlyingGroup( tbl ) then
      View( UnderlyingGroup( tbl ) );
    else
      View( Identifier( tbl ) );
    fi;
    Print(  " )" );
    end );

InstallMethod( ViewObj,
    "for a Brauer table",
    [ IsBrauerTable ],
    function( tbl )
    local ordtbl;
    ordtbl:= OrdinaryCharacterTable( tbl );
    Print( "BrauerTable( " );
    if HasUnderlyingGroup( ordtbl ) then
      View( UnderlyingGroup( ordtbl ) );
    else
      View( Identifier( ordtbl ) );
    fi;
    Print( ", ", UnderlyingCharacteristic( tbl ), " )" );
    end );


#############################################################################
##
#M  PrintObj( <tbl> ) . . . . . . . . . . . . . . . . . for a character table
##
InstallMethod( PrintObj,
    "for an ordinary table",
    [ IsOrdinaryTable ],
    function( tbl )
    if HasUnderlyingGroup( tbl ) then
      Print( "CharacterTable( ", UnderlyingGroup( tbl ), " )" );
    else
      Print( "CharacterTable( \"", Identifier( tbl ), "\" )" );
    fi;
    end );

InstallMethod( PrintObj,
    "for a Brauer table",
    [ IsBrauerTable ],
    function( tbl )
    local ordtbl;
    ordtbl:= OrdinaryCharacterTable( tbl );
    if HasUnderlyingGroup( ordtbl ) then
      Print( "BrauerTable( ", UnderlyingGroup( ordtbl ), ", ",
             UnderlyingCharacteristic( tbl ), " )" );
    else
      Print( "BrauerTable( \"", Identifier( ordtbl ),
             "\", ", UnderlyingCharacteristic( tbl ), " )" );
    fi;
    end );


#############################################################################
##
#F  CharacterTableDisplayStringEntryDefault( <entry>, <data> )
##
BindGlobal( "CharacterTableDisplayStringEntryDefault",
    function( entry, data )
    local irrstack, irrnames, i, val, name, n, letters, ll;

    if entry = 0 then
      return ".";
    elif IsCyc( entry ) and not IsInt( entry ) then

      # find shorthand for cyclo
      irrstack:= data.irrstack;
      irrnames:= data.irrnames;
      for i in [ 1 .. Length( irrstack ) ] do
        if entry = irrstack[i] then
          return irrnames[i];
        elif entry = -irrstack[i] then
          return Concatenation( "-", irrnames[i] );
        fi;
        val:= GaloisCyc( irrstack[i], -1 );
        if entry = val then
          return Concatenation( "/", irrnames[i] );
        elif entry = -val then
          return Concatenation( "-/", irrnames[i] );
        fi;
        val:= StarCyc( irrstack[i] );
        if entry = val then
          return Concatenation( "*", irrnames[i] );
        elif -entry = val then
          return Concatenation( "-*", irrnames[i] );
        fi;
        i:= i+1;
      od;
      Add( irrstack, entry );

      # Create a new name for the irrationality.
      name:= "";
      n:= Length( irrstack );
      letters:= data.letters;
      ll:= Length( letters );
      while 0 < n do
        name:= Concatenation( letters[(n-1) mod ll + 1], name );
        n:= QuoInt(n-1, ll);
      od;
      Add( irrnames, name );
      return irrnames[ Length( irrnames ) ];

    elif    ( IsList( entry ) and not IsString( entry ) )
         or IsUnknown( entry ) then
      return "?";
    else
      return String( entry );
    fi;
end );


#############################################################################
##
#F  CharacterTableDisplayStringEntryDataDefault( <tbl> )
##
BindGlobal( "CharacterTableDisplayStringEntryDataDefault",
    tbl -> rec( irrstack := [],
                irrnames := [],
                letters  := [ "A","B","C","D","E","F","G","H","I","J","K",
                              "L","M","N","O","P","Q","R","S","T","U","V",
                              "W","X","Y","Z" ] ) );


#############################################################################
##
#F  CharacterTableDisplayLegendDefault( <data> )
##
BindGlobal( "CharacterTableDisplayLegendDefault",
    function( data )
    local result, irrstack, irrnames, i, q;

    result:= "";
    irrstack:= data.irrstack;
    if not IsEmpty( irrstack ) then
      irrnames:= data.irrnames;
      Append( result, "\n" );
    fi;
    for i in [ 1 .. Length( irrstack ) ] do
      Append( result, irrnames[i] );
      Append( result, " = " );
      Append( result, String( irrstack[i] ) );
      Append( result, "\n" );
      q:= Quadratic( irrstack[i] );
      if q <> fail then
        Append( result, "  = " );
        Append( result, q.display );
        Append( result, " = " );
        Append( result, q.ATLAS );
        Append( result, "\n" );
      fi;
    od;

    return result;
    end );


#############################################################################
##
#F  CharacterTableDisplayDefault( <tbl>, <options> )
##
if not IsBound( CambridgeMaps ) then
  CambridgeMaps:= "dummy";  # the function is in the character table library
fi;

BindGlobal( "CharacterTableDisplayDefault", function( tbl, options )
    local i, j,              # loop variables
          colWidth,          # local function
          record,            # loop over options records
          printLegend,       # local function
          legend,            # local function
          cletter,           # character name
          chars_from_irr,    # are the characters contained in `Irr( tbl )'?
          chars,             # list of characters
          cnr,               # list of character numbers
          classes,           # list of classes
          powermap,          # list of primes
          centralizers,      # boolean
          cen,               # factorized centralizers
          fak,               # factorization
          prime,             # loop over primes
          primes,            # prime factors of order
          prin,              # column widths
          nam,               # classnames
          col,               # number of columns already printed
          acol,              # nuber of columns on next page
          len,               # width of next page
          ncols,             # total number of columns
          linelen,           # line length
          q,                 # quadratic cyc / powermap entry
          indicator,         # list of primes
          indic,             # indicators
          iw,                # width of indicator column
          stringEntry,       # local function
          stringEntryData,   # data accessed by `stringEntry'
          cc,                # column number
          charnames,         # list of character names
          charvals,          # matrix of strings of character values
          tbl_powermap,
          tbl_centralizers;

    # compute the width of column `col'
    colWidth:= function( col )
       local len, width;

       if IsRecord( powermap ) then
         # the three components should fit into the column
         width:= Length( powermap.power[ col ] );
         len:= Length( powermap.prime[ col ] );
         if len > width then
           width:= len;
         fi;
         len:= Length( powermap.names[ col ] );
         if len > width then
           width:= len;
         fi;
       else
         # the class name should fit into the column
         width:= Length( nam[col] );

         # the class names of power classes should fit into the column
         for i in powermap do
           len:= tbl_powermap[i][ col ];
           if IsInt( len ) then
             len:= Length( nam[ len ] );
             if len > width then
               width:= len;
             fi;
           fi;
         od;
       fi;

       if centralizers = "ATLAS" then
         # The centralizer orders should fit into the column.
         len:= Length( String( tbl_centralizers[ col ] ) );
         if len > width then
           width:= len;
         fi;
       fi;

       # each character value should fit into the column
       for i in [ 1 .. Length( cnr ) ] do
         len:= Length( charvals[i][ col ] );
         if len > width then
           width:= len;
         fi;
       od;

       # at least one blank should separate the column entries
       return width + 1;
    end;

    # Prepare a list of the available options records.
    options:= [ options ];
    if HasDisplayOptions( tbl ) and
       not IsIdenticalObj( options[1], DisplayOptions( tbl ) ) then
      Add( options, DisplayOptions( tbl ) );
    fi;
    if IsBound( CharacterTableDisplayDefaults.User ) and
       not IsIdenticalObj( options[1],
               CharacterTableDisplayDefaults.User ) then
      Add( options, CharacterTableDisplayDefaults.User );
    fi;
    if not IsIdenticalObj( options[1],
                CharacterTableDisplayDefaults.Global ) then
      Add( options, CharacterTableDisplayDefaults.Global );
    fi;

    # Get the options that are in at least one record.
    for record in options do
      if IsBound( record.StringEntry ) then
        stringEntry:= record.StringEntry;
        break;
      fi;
    od;
    for record in options do
      if IsBound( record.StringEntryData ) then
        stringEntryData:= record.StringEntryData( tbl );
        break;
      fi;
    od;
    for record in options do
      if   IsBound( record.PrintLegend ) then
        # for backwards compatibility with GAP 4.4 ...
        printLegend:= record.PrintLegend;
        break;
      elif IsBound( record.Legend ) then
        legend:= record.Legend;
        printLegend:= function( data ) Print( legend( data ) ); end;
        break;
      fi;
    od;
    for record in options do
      if IsBound( record.letter ) and Length( record.letter ) = 1 then
        cletter:= record.letter;
        break;
      fi;
    od;
    for record in options do
      if IsBound( record.centralizers ) then
        centralizers:= record.centralizers;
        break;
      fi;
    od;

    # Get the options that have no global default.
    # choice of characters and character names
    chars_from_irr:= true;
    for record in options do
      if IsBound( record.chars ) then
        if IsList( record.chars ) and ForAll( record.chars, IsPosInt ) then
          cnr:= record.chars;
          chars:= List( Irr( tbl ){ cnr }, ValuesOfClassFunction );
        elif IsInt( record.chars ) then
          cnr:= [ record.chars ];
          chars:= List( Irr( tbl ){ cnr }, ValuesOfClassFunction );
        elif IsHomogeneousList( record.chars ) then
          chars:= record.chars;
          cnr:= [ 1 .. Length( chars ) ];
          chars_from_irr:= false;
          if not IsBound( cletter ) then
            cletter:= "Y";
          fi;
        else
          cnr:= [];
          chars:= [];
        fi;
        break;
      fi;
    od;
    if not IsBound( chars ) then
      # Perhaps the irreducibles have to be computed here,
      # so we do not use this before evaluating the options.
      chars:= List( Irr( tbl ), ValuesOfClassFunction );
      cnr:= [ 1 .. Length( chars ) ];
      if HasCharacterNames( tbl ) then
        charnames:= CharacterNames( tbl );
      fi;
    fi;
    if not IsBound( cletter ) then
      cletter:= "X";
    fi;
    if not IsBound( charnames ) then
      charnames:= List( cnr,
          i -> Concatenation( cletter, ".", String( i ) ) );
    fi;

    # choice of classes
    classes:= [ 1 .. NrConjugacyClasses( tbl ) ];
    for record in options do
      if IsBound( record.classes ) then
        if IsInt( record.classes ) then
          classes:= [ record.classes ];
        else
          classes:= record.classes;
        fi;
        break;
      fi;
    od;

    # choice of power maps
    tbl_powermap:= ComputedPowerMaps( tbl );
    powermap:= Filtered( [ 2 .. Length( tbl_powermap ) ],
                         x -> IsBound( tbl_powermap[x] ) );
    for record in options do
      if IsBound( record.powermap ) then
        if IsInt( record.powermap ) then
          IntersectSet( powermap, [ record.powermap ] );
        elif record.powermap = "ATLAS" and IsBound( CambridgeMaps ) then
          powermap:= "ATLAS";
          powermap:= CambridgeMaps( tbl );
        elif IsList( record.powermap ) then
          IntersectSet( powermap, record.powermap );
        elif record.powermap = false then
          powermap:= [];
        fi;
        break;
      fi;
    od;

    # print Frobenius-Schur indicators?
    indicator:= [];
    for record in options do
      if IsBound( record.indicator ) then
        if record.indicator = true then
          indicator:= [ 2 ];
        elif IsList( record.indicator ) then
          indicator:= Set( Filtered( record.indicator, IsPosInt ) );
        fi;
        break;
      fi;
    od;

    # (end of options handling)

    # line length
    linelen:= SizeScreen()[1] - 1;

    # prepare centralizers
    if centralizers = "ATLAS" then
      tbl_centralizers:= SizesCentralizers( tbl );
    elif centralizers = true then
      tbl_centralizers:= SizesCentralizers( tbl );
      primes:= Set( FactorsInt( Size( tbl ) ) );
      cen:= [];
      for prime in primes do
        cen[ prime ]:= [];
      od;
    fi;

    # prepare class names
    if IsRecord( powermap ) then
      nam:= ClassNames( tbl, "ATLAS" );
    else
      nam:= ClassNames( tbl );
    fi;

    # prepare indicator
    # (compute the values if they are not stored but use stored values)
    iw:= [ 0 ];
    if indicator <> [] then
      indic:= [];
      for i in indicator do
        if chars_from_irr and IsBound( ComputedIndicators( tbl )[i] ) then
          indic[i]:= ComputedIndicators( tbl )[i]{ cnr };
        else
          indic[i]:= Indicator( tbl, Irr( tbl ){ cnr }, i );
        fi;
        if i = 2 then
          iw[i]:= 2;
        else
          iw[i]:= Maximum( Length( String( Maximum( Set( indic[i] ) ) ) ),
                           Length( String( Minimum( Set( indic[i] ) ) ) ),
                           Length( String( i ) ) ) + 1;
        fi;
        iw[1]:= iw[1] + iw[i];
      od;
      iw[1]:= iw[1] + 1;
    fi;

    if Length( cnr ) = 0 then
      prin:= [ 3 ];
    else
      prin:= [ Maximum( List( charnames, Length ) ) + 3 ];
    fi;

    # prepare list for strings of character values
    charvals:= List( chars, x -> [] );

    # total number of columns
    ncols:= Length(classes) + 1;

    # number of columns already displayed
    col:= 1;

    # A character table has a name.
    Print( Identifier( tbl ), "\n" );

    while col < ncols do

       # determine number of cols for next page
       acol:= 0;
       if indicator <> [] then
          prin[1]:= prin[1] + iw[1];
       fi;
       len:= prin[1];
       while col+acol < ncols and len < linelen do
          acol:= acol + 1;
          if Length(prin) < col + acol then
            cc:= classes[ col + acol - 1 ];
            for i in [ 1 .. Length( cnr ) ] do
              charvals[i][ cc ]:= stringEntry( chars[i][ cc ],
                                               stringEntryData );
            od;
            prin[ col + acol ]:= colWidth( cc );
          fi;
          len:= len + prin[col+acol];
       od;
       if len >= linelen then
          acol:= acol-1;
       fi;

       # Check whether we are able to print at least one column.
       if acol = 0 then
         Error( "line length too small (perhaps resize with `SizeScreen')" );
       fi;

       # centralizers
       if centralizers = "ATLAS" then
#T Admit splitting into two lines,
#T admit that the first centralizer starts in the character names' area.
         Print( "\n" );
         Print( String( "", prin[1] ) );
         for j in [ col + 1 .. col + acol ] do
           Print( String( tbl_centralizers[ j-1 ], prin[j] ) );
         od;
         Print( "\n" );
       elif centralizers = true then
          Print( "\n" );
          for i in [col..col+acol-1] do
             fak:= FactorsInt( tbl_centralizers[classes[i]] );
             for prime in Set( fak ) do
                cen[prime][i]:= Number( fak, x -> x = prime );
             od;
          od;
          for j in [1..Length(cen)] do
             if IsBound(cen[j]) then
                for i in [col..col+acol-1] do
                   if not IsBound(cen[j][i]) then
                      cen[j][i]:= ".";
                   fi;
                od;
             fi;
          od;

          for prime in primes do
             Print( String( prime, prin[1] ) );
             for j in [1..acol] do
               Print( String( cen[prime][col+j-1], prin[col+j] ) );
             od;
             Print( "\n" );
          od;
       fi;

       # class names and power maps
       if IsRecord( powermap ) then
         # three lines: power maps, p' part, and class names
         Print( "\n" );
         Print( String( "p ", prin[1] ) );
         for j in [ 1 .. acol ] do
           Print( String( powermap.power[classes[col+j-1]],
                                   prin[col+j] ) );
         od;
         Print( "\n" );
         Print( String( "p'", prin[1] ) );
         for j in [ 1 .. acol ] do
           Print( String( powermap.prime[classes[col+j-1]],
                                   prin[col+j] ) );
         od;
         Print( "\n" );
         Print( String( "", prin[1] ) );
         for j in [ 1 .. acol ] do
           Print( String( powermap.names[classes[col+j-1]],
                                   prin[col+j] ) );
         od;

       else

         # first class names, then a line for each power map
         Print( "\n" );
         Print( String( "", prin[1] ) );
         for i in [ 1 .. acol ] do
           Print( String( nam[classes[col+i-1]], prin[col+i] ) );
         od;
         for i in powermap do
           Print( "\n" );
           Print( String( Concatenation( String(i), "P" ),
                                   prin[1] ) );
           for j in [ 1 .. acol ] do
             q:= tbl_powermap[i][classes[col+j-1]];
             if IsInt( q ) then
                Print( String( nam[q], prin[col+j] ) );
             else
                Print( String( "?", prin[col+j] ) );
             fi;
           od;
         od;

       fi;

       # empty column resp. indicators
       Print( "\n" );
       if indicator <> [] then
          prin[1]:= prin[1] - iw[1];
          Print( String( "", prin[1] ) );
          for i in indicator do
             Print( String( i, iw[i] ) );
          od;
       fi;

       # the characters
       for i in [1..Length(chars)] do

          Print( "\n" );

          # character name
          Print( String( charnames[i], -prin[1] ) );

          # indicators
          for j in indicator do
            if j = 2 then
               if indic[j][i] = 0 then
                 Print( String( "o", iw[j] ) );
               elif indic[j][i] = 1 then
                 Print( String( "+", iw[j] ) );
               elif indic[j][i] = -1 then
                 Print( String( "-", iw[j] ) );
               fi;
            else
               if indic[j][i] = 0 then
                 Print( String( "0", iw[j] ) );
               else
                 Print( String( stringEntry( indic[j][i],
                                                      stringEntryData ),
                                         iw[j]) );
              fi;
            fi;
          od;
          if indicator <> [] then
            Print(" ");
          fi;
          for j in [ 1 .. acol ] do
            Print( String( charvals[i][ classes[col+j-1] ],
                                    prin[ col+j ] ) );
          od;
       od;
       col:= col + acol;
       Print("\n");

       # Indicators are printed only with the first portion of columns.
       indicator:= [];

    od;

    # print legend for cyclos
    printLegend( stringEntryData );
    end );

if IsString( CambridgeMaps ) then
  Unbind( CambridgeMaps );
fi;


#############################################################################
##
#V  CharacterTableDisplayDefaults
##
InstallValue( CharacterTableDisplayDefaults, rec(
      Global:= rec(
        centralizers    := true,

        Display         := CharacterTableDisplayDefault,
        StringEntry     := CharacterTableDisplayStringEntryDefault,
        StringEntryData := CharacterTableDisplayStringEntryDataDefault,
        Legend          := CharacterTableDisplayLegendDefault,
    ) ) );


#############################################################################
##
#M  Display( <tbl> )  . . . . . . . . . . . . .  for a nearly character table
#M  Display( <tbl>, <record> )
##
InstallMethod( Display,
    "for a nearly character table",
    [ IsNearlyCharacterTable ],
    function( tbl )
    # Make sure that the `Display' function in the right record is used.
    if   HasDisplayOptions( tbl ) then
      Display( tbl, DisplayOptions( tbl ) );
    elif IsBound( CharacterTableDisplayDefaults.User ) then
      Display( tbl, CharacterTableDisplayDefaults.User );
    else
      Display( tbl, CharacterTableDisplayDefaults.Global );
    fi;
    end );

InstallOtherMethod( Display,
    "for a nearly character table, and a list",
    [ IsNearlyCharacterTable, IsList ],
    function( tbl, list )
    Display( tbl, rec( chars:= list ) );
    end );

InstallOtherMethod( Display,
    "for a nearly character table, and a record",
    [ IsNearlyCharacterTable, IsRecord ],
    function( tbl, record )
    if IsBound( record.Display ) then
      record.Display( tbl, record );
    else
      CharacterTableDisplayDefaults.Global.Display( tbl, record );
    fi;
    end );


#############################################################################
##
#F  PrintCharacterTable( <tbl>, <varname> )
##
InstallGlobalFunction( PrintCharacterTable, function( tbl, varname )
    local i, info, j, class, comp;

    # Check the arguments.
    if not IsNearlyCharacterTable( tbl ) then
      Error( "<tbl> must be a nearly character table" );
    elif not IsString( varname ) then
      Error( "<varname> must be a string" );
    fi;

    # Print the preamble.
    Print( varname, ":= function()\n" );
    Print( "local tbl, i;\n" );
    Print( "tbl:=rec();\n" );

    # Print the values of supported attributes.
    for i in [ 3, 6 .. Length( SupportedCharacterTableInfo ) ] do
      if Tester( SupportedCharacterTableInfo[i-2] )( tbl ) then

        info:= SupportedCharacterTableInfo[i-2]( tbl );

        # The irreducible characters are stored via values lists.
        if SupportedCharacterTableInfo[ i-1 ] = "Irr" then
          info:= List( info, ValuesOfClassFunction );
        fi;

        # Be careful to print strings with enclosing double quotes.
        # (This holds also for *nonempty* strings not in `IsStringRep'.)
        Print( "tbl.", SupportedCharacterTableInfo[ i-1 ], ":=\n" );
        if     IsString( info )
           and ( IsEmptyString( info ) or not IsEmpty( info ) ) then
          info:= ReplacedString( info, "\"", "\\\"" );
          if '\n' in info then
            info:= SplitString( info, "\n" );
            Print( "Concatenation([\n" );
            for j in [ 1 .. Length( info ) - 1 ] do
              Print( "\"", info[j], "\\n\",\n" );
            od;
            Print( "\"", info[ Length( info ) ], "\"\n]);\n" );
          else
            Print( "\"", info, "\";\n" );
          fi;
        elif SupportedCharacterTableInfo[ i-1 ] = "ConjugacyClasses" then
          Print( "[\n" );
          for class in info do
            Print( "ConjugacyClass( tbl.UnderlyingGroup,\n",
                   Representative( class ), "),\n" );
          od;
          Print( "];\n" );
        else
          Print( info, ";\n" );
        fi;

      fi;
    od;

    # Print the values of supported components if available.
    if IsLibraryCharacterTableRep( tbl ) then
      for comp in SupportedLibraryTableComponents do
        if IsBound( tbl!.( comp ) ) then
          info:= tbl!.( comp );
#T           if   comp = "cliffordTable" then
#T             Print( "tbl.", comp, ":=\n\"",
#T                    PrintCliffordTable( tbl ), "\";\n" );
#T           elif     IsString( info )
#T                and ( IsEmptyString( info ) or not IsEmpty( info ) ) then
          if     IsString( info )
             and ( IsEmptyString( info ) or not IsEmpty( info ) ) then
            Print( "tbl.", comp, ":=\n\"",
                   info, "\";\n" );
          else
            Print( "tbl.", comp, ":=\n",
                   info, ";\n" );
          fi;
        fi;
      od;
    fi;

    # Set class lengths if known.
    if HasConjugacyClasses( tbl ) and HasSizesConjugacyClasses( tbl ) then
      Print( "for i in [1..Length(tbl.ConjugacyClasses)] do\n  ",
          "SetSize(tbl.ConjugacyClasses[i],tbl.SizesConjugacyClasses[i]);\n",
          "od;\n" );
    fi;

    # Print the rest of the construction.
    if IsLibraryCharacterTableRep( tbl ) then
      Print( "ConvertToLibraryCharacterTableNC(tbl);\n" );
    else
      Print( "ConvertToCharacterTableNC(tbl);\n" );
    fi;
    Print( "return tbl;\n" );
    Print( "end;\n" );
    Print( varname, ":= ", varname, "();\n" );
end );


#############################################################################
##
##  10. Constructing Character Tables from Others
##


#############################################################################
##
#M  CharacterTableDirectProduct( <ordtbl1>, <ordtbl2> )
##
InstallMethod( CharacterTableDirectProduct,
    "for two ordinary character tables",
    IsIdenticalObj,
    [ IsOrdinaryTable, IsOrdinaryTable ],
    function( tbl1, tbl2 )
    local direct,        # table of the direct product, result
          ncc1,          # no. of classes in `tbl1'
          ncc2,          # no. of classes in `tbl2'
          i, j, k,       # loop variables
          vals1,         # list of `tbl1'
          vals2,         # list of `tbl2'
          vals_direct,   # corresponding list of the result
          powermap_k,    # `k'-th power map
          ncc2_i,        #
          fus;           # projection/embedding map

    direct:= ConvertToLibraryCharacterTableNC(
                 rec( UnderlyingCharacteristic := 0 ) );
    SetSize( direct, Size( tbl1 ) * Size( tbl2 ) );
    SetIdentifier( direct, Concatenation( Identifier( tbl1 ), "x",
                                          Identifier( tbl2 ) ) );
    SetSizesCentralizers( direct,
                      KroneckerProduct( [ SizesCentralizers( tbl1 ) ],
                                        [ SizesCentralizers( tbl2 ) ] )[1] );

    ncc1:= NrConjugacyClasses( tbl1 );
    ncc2:= NrConjugacyClasses( tbl2 );

    # Compute class parameters, if present in both tables.
    if HasClassParameters( tbl1 ) and HasClassParameters( tbl2 ) then

      vals1:= ClassParameters( tbl1 );
      vals2:= ClassParameters( tbl2 );
      vals_direct:= [];
      for i in [ 1 .. ncc1 ] do
        for j in [ 1 .. ncc2 ] do
          vals_direct[ j + ncc2 * ( i - 1 ) ]:= [ vals1[i], vals2[j] ];
        od;
      od;
      SetClassParameters( direct, vals_direct );

    fi;

    # Compute element orders.
    vals1:= OrdersClassRepresentatives( tbl1 );
    vals2:= OrdersClassRepresentatives( tbl2 );
    vals_direct:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do
        vals_direct[ j + ncc2 * ( i - 1 ) ]:= Lcm( vals1[i], vals2[j] );
      od;
    od;
    SetOrdersClassRepresentatives( direct, vals_direct );

    # Compute power maps for all prime divisors of the result order.
    vals_direct:= ComputedPowerMaps( direct );
    for k in Union( FactorsInt( Size( tbl1 ) ),
                    FactorsInt( Size( tbl2 ) ) ) do
      powermap_k:= [];
      vals1:= PowerMap( tbl1, k );
      vals2:= PowerMap( tbl2, k );
      for i in [ 1 .. ncc1 ] do
        ncc2_i:= ncc2 * (i-1);
        for j in [ 1 .. ncc2 ] do
          powermap_k[ j + ncc2_i ]:= vals2[j] + ncc2 * ( vals1[i] - 1 );
        od;
      od;
      vals_direct[k]:= powermap_k;
    od;

    # Compute the irreducibles.
    SetIrr( direct, List( KroneckerProduct(
                                List( Irr( tbl1 ), ValuesOfClassFunction ),
                                List( Irr( tbl2 ), ValuesOfClassFunction ) ),
                          vals -> Character( direct, vals ) ) );

    # Form character parameters if they exist for the irreducibles
    # in both tables.
    if HasCharacterParameters( tbl1 ) and HasCharacterParameters( tbl2 ) then
      vals1:= CharacterParameters( tbl1 );
      vals2:= CharacterParameters( tbl2 );
      vals_direct:= [];
      for i in [ 1 .. ncc1 ] do
        for j in [ 1 .. ncc2 ] do
          vals_direct[ j + ncc2 * ( i - 1 ) ]:= [ vals1[i], vals2[j] ];
        od;
      od;
      SetCharacterParameters( direct, vals_direct );
    fi;

    # Store projections.
    fus:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do fus[ ( i - 1 ) * ncc2 + j ]:= i; od;
    od;
    StoreFusion( direct,
                 rec( map := fus, specification := "1" ),
                 tbl1 );

    fus:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do fus[ ( i - 1 ) * ncc2 + j ]:= j; od;
    od;
    StoreFusion( direct,
                 rec( map := fus, specification := "2" ),
                 tbl2 );

    # Store embeddings.
    StoreFusion( tbl1,
                 rec( map := [ 1, ncc2+1 .. (ncc1-1)*ncc2+1 ],
                      specification := "1" ),
                 direct );

    StoreFusion( tbl2,
                 rec( map := [ 1 .. ncc2 ],
                      specification := "2" ),
                 direct );

    # Store the argument list as the value of `FactorsOfDirectProduct'.
    SetFactorsOfDirectProduct( direct, [ tbl1, tbl2 ] );

    # Return the table of the direct product.
    return direct;
    end );


#############################################################################
##
#M  CharacterTableDirectProduct( <modtbl>, <ordtbl> )
##
InstallMethod( CharacterTableDirectProduct,
    "for one Brauer table, and one ordinary character table",
    IsIdenticalObj,
    [ IsBrauerTable, IsOrdinaryTable ],
    function( tbl1, tbl2 )
    local ncc1,     # no. of classes in `tbl1'
          ncc2,     # no. of classes in `tbl2'
          ord,      # ordinary table of product,
          reg,      # Brauer table of product,
          fus,      # fusion map
          i, j;     # loop variables

    # Check that the result will in fact be a Brauer table.
    if Size( tbl2 ) mod UnderlyingCharacteristic( tbl1 ) = 0 then
      Error( "no direct product of Brauer table and p-singular ordinary" );
    fi;

    ncc1:= NrConjugacyClasses( tbl1 );
    ncc2:= NrConjugacyClasses( tbl2 );

    # Make the ordinary and Brauer table of the product.
    ord:= CharacterTableDirectProduct( OrdinaryCharacterTable(tbl1), tbl2 );
    reg:= CharacterTableRegular( ord, UnderlyingCharacteristic( tbl1 ) );

    # Store the irreducibles.
    SetIrr( reg, List(
       KroneckerProduct( List( Irr( tbl1 ), ValuesOfClassFunction ),
                         List( Irr( tbl2 ), ValuesOfClassFunction ) ),
       vals -> Character( reg, vals ) ) );

    # Store projections and embeddings
    fus:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do fus[ ( i - 1 ) * ncc2 + j ]:= i; od;
    od;
    StoreFusion( reg, fus, tbl1 );

    fus:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do fus[ ( i - 1 ) * ncc2 + j ]:= j; od;
    od;
    StoreFusion( reg, fus, tbl2 );

    StoreFusion( tbl1,
                 rec( map := [ 1, ncc2+1 .. (ncc1-1)*ncc2+1 ],
                      specification := "1" ),
                 reg );

    StoreFusion( tbl2,
                 rec( map := [ 1 .. ncc2 ],
                      specification := "2" ),
                 reg );

    # Return the table.
    return reg;
    end );


#############################################################################
##
#M  CharacterTableDirectProduct( <ordtbl>, <modtbl> )
##
InstallMethod( CharacterTableDirectProduct,
    "for one ordinary and one Brauer character table",
    IsIdenticalObj,
    [ IsOrdinaryTable, IsBrauerTable ],
    function( tbl1, tbl2 )
    local ncc1,     # no. of classes in `tbl1'
          ncc2,     # no. of classes in `tbl2'
          ord,      # ordinary table of product,
          reg,      # Brauer table of product,
          fus,      # fusion map
          i, j;     # loop variables

    # Check that the result will in fact be a Brauer table.
    if Size( tbl1 ) mod UnderlyingCharacteristic( tbl2 ) = 0 then
      Error( "no direct product of Brauer table and p-singular ordinary" );
    fi;

    ncc1:= NrConjugacyClasses( tbl1 );
    ncc2:= NrConjugacyClasses( tbl2 );

    # Make the ordinary and Brauer table of the product.
    ord:= CharacterTableDirectProduct( tbl1, OrdinaryCharacterTable(tbl2) );
    reg:= CharacterTableRegular( ord, UnderlyingCharacteristic( tbl2 ) );

    # Store the irreducibles.
    SetIrr( reg, List(
       KroneckerProduct( List( Irr( tbl1 ), ValuesOfClassFunction ),
                         List( Irr( tbl2 ), ValuesOfClassFunction ) ),
       vals -> Character( reg, vals ) ) );

    # Store projections and embeddings
    fus:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do fus[ ( i - 1 ) * ncc2 + j ]:= i; od;
    od;
    StoreFusion( reg, fus, tbl1 );

    fus:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do fus[ ( i - 1 ) * ncc2 + j ]:= j; od;
    od;
    StoreFusion( reg, fus, tbl2 );

    StoreFusion( tbl1,
                 rec( map := [ 1, ncc2+1 .. (ncc1-1)*ncc2+1 ],
                      specification := "1" ),
                 reg );

    StoreFusion( tbl2,
                 rec( map := [ 1 .. ncc2 ],
                      specification := "2" ),
                 reg );

    # Return the table.
    return reg;
    end );


#############################################################################
##
#M  CharacterTableDirectProduct( <modtbl1>, <modtbl2> )
##
InstallMethod( CharacterTableDirectProduct,
    "for two Brauer character tables",
    IsIdenticalObj,
    [ IsBrauerTable, IsBrauerTable ],
    function( tbl1, tbl2 )
    local ncc1,     # no. of classes in `tbl1'
          ncc2,     # no. of classes in `tbl2'
          ord,      # ordinary table of product,
          reg,      # Brauer table of product,
          fus,      # fusion map
          i, j;     # loop variables

    # Check that the result will in fact be a Brauer table.
    if    UnderlyingCharacteristic( tbl1 )
       <> UnderlyingCharacteristic( tbl2 ) then
      Error( "no direct product of Brauer tables in different char." );
    fi;

    ncc1:= NrConjugacyClasses( tbl1 );
    ncc2:= NrConjugacyClasses( tbl2 );

    # Make the ordinary and Brauer table of the product.
    ord:= CharacterTableDirectProduct( OrdinaryCharacterTable( tbl1 ),
                                       OrdinaryCharacterTable( tbl2 ) );
    reg:= CharacterTableRegular( ord, UnderlyingCharacteristic( tbl1 ) );

    # Store the irreducibles.
    SetIrr( reg, List(
       KroneckerProduct( List( Irr( tbl1 ), ValuesOfClassFunction ),
                         List( Irr( tbl2 ), ValuesOfClassFunction ) ),
       vals -> Character( reg, vals ) ) );

    # Store projections.
    fus:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do fus[ ( i - 1 ) * ncc2 + j ]:= i; od;
    od;
    StoreFusion( reg,
                 rec( map := fus,
                      specification := "1" ),
                 tbl1 );
    fus:= [];
    for i in [ 1 .. ncc1 ] do
      for j in [ 1 .. ncc2 ] do fus[ ( i - 1 ) * ncc2 + j ]:= j; od;
    od;
    StoreFusion( reg,
                 rec( map := fus,
                      specification := "2" ),
                 tbl2 );

    # Store embeddings.
    StoreFusion( tbl1,
                 rec( map := [ 1, ncc2+1 .. (ncc1-1)*ncc2+1 ],
                      specification := "1" ),
                 reg );

    StoreFusion( tbl2,
                 rec( map := [ 1 .. ncc2 ],
                      specification := "2" ),
                 reg );

    # Return the table.
    return reg;
    end );


#############################################################################
##
#F  CharacterTableHeadOfFactorGroupByFusion( <tbl>, <factorfusion> )
##
InstallGlobalFunction( CharacterTableHeadOfFactorGroupByFusion,
    function( tbl, factorfusion )
    local size,           # size of `tbl'
          tclasses,       # class lengths of `tbl'
          N,              # classes of the normal subgroup
          suborder,       # order of the normal subgroup
          nccf,           # no. of classes of `F'
          cents,          # centralizer orders of `F'
          i,              # loop over the classes
          F,              # table of the factor group, result
          inverse,        # inverse of `factorfusion'
          p,              # loop over prime divisors
          map;            # one computed power map of `F'

    # Compute the order of the normal subgroup.
    size:= Size( tbl );
    tclasses:= SizesConjugacyClasses( tbl );
    N:= Filtered( [ 1 .. Length( factorfusion ) ],
                  i -> factorfusion[i] = 1 );
    suborder:= Sum( tclasses{ N }, 0 );
    if size mod suborder <> 0 then
      Error( "the order of the kernel of <factorfusion> does not divide ",
             "the size of <tbl>" );
    fi;

    # Compute the centralizer orders of the factor group.
    # \[ |C_{G/N}(gN)\| = \frac{|G|/|N|}{|Cl_{G/N}(gN)|}
    #    = \frac{|G|:|N|}{\frac{1}{|N|}\sum_{x fus gN} |Cl_G(x)|}
    #    = \frac{|G|}{\sum_{x fus gN} |Cl_G(x)| \]
    nccf:= Maximum( factorfusion );
    cents:= ListWithIdenticalEntries( nccf, 0 );
    for i in [ 1 .. Length( factorfusion ) ] do
      cents[ factorfusion[i] ]:= cents[ factorfusion[i] ] + tclasses[i];
    od;
    for i in [ 1 .. nccf ] do
      cents[i]:= size / cents[i];
    od;
    if not ForAll( cents, IsInt ) then
      Error( "not all centralizer orders of the factor are well-defined" );
    fi;

    F:= Concatenation( Identifier( tbl ), "/", String( N ) );
    ConvertToStringRep( F );
    F:= rec(
             UnderlyingCharacteristic := 0,
             Size                     := size / suborder,
             Identifier               := F,
             SizesCentralizers        := cents,
             ComputedPowerMaps        := []
            );

    # Transfer known power maps of `tbl' to `F'.
    inverse:= ProjectionMap( factorfusion );
    for p in [ 1 .. Length( ComputedPowerMaps( tbl ) ) ] do
      if IsBound( ComputedPowerMaps( tbl )[p] ) then
        map:= ComputedPowerMaps( tbl )[p];
        F.ComputedPowerMaps[p]:= factorfusion{ map{ inverse } };
      fi;
    od;

    # Convert the record into a library table.
    ConvertToLibraryCharacterTableNC( F );

    # Store the factor fusion on `tbl'.
    StoreFusion( tbl, rec( map:= factorfusion, type:= "factor" ), F );

    # Return the result.
    return F;
    end );


#############################################################################
##
#M  CharacterTableFactorGroup( <tbl>, <classes> )
##
InstallMethod( CharacterTableFactorGroup,
    "for an ordinary table, and a list of class positions",
    [ IsOrdinaryTable, IsList and IsCyclotomicCollection ],
    function( tbl, classes )
    local F,              # table of the factor group, result
          chi,            # loop over irreducibles
          ker,            # kernel of a `chi'
          factirr,        # irreducibles of `F'
          factorfusion,   # fusion from `tbl' to `F'
          inverse,        # inverse of `factorfusion'
          maps,           # computed power maps of `F'
          p;              # loop over prime divisors

    # Compute the irreducibles of the factor, and the factor fusion.
    factirr:= [];
    for chi in Irr( tbl ) do
      ker:= ClassPositionsOfKernel( chi );
      if IsSubset( ker, classes ) then
        Add( factirr, ValuesOfClassFunction( chi ) );
      fi;
    od;
    factirr:= CollapsedMat( factirr, [] );
    factorfusion := factirr.fusion;
    factirr      := factirr.mat;

    # Compute the table head.
    F:= CharacterTableHeadOfFactorGroupByFusion( tbl, factorfusion );

    # Set the irreducibles.
    SetIrr( F, List( factirr, chi -> Character( F, chi ) ) );

    # Transfer necessary power maps of `tbl' to `F'.
    inverse:= ProjectionMap( factorfusion );
    maps:= ComputedPowerMaps( F );
    for p in Set( Factors( Size( F ) ) ) do
      if not IsBound( maps[p] ) then
        maps[p]:= factorfusion{ PowerMap( tbl, p ){ inverse } };
      fi;
    od;

    # Return the result.
    return F;
    end );


#############################################################################
##
#M  CharacterTableFactorGroup( <modtbl>, <classes> )
##
InstallMethod( CharacterTableFactorGroup,
    "for a Brauer table, and a list of class positions",
    [ IsBrauerTable, IsList and IsCyclotomicCollection ],
    function( modtbl, classes )
    local p, ordtbl, sizes, fus, kernel, n, size, ordfact, modfact, factirr,
          proj;

    p:= UnderlyingCharacteristic( modtbl );
    ordtbl:= OrdinaryCharacterTable( modtbl );

    # Unite the positions corresponding to `classes' in `ordtbl'
    # with the largest normal subgroup of `p' power order.
    sizes:= SizesConjugacyClasses( ordtbl );
    fus:= GetFusionMap( modtbl, ordtbl );
    kernel:= ClassPositionsOfNormalClosure( ordtbl, fus{ classes } );

    # Construct the factor character tables.
    ordfact:= CharacterTableFactorGroup( ordtbl, kernel );
    modfact:= CharacterTableRegular( ordfact, p );

    # Transfer the irreducibles between the modular tables.
    fus:= CompositionMaps( InverseMap( GetFusionMap( modfact, ordfact ) ),
              CompositionMaps( GetFusionMap( ordtbl, ordfact ), fus ) );
    kernel:= ClassPositionsOfKernel( fus );
    factirr:= Filtered( List( Irr( modtbl ), ValuesOfClassFunction ),
                        x -> Length( Set( x{ kernel } ) ) = 1 );
    proj:= ProjectionMap( fus );
    SetIrr( modfact, List( factirr, x -> Character( modfact, x{ proj } ) ) );

    # Return the result.
    return modfact;
    end );


#############################################################################
##
#M  CharacterTableIsoclinic( <ordtbl> ) . . . . . . . . for an ordinary table
##
InstallMethod( CharacterTableIsoclinic,
    "for an ordinary character table",
    [ IsOrdinaryTable ],
    tbl -> CharacterTableIsoclinic( tbl, fail, fail ) );


#############################################################################
##
#M  CharacterTableIsoclinic( <ordtbl>, <nsg> )
##
InstallMethod( CharacterTableIsoclinic,
    "for an ordinary character table and a list of classes",
    [ IsOrdinaryTable, IsList and IsCyclotomicCollection ],
    function( tbl, nsg )
    return CharacterTableIsoclinic( tbl, nsg, fail );
    end );


#############################################################################
##
#M  CharacterTableIsoclinic( <ordtbl>, <centralinv> )
##
InstallMethod( CharacterTableIsoclinic,
    "for an ordinary character table and a class pos.",
    [ IsOrdinaryTable, IsPosInt ],
    function( tbl, centralinv )
    return CharacterTableIsoclinic( tbl, fail, centralinv );
    end );


#############################################################################
##
#F  IrreducibleCharactersOfIsoclinicGroup( <irr>, <center>, <outer>, <xpos> )
##
BindGlobal( "IrreducibleCharactersOfIsoclinicGroup",
    function( irr, center, outer, xpos )
    local nonfaith, faith, irreds, root1, chi, values, root2;

    # Adjust faithful characters in outer classes.
    nonfaith:= [];
    faith:= [];
    irreds:= [];
    root1:= E(4);
    if Length( center ) = 1 then
      # The central subgroup has order two.
      for chi in irr do
        values:= ValuesOfClassFunction( chi );
        if values[ center[1] ] = values[1] then
          Add( nonfaith, values );
        else
          values:= ShallowCopy( values );
          values{ outer }:= root1 * values{ outer };
          Add( faith, values );
        fi;
        Add( irreds, values );
      od;
    else
      # The central subgroup has order four.
      root2:= E(8);
      for chi in irr do
        values:= ValuesOfClassFunction( chi );
        if ForAll( center, i -> values[i] = values[1] ) then
          Add( nonfaith, values );
        else
          values:= ShallowCopy( values );
          if ForAny( center, i -> values[i] = values[1] ) then
            values{ outer }:= root1 * values{ outer };
          elif values[ xpos ] / values[1] = root1 then
            values{ outer }:= root2 * values{ outer };
          else
            # If B is the matrix for g in G, the matrix for gz in H
            # depends on the character value of z^2 = x;
            # we have to choose the same square root for the whole character,
            # so the two possibilities differ just by the ordering of the two
            # extensions which we get.
            values{ outer }:= root2^-1 * values{ outer };
          fi;
          Add( faith, values );
        fi;
        Add( irreds, values );
      od;
    fi;

    return rec( all:= irreds, nonfaith:= nonfaith, faith:= faith );
    end );


#############################################################################
##
#M  CharacterTableIsoclinic( <ordtbl>, <nsg>, <center> )
##
##  This is the method that does the work.
##  Let $G$ and $H$ be the two isoclinic groups in question, embedded into
##  the group $K$ that is the central product of $G$ and a cyclic group
##  $Z = \langle z \rangle$
##  of twice the order of the central subgroup of $G$ given by <center>.
##  Then $K$ is also the central product of $H$ and $Z$.
##  Let <ordtbl> be the ordinary character table of $G$.
##  We have to construct the ordinary character table of $H$.
##  Currently the only supported cases for $|Z|$ are $4$ and $8$.
##
##  We set up a character table of the same format as <ordtbl>.
##  The classes inside the normal subgroup given by <nsg> correspond to
##  $U = G \cap H$.
##  The classes of $H$ outside $U$ are given by representatives $g z$
##  where $g$ runs over class representatives of $G$ outside $U$.
##
InstallOtherMethod( CharacterTableIsoclinic,
    "for an ordinary character table and two lists of class positions",
    [ IsOrdinaryTable, IsObject, IsObject ],
    function( tbl, nsg, center )
    local centralizers, classes, orders, size, half, kernel, xpos, outer,
          irreds, isoclinic, factorfusion, invfusion, p, map, k, ypos, class,
          old, images, fus;

    centralizers:= SizesCentralizers( tbl );
    classes:= SizesConjugacyClasses( tbl );
    orders:= ShallowCopy( OrdersClassRepresentatives( tbl ) );
    size:= Size( tbl );

    # Perhaps only the central subgroup was specified.
    if center = fail and IsList( nsg )
                     and Sum( classes{ nsg } ) <> size / 2 then
      center:= nsg;
      nsg:= fail;
    fi;

    # Check `nsg'.
    if nsg = fail then
      # Identify the unique normal subgroup of index 2.
      half:= size / 2;
      kernel:= Filtered( List( LinearCharacters( tbl ),
                               ClassPositionsOfKernel ),
                         ker -> Sum( classes{ ker }, 0 ) = half );
    elif IsList( nsg ) and Sum( classes{ nsg }, 0 ) = size / 2 then
      kernel:= [ nsg ];
    else
      Error( "normal subgroup described by <nsg> must have index 2" );
    fi;

    # Check `center'.
    if center = fail then
      # Get the unique central subgroup of order 2 in the normal subgroup.
      center:= Filtered( [ 1 .. Length( classes ) ],
                         i -> classes[i] = 1 and orders[i] = 2
                              and ForAny( kernel, n -> i in n ) );
      if Length( center ) <> 1 then
        Error( "central subgroup of order 2 not uniquely determined,\n",
               "use CharacterTableIsoclinic( <tbl>, <classes>, <center> )" );
      fi;
    elif IsPosInt( center ) then
      center:= [ center ];
    else
      center:= Difference( center, [ 1 ] );
    fi;

    # If there is more than one index 2 subgroup
    # and if there is a unique central subgroup $Z$ of order 2 or 4
    # then consider only those index 2 subgroups containing $Z$.
    if 1 < Length( kernel ) then
      kernel:= Filtered( kernel, ker -> IsSubset( ker, center ) );
    fi;
    if Length( kernel ) <> 1 then
      Error( "normal subgroup of index 2 not uniquely determined,\n",
             "use CharacterTableIsoclinic( <tbl>, <classes_of_nsg> )" );
    fi;
    nsg:= kernel[1];

    if not IsSubset( nsg, center ) then
      Error( "<center> must lie in <nsg>" );
    elif ForAny( center, i -> classes[i] <> 1 ) then
      Error( "<center> must be a list of positions of central classes" );
    elif Length( center ) = 1 then
      xpos:= center[1];
      if orders[ xpos ] <> 2 then
        Error( "<center> must list the classes of a central subgroup" );
      fi;
    elif Length( center ) = 3 then
      xpos:= First( center, i -> orders[i] = 4 );
      if xpos = fail then
        Error( "<center> must list the classes of a cyclic subgroup" );
      elif not ( PowerMap( tbl, 3, xpos ) in center and
                 PowerMap( tbl, 2, xpos ) in center ) then
        Error( "<center> must list the classes of a central subgroup" );
      fi;
    else
      Error( "the central subgroup must have order 2 or 4" );
    fi;

    # classes outside the normal subgroup
    outer:= Difference( [ 1 .. Length( classes ) ], nsg );

    # Adjust faithful characters in outer classes.
    irreds:= IrreducibleCharactersOfIsoclinicGroup( Irr( tbl ), center,
                 outer, xpos );

    # Make the isoclinic table.
    isoclinic:= Concatenation( "Isoclinic(", Identifier( tbl ), ")" );
#T careful!!
#T better construct a defining name
    ConvertToStringRep( isoclinic );

    isoclinic:= rec(
        UnderlyingCharacteristic   := 0,
        Identifier                 := isoclinic,
        Size                       := size,
        SizesCentralizers          := centralizers,
        SizesConjugacyClasses      := classes,
        OrdersClassRepresentatives := orders,
        ComputedClassFusions       := [],
        ComputedPowerMaps          := [],
        Irr                        := irreds.all );

    # Get the fusion map onto the factor group modulo the central subgroup.
    # We assume that the first class of element order two or four in the
    # kernel contains the element $x = z^2 \in U$.
    factorfusion:= CollapsedMat( irreds.nonfaith, [] ).fusion;
    invfusion:= InverseMap( factorfusion );

    # Adjust the power maps.
    for p in Set( Factors( size ) ) do

      map:= ShallowCopy( PowerMap( tbl, p ) );

      # For $p \bmod |z| = 1$, the map remains unchanged,
      # since $g^p = h$ implies $(gz)^p = hz^p = hz$ then.
      # So we have to deal with the cases $p = 2$ and $p$ congruent
      # to the other odd positive integers up to $|z| - 1$.
      k:= p mod ( 2 * Length( center ) + 2 );
      if p = 2 then
        ypos:= xpos;
      else
        ypos:= PowerMap( tbl, (k-1)/2, xpos );
      fi;

      # The squares of elements outside $U$ lie in $U$.
      # For $g^2 = h \in U$, we have $(gz)^2 = hx$.
      # If $|Z| = 4$ then we take the other
      # preimage under the factor fusion, if exists.
      # If $|Z| = 8$ then we take the one among the up to four preimages
      # for which the character values fit.

      # For $g^p = h$,
      # we have $(gz)^p = hz^p = hz^k = hz x^{(k-1)/2} = hz y$,
      # where $k$ is one of $1, 3, 5, 7$.
      # For $k \not= 1$,
      # we must choose the appropriate preimage under the factor fusion;
      # the `p'-th powers lie outside `nsg' in this case.
      if k <> 1 then
        for class in outer do
          old:= map[ class ];
          images:= invfusion[ factorfusion[ old ] ];
          if IsList( images ) then
            if Length( center ) = 1 then
              # The image is ``the other'' class.
              images:= Difference( images, [ old ] );
            else
              # It can happen that the class powers to itself.
              # Use the character values for the decision.
              images:= Filtered( images,
                         x -> ForAll( irreds.faith,
                                chi -> chi[ old ] = 0 or
                                chi[x] / chi[ old ] = chi[ ypos ] / chi[1] ) );
            fi;
            if Length( images ) <> 1 then
              Error( Ordinal( p ), " power map is not uniquely determined" );
            fi;
            map[ class ]:= images[1];
            if p = 2 then
              orders[ class ]:= 2 * orders[ images[1] ];
            fi;
          fi;
        od;
      fi;

      isoclinic.ComputedPowerMaps[p]:= map;

    od;

    # Transfer those factor fusions that have `center' inside the kernel.
    for fus in ComputedClassFusions( tbl ) do
      if Set( fus.map{ center } ) = [ 1 ] then
        Add( isoclinic.ComputedClassFusions, fus );
      fi;
    od;

    # Convert the record into a library table.
    # (The data are to be read w.r.t. the class permutation of `tbl'.)
    ConvertToLibraryCharacterTableNC( isoclinic );
    SetSourceOfIsoclinicTable( isoclinic, [ tbl, nsg, center, xpos ] );

    # Return the result.
    return isoclinic;
    end );


#############################################################################
##
#M  CharacterTableIsoclinic( <modtbl>[, <nsg>][, <centre>] ) . . Brauer table
##
##  For the isoclinic table of a Brauer table of the structure $2.G.2$,
##  we transfer the normal subgroup information to the regular classes,
##  and adjust the irreducibles.
##
InstallMethod( CharacterTableIsoclinic,
    "for a Brauer table",
    [ IsBrauerTable ],
    tbl -> CharacterTableIsoclinic( tbl, fail, fail ) );

InstallMethod( CharacterTableIsoclinic,
    "for a Brauer table and a list of classes",
    [ IsBrauerTable, IsList and IsCyclotomicCollection ],
    function( tbl, nsg )
    return CharacterTableIsoclinic( tbl, nsg, fail );
    end );

InstallMethod( CharacterTableIsoclinic,
    "for a Brauer table and a class pos.",
    [ IsBrauerTable, IsPosInt ],
    function( tbl, center )
    return CharacterTableIsoclinic( tbl, fail, center );
    end );

InstallOtherMethod( CharacterTableIsoclinic,
    "for a Brauer table and two lists of class positions",
    [ IsBrauerTable, IsObject, IsObject ],
    function( tbl, nsg, center )
    return CharacterTableIsoclinic( tbl, CharacterTableIsoclinic(
               OrdinaryCharacterTable( tbl ), nsg, center ) );
    end );


#############################################################################
##
#M  CharacterTableIsoclinic( <modtbl>, <ordiso> )
##
##  In some cases, we have already the ordinary isoclinic table,
##  and do not want to create it anew.
##
InstallOtherMethod( CharacterTableIsoclinic,
    "for a Brauer table and an ordinary table",
    [ IsBrauerTable, IsOrdinaryTable ],
    function( modtbl, ordiso )
    local p, reg, irreducibles, source, factorfusion, nsg, centre, xpos,
          outer, pi, fus, inv;

    p:= UnderlyingCharacteristic( modtbl );
    reg:= CharacterTableRegular( ordiso, p );

    # Compute the irreducibles as for the ordinary isoclinic table.
    if p = 2 then
      irreducibles:= List( Irr( modtbl ), ValuesOfClassFunction );
    else
      source:= SourceOfIsoclinicTable( ordiso );
      factorfusion:= GetFusionMap( reg, ordiso );
      nsg:= List( source[2], i -> Position( factorfusion, i ) );
      centre:= List( source[3], i -> Position( factorfusion, i ) );
      xpos:= Position( factorfusion, source[4] );
      outer:= Difference( [ 1 .. NrConjugacyClasses( reg ) ], nsg );
      irreducibles:= IrreducibleCharactersOfIsoclinicGroup( Irr( modtbl ),
                        centre, outer, xpos ).all;
    fi;

    # If the classes of the ordinary isoclinic table have been sorted then
    # adjust the modular irreducibles accordingly.
    # (Note that when an ordinary isoclinic table t2 is created from t1 with
    # `CharacterTableIsoclinic' then t2 has no `ClassPermutation' value,
    # and the attribute `SourceOfIsoclinicTable' is set in t2.
    # When a sorted table t3 is created from t2 then a `ClassPermutation'
    # value appears in t3, and the `SourceOfIsoclinicTable' value of t3
    # is simply taken over from t2.
    # Inside the current GAP function, `modtbl' equals the Brauer table
    # for t1, and `ordiso' equals t3.
    # With `IrreducibleCharactersOfIsoclinicGroup', we get irreducibles
    # that fit to t2, thus we have to apply the permutation from t2 to t3.
    if HasClassPermutation( ordiso ) then
      pi:= ClassPermutation( ordiso );
      fus:= GetFusionMap( reg, ordiso );
      inv:= InverseMap( fus );
      pi:= PermList( List( [ 1 .. Length( fus ) ],
                           i -> inv[ fus[i]^pi ] ) );
      irreducibles:= List( irreducibles, x -> Permuted( x, pi ) );
    fi;

    SetIrr( reg, List( irreducibles, vals -> Character( reg, vals ) ) );

    # Return the result.
    return reg;
    end );


#############################################################################
##
#F  CharacterTableOfNormalSubgroup( <tbl>, <classes> )
##
InstallGlobalFunction( CharacterTableOfNormalSubgroup,
    function( tbl, classes )
    local sizesclasses,   # class lengths of the result
          size,           # size of the result
          nccl,           # no. of classes
          orders,         # repr. orders of the result
          centralizers,   # centralizer orders of the result
          result,         # result table
          err,            # list of classes that must split
          inverse,        # inverse map of `classes'
          p,              # loop over primes
          irreducibles,   # list of irred. characters
          chi,            # loop over irreducibles of `tbl'
          char;           # one character values list for `result'

    if not IsOrdinaryTable( tbl ) then
      Error( "<tbl> must be an ordinary character table" );
    fi;

    sizesclasses:= SizesConjugacyClasses( tbl ){ classes };
    size:= Sum( sizesclasses );

    if Size( tbl ) mod size <> 0 then
      Error( "<classes> is not a normal subgroup" );
    fi;

    nccl:= Length( classes );
    orders:= OrdersClassRepresentatives( tbl ){ classes };
    centralizers:= List( sizesclasses, x -> size / x );

    result:= Concatenation( "Rest(", Identifier( tbl ), ",",
                            String( classes ), ")" );
    ConvertToStringRep( result );

    result:= rec(
        UnderlyingCharacteristic   := 0,
        Identifier                 := result,
        Size                       := size,
        SizesCentralizers          := centralizers,
        SizesConjugacyClasses      := sizesclasses,
        OrdersClassRepresentatives := orders,
        ComputedPowerMaps          := []             );

    err:= Filtered( [ 1 .. nccl ],
                    x-> centralizers[x] mod orders[x] <> 0 );
    if not IsEmpty( err ) then
      Info( InfoCharacterTable, 2,
            "CharacterTableOfNormalSubgroup: classes in " , err,
            " necessarily split" );
    fi;
    inverse:= InverseMap( classes );

    for p in [ 1 .. Length( ComputedPowerMaps( tbl ) ) ] do
      if IsBound( ComputedPowerMaps( tbl )[p] ) then
        result.ComputedPowerMaps[p]:=
            CompositionMaps( inverse,
                CompositionMaps( ComputedPowerMaps( tbl )[p], classes ) );
      fi;
    od;

    # Compute the irreducibles if known.
    irreducibles:= [];
    if HasIrr( tbl ) then

      for chi in Irr( tbl ) do
        char:= ValuesOfClassFunction( chi ){ classes };
        if     Sum( [ 1 .. nccl ],
                  i -> sizesclasses[i] * char[i] * GaloisCyc(char[i],-1), 0 )
               = size
           and not char in irreducibles then
          Add( irreducibles, char );
        fi;
      od;

    fi;

    if Length( irreducibles ) = nccl then

      result.Irr:= irreducibles;

      # Convert the record into a library table.
      ConvertToLibraryCharacterTableNC( result );

    else

      p:= Size( tbl ) / size;
      if IsPrimeInt( p ) and not IsEmpty( irreducibles ) then
        Info( InfoCharacterTable, 2,
              "CharacterTableOfNormalSubgroup: The table must have ",
              p * NrConjugacyClasses( tbl ) -
              ( p^2 - 1 ) * Length( irreducibles ), " classes\n",
              "#I   (now ", Length( classes ), ", after nec. splitting ",
              Length( classes ) + (p-1) * Length( err ), ")" );
      fi;

      Error( "tables in progress not yet supported" );
#T !!

    fi;

    # Store the fusion into `tbl'.
    StoreFusion( result, classes, tbl );

    # Return the result.
    return result;
end );


#############################################################################
##
##  11. Sorted Character Tables
##


#############################################################################
##
#F  PermutationToSortCharacters( <tbl>, <chars>, <degree>, <norm>, <galois> )
##
InstallGlobalFunction( PermutationToSortCharacters,
    function( tbl, chars, degree, norm, galois )
    local galoisfams, i, j, chi, listtosort, len;

    if IsEmpty( chars ) then
      return ();
    fi;

    # Rational characters shall precede irrational ones of same degree,
    # and the trivial character shall be the first one.
    # If `galois = true' then also each family of Galois conjugate
    # characters shall be put together.
    if galois = true then
      galois:= GaloisMat( chars ).galoisfams;
      galoisfams:= [];
      for i in [ 1 .. Length( chars ) ] do
        if galois[i] = 1 then
          if ForAll( chars[i], x -> x = 1 ) then
            galoisfams[i]:= -1;
          else
            galoisfams[i]:= 0;
          fi;
        elif IsList( galois[i] ) then
          for j in galois[i][1] do
            galoisfams[j]:= i;
          od;
        fi;
      od;
    else
      galoisfams:= [];
      for i in [ 1 .. Length( chars ) ] do
        chi:= ValuesOfClassFunction( chars[i] );
        if ForAll( chi, IsRat ) then
          if ForAll( chi, x -> x = 1 ) then
            galoisfams[i]:= -1;
          else
            galoisfams[i]:= 0;
          fi;
        else
          galoisfams[i]:= 1;
        fi;
      od;
    fi;

    # Compute the permutation.
    listtosort:= [];
    if degree and norm then
      for i in [ 1 .. Length( chars ) ] do
        listtosort[i]:= [ ScalarProduct( tbl, chars[i], chars[i] ),
                          chars[i][1],
                          galoisfams[i], i ];
      od;
    elif degree then
      for i in [ 1 .. Length( chars ) ] do
        listtosort[i]:= [ chars[i][1],
                          galoisfams[i], i ];
      od;
    elif norm then
      for i in [ 1 .. Length( chars ) ] do
        listtosort[i]:= [ ScalarProduct( chars[i], chars[i] ),
                          galoisfams[i], i ];
      od;
    else
      Error( "at least one of <degree> or <norm> must be `true'" );
    fi;
    Sort( listtosort );
    len:= Length( listtosort[1] );
    for i in [ 1 .. Length( chars ) ] do
      listtosort[i]:= listtosort[i][ len ];
    od;
    return Inverse( PermList( listtosort ) );
    end );


#############################################################################
##
#M  CharacterTableWithSortedCharacters( <tbl> )
##
InstallMethod( CharacterTableWithSortedCharacters,
    "for a character table",
    [ IsCharacterTable ],
    tbl -> CharacterTableWithSortedCharacters( tbl,
       PermutationToSortCharacters( tbl, Irr( tbl ), true, false, true ) ) );


#############################################################################
##
#M  CharacterTableWithSortedCharacters( <tbl>, <perm> )
##
InstallMethod( CharacterTableWithSortedCharacters,
    "for an ordinary character table, and a permutation",
    [ IsOrdinaryTable, IsPerm ],
    function( tbl, perm )
    local new, i;

    # Create the new table.
    new:= ConvertToLibraryCharacterTableNC(
                 rec( UnderlyingCharacteristic := 0 ) );

    # Set the supported attribute values that need not be permuted.
    for i in [ 3, 6 .. Length( SupportedCharacterTableInfo ) ] do
      if Tester( SupportedCharacterTableInfo[ i-2 ] )( tbl )
         and not ( "character" in SupportedCharacterTableInfo[i] ) then
        Setter( SupportedCharacterTableInfo[ i-2 ] )( new,
            SupportedCharacterTableInfo[ i-2 ]( tbl ) );
      fi;
    od;

    # Set the permuted attribute values.
    SetIrr( new, Permuted( List( Irr( tbl ),
        chi -> Character( new, ValuesOfClassFunction( chi ) ) ), perm ) );
    if HasCharacterParameters( tbl ) then
      SetCharacterParameters( new,
          Permuted( CharacterParameters( tbl ), perm ) );
    fi;

    # Return the table.
    return new;
    end );


#############################################################################
##
#M  SortedCharacters( <tbl>, <chars> )
##
InstallMethod( SortedCharacters,
    "for a character table, and a homogeneous list",
    [ IsNearlyCharacterTable, IsHomogeneousList ],
    function( tbl, chars )
    return Permuted( chars,
               PermutationToSortCharacters( tbl, chars, true, true, true ) );
    end );


#############################################################################
##
#M  SortedCharacters( <tbl>, <chars>, \"norm\" )
#M  SortedCharacters( <tbl>, <chars>, \"degree\" )
##
InstallMethod( SortedCharacters,
    "for a character table, a homogeneous list, and a string",
    [ IsNearlyCharacterTable, IsHomogeneousList, IsString ],
    function( tbl, chars, string )
    if string = "norm" then
      return Permuted( chars,
          PermutationToSortCharacters( tbl, chars, false, true, false ) );
    elif string = "degree" then
      return Permuted( chars,
          PermutationToSortCharacters( tbl, chars, true, false, false ) );
    else
      Error( "<string> must be \"norm\" or \"degree\"" );
    fi;
    end );


#############################################################################
##
#F  PermutationToSortClasses( <tbl>, <classes>, <orders>, <galois> )
##
InstallGlobalFunction( PermutationToSortClasses,
    function( tbl, classes, orders, galois )
    local nccl, fams, galoislist, i, j, listtosort, len;

    nccl:= NrConjugacyClasses( tbl );

    # Compute the values for the Galois conjugates if needed.
    if galois and HasIrr( tbl ) then
      fams:= GaloisMat( TransposedMat( Irr( tbl ) ) ).galoisfams;
      galoislist:= [];
      for i in [ 1 .. nccl ] do
        if   fams[i] = 1 then
          # Rational classes precede classes with irrationalities
          # of same element order and class length.
          galoislist[i]:= 0;
        elif IsList( fams[i] ) then
          # Classes in the same family get the same key.  (The relative
          # positions of the first class in each family are maintained.)
          for j in fams[i][1] do
            galoislist[j]:= i;
          od;
        fi;
      od;
    else
      galoislist:= ListWithIdenticalEntries( nccl, 0 );
    fi;

    # Compute the permutation.
    listtosort:= [];
    if classes and orders then
      classes:= SizesConjugacyClasses( tbl );
      orders:= OrdersClassRepresentatives( tbl );
      for i in [ 1 .. NrConjugacyClasses( tbl ) ] do
        listtosort[i]:= [ orders[i], classes[i], galoislist[i], i ];
      od;
    elif classes then
      classes:= SizesConjugacyClasses( tbl );
      for i in [ 1 .. NrConjugacyClasses( tbl ) ] do
        listtosort[i]:= [ classes[i], galoislist[i], i ];
      od;
    elif orders then
      orders:= OrdersClassRepresentatives( tbl );
      for i in [ 1 .. NrConjugacyClasses( tbl ) ] do
        listtosort[i]:= [ orders[i], galoislist[i], i ];
      od;
    elif galois then
      for i in [ 1 .. NrConjugacyClasses( tbl ) ] do
        listtosort[i]:= [ galoislist[i], i ];
      od;
    else
      Error( "<classes> or <orders> or <galois> must be `true'" );
    fi;
    Sort( listtosort );
    len:= Length( listtosort[1] );
    for i in [ 1 .. Length( listtosort ) ] do
      listtosort[i]:= listtosort[i][ len ];
    od;
#T better use `TransposedMat'?
    return Inverse( PermList( listtosort ) );
    end );


#############################################################################
##
#M  CharacterTableWithSortedClasses( <tbl> )
##
InstallMethod( CharacterTableWithSortedClasses,
    "for a character table",
    [ IsCharacterTable ],
    tbl -> CharacterTableWithSortedClasses( tbl,
               PermutationToSortClasses( tbl, true, true, true ) ) );


#############################################################################
##
#M  CharacterTableWithSortedClasses( <tbl>, \"centralizers\" )
#M  CharacterTableWithSortedClasses( <tbl>, \"representatives\" )
##
InstallMethod( CharacterTableWithSortedClasses,
    "for a character table, and string",
    [ IsCharacterTable, IsString ],
    function( tbl, string )
    if   string = "centralizers" then
      return CharacterTableWithSortedClasses( tbl,
                 PermutationToSortClasses( tbl, true, false, true ) );
    elif string = "representatives" then
      return CharacterTableWithSortedClasses( tbl,
                 PermutationToSortClasses( tbl, false, true, true ) );
    else
      Error( "<string> must be \"centralizers\" or \"representatives\"" );
    fi;
    end );


#############################################################################
##
#M  CharacterTableWithSortedClasses( <tbl>, <permutation> )
##
InstallMethod( CharacterTableWithSortedClasses,
    "for an ordinary character table, and a permutation",
    [ IsOrdinaryTable, IsPerm ],
    function( tbl, perm )

    local new, i, attr, fus, tblmaps, permmap, inverse, k;

    # Catch trivial cases.
    if 1^perm <> 1 then
      Error( "<perm> must fix the first class" );
    elif IsOne( perm ) then
      return tbl;
    fi;

    # Create the new table.
    new:= ConvertToLibraryCharacterTableNC(
                 rec( UnderlyingCharacteristic := 0 ) );

    # Set supported attributes that do not need adjustion.
    for i in [ 3, 6 .. Length( SupportedCharacterTableInfo ) ] do
      if Tester( SupportedCharacterTableInfo[ i-2 ] )( tbl )
         and not ( "class" in SupportedCharacterTableInfo[i] ) then
        Setter( SupportedCharacterTableInfo[ i-2 ] )( new,
            SupportedCharacterTableInfo[ i-2 ]( tbl ) );
      fi;
    od;

    # Set known attributes that must be adjusted by simply permuting.
    for attr in [ ClassParameters,
                  ConjugacyClasses,
                  IdentificationOfConjugacyClasses,
                  OrdersClassRepresentatives,
                  SizesCentralizers,
                  SizesConjugacyClasses,
                ] do
      if Tester( attr )( tbl ) then
        Setter( attr )( new, Permuted( attr( tbl ), perm ) );
      fi;
    od;

    # For each fusion, the map must be permuted.
    for fus in ComputedClassFusions( tbl ) do
      Add( ComputedClassFusions( new ),
           rec( name:= fus.name, map:= Permuted( fus.map, perm ) ) );
    od;

    # Each irreducible character must be permuted.
    if HasIrr( tbl ) then
      SetIrr( new,
          List( Irr( tbl ), chi -> Character( new,
                Permuted( ValuesOfClassFunction( chi ), perm ) ) ) );
    fi;

    # Power maps must be ``conjugated''.
    if HasComputedPowerMaps( tbl ) then

      tblmaps:= ComputedPowerMaps( tbl );
      permmap:= ListPerm( perm );
      inverse:= ListPerm( perm^(-1) );
      for k in [ Length( permmap ) + 1 .. NrConjugacyClasses( tbl ) ] do
        permmap[k]:= k;
        inverse[k]:= k;
      od;
      for k in [ 1 .. Length( tblmaps ) ] do
        if IsBound( tblmaps[k] ) then
          ComputedPowerMaps( new )[k]:= CompositionMaps( permmap,
              CompositionMaps( tblmaps[k], inverse ) );
        fi;
      od;

    fi;

    # The automorphisms of the sorted table are obtained by conjugation.
    if HasAutomorphismsOfTable( tbl ) then
      SetAutomorphismsOfTable( new, GroupByGenerators(
          List( GeneratorsOfGroup( AutomorphismsOfTable( tbl ) ),
                x -> x^perm ), () ) );
    fi;

    # The class permutation must be multiplied with the new permutation.
    if HasClassPermutation( tbl ) then
      SetClassPermutation( new, ClassPermutation( tbl ) * perm );
    else
      SetClassPermutation( new, perm );
    fi;

    # Return the new table.
    return new;
    end );


#############################################################################
##
#F  SortedCharacterTable( <tbl>, <kernel> )
#F  SortedCharacterTable( <tbl>, <normalseries> )
#F  SortedCharacterTable( <tbl>, <facttbl>, <kernel> )
##
InstallGlobalFunction( SortedCharacterTable, function( arg )
    local i, j, tbl, kernels, list, columns, rows, chi, F, facttbl, kernel,
          fus, nrfus, trans, factfus, ker, new;

    # Check the arguments.
    if not ( Length( arg ) in [ 2, 3 ] and IsOrdinaryTable( arg[1] ) and
             IsList( arg[ Length( arg ) ] ) and
             ( Length( arg ) = 2 or IsOrdinaryTable( arg[2] ) ) ) then
      Error( "usage: SortedCharacterTable( <tbl>, <kernel> ) resp.\n",
             "       SortedCharacterTable( <tbl>, <normalseries> ) resp.\n",
             "       SortedCharacterTable( <tbl>, <facttbl>, <kernel> )" );
    fi;

    tbl:= arg[1];

    if Length( arg ) = 2 then

      # Sort w.r.t. kernel or series of kernels.
      kernels:= arg[2];
      if IsEmpty( kernels ) then
        return tbl;
      fi;

      # Regard single kernel as special case of normal series.
      if IsInt( kernels[1] ) then
        kernels:= [ kernels ];
      fi;

      # permutation of classes:
      # `list[i] = k' if `i' is contained in `kernels[k]' but not
      # in `kernels[k-1]'; only the first position contains a zero
      # to ensure that the identity is not moved.
      # If class `i' is not contained in any of the kernels we have
      # `list[i] = infinity'.
      list:= [ 0 ];
      for i in [ 2 .. NrConjugacyClasses( tbl ) ] do
        list[i]:= infinity;
      od;
      for i in [ 1 .. Length( kernels ) ] do
        for j in kernels[i] do
          if not IsInt( list[j] ) then
            list[j]:= i;
          fi;
        od;
      od;
      columns:= Sortex( list );

      # permutation of characters:
      # `list[i] = -(k+1)' if `Irr( <tbl> )[i]' has `kernels[k]'
      # in its kernel but not `kernels[k+1]';
      # if the `i'--th irreducible contains none of `kernels' in its kernel,
      # we have `list[i] = -1',
      # for an irreducible with kernel containing
      # `kernels[ Length( kernels ) ]',
      # the value is `-(Length( kernels ) + 1)'.
      list:= [];
      if HasIrr( tbl ) then
        for chi in Irr( tbl ) do
          i:= 1;
          while     i <= Length( kernels )
                and ForAll( kernels[i], x -> chi[x] = chi[1] ) do
            i:= i+1;
          od;
          Add( list, -i );
        od;
        rows:= Sortex( list );
      else
        rows:= ();
      fi;

    else

      # Sort w.r.t. the table of a factor group.
      facttbl:= arg[2];
      kernel:= arg[3];
      fus:= ComputedClassFusions( tbl );
      nrfus:= Length( fus );
      if GetFusionMap( tbl, facttbl ) <> fail then
        F:= facttbl;
        trans:= rec( rows:= (), columns:= () );
      else
        F:= CharacterTableFactorGroup( tbl, kernel );
        trans:= TransformingPermutationsCharacterTables( F, facttbl );
        if trans = fail then
          Info( InfoCharacterTable, 2,
                "SortedCharacterTable: tables of factors not compatible" );
          return fail;
        fi;
      fi;

      # permutation of classes:
      # `list[i] = k' if `i' maps to the `j'--th class of <F>, and
      # `trans.columns[j] = k'
      factfus:= OnTuples( GetFusionMap( tbl, F ), trans.columns );
      columns:= Sortex( ShallowCopy( factfus ) );

      # permutation of characters:
      # divide `Irr( <tbl> )' into two parts, those containing
      # the kernel of the factor fusion in their kernel (value 0),
      # and the others (value 1); do not forget to permute characters
      # of the factor group with `trans.rows'.
      if HasIrr( tbl ) then
        ker:= ClassPositionsOfKernel( GetFusionMap( tbl, F ) );
        list:= [];
        for chi in Irr( tbl ) do
          if ForAll( ker, x -> chi[x] = chi[1] ) then
            Add( list, 0 );
          else
            Add( list, 1 );
          fi;
        od;
        rows:= Sortex( list ) * trans.rows;
      else
        rows:= ();
      fi;

      if nrfus < Length( fus ) then
        # Delete the fusion to `F' on `tbl'.
        Unbind( fus[ Length( fus ) ] );
      fi;

      # Store the fusion to `facttbl'.
      StoreFusion( tbl, factfus, facttbl );

    fi;

    # Sort and return.
    new:= CharacterTableWithSortedClasses( tbl, columns );
    new:= CharacterTableWithSortedCharacters( new, rows );
    return new;
end );


############################################################################
##
##  12. Storing Normal Subgroup Information
##


##############################################################################
##
#M  NormalSubgroupClassesInfo( <tbl> )
##
InstallMethod( NormalSubgroupClassesInfo,
    "default method, initialization",
    [ IsOrdinaryTable ],
    tbl -> rec( nsg        := [],
                nsgclasses := [],
                nsgfactors := [] ) );


##############################################################################
##
#M  ClassPositionsOfNormalSubgroup( <tbl>, <N> )
##
InstallGlobalFunction( ClassPositionsOfNormalSubgroup, function( tbl, N )

    local info,
          classes,    # result list
          found,      # `N' already found?
          pos,        # position in `info.nsg'
          G,          # underlying group of `tbl'
          ccl;        # conjugacy classes of `tbl'

    info:= NormalSubgroupClassesInfo( tbl );

    # Search for `N' in `info.nsg'.
    found:= false;
    pos:= 0;
    while ( not found ) and pos < Length( info.nsg ) do
      pos:= pos+1;
      if IsIdenticalObj( N, info.nsg[ pos ] ) then
        found:= true;
      fi;
    od;
    if not found then
      pos:= Position( info.nsg, N );
    fi;

    if pos = fail then

      # The group is not yet stored here, try `NormalSubgroups( G )'.
      G:= UnderlyingGroup( tbl );
      if HasNormalSubgroups( G ) then

        # Identify our normal subgroup.
        N:= NormalSubgroups( G )[ Position( NormalSubgroups( G ), N ) ];

      fi;

      ccl:= ConjugacyClasses( tbl );
      classes:= Filtered( [ 1 .. Length( ccl ) ],
                          x -> Representative( ccl[x] ) in N );

      Add( info.nsgclasses, classes );
      Add( info.nsg       , N       );
      pos:= Length( info.nsg );

    fi;

    return info.nsgclasses[ pos ];
end );


##############################################################################
##
#F  NormalSubgroupClasses( <tbl>, <classes> )
##
InstallGlobalFunction( NormalSubgroupClasses, function( tbl, classes )

    local info,
          pos,        # position of the group in the list of such groups
          G,          # underlying group of `tbl'
          ccl,        # `G'-conjugacy classes in our normal subgroup
          size,       # size of our normal subgroup
          candidates, # bound normal subgroups that possibly are our group
          group,      # the normal subgroup
          repres,     # list of representatives of conjugacy classes
          found,      # normal subgroup already identified
          i;          # loop over normal subgroups

    info:= NormalSubgroupClassesInfo( tbl );

    classes:= Set( classes );
    pos:= Position( info.nsgclasses, classes );
    if pos = fail then

      # The group is not yet stored here, try `NormalSubgroups( G )'.
      G:= UnderlyingGroup( tbl );

      if HasNormalSubgroups( G ) then

        # Identify our normal subgroup.
        ccl:= ConjugacyClasses( tbl ){ classes };
        size:= Sum( ccl, Size, 0 );
        candidates:= Filtered( NormalSubgroups( G ), x -> Size( x ) = size );
        if Length( candidates ) = 1 then
          group:= candidates[1];
        else

          repres:= List( ccl, Representative );
          found:= false;
          i:= 0;
          while not found do
            i:= i+1;
            if ForAll( repres, x -> x in candidates[i] ) then
              found:= true;
            fi;
          od;

          if not found then
            Error( "<classes> does not describe a normal subgroup" );
          fi;

          group:= candidates[i];

        fi;

      elif classes = [ 1 ] then

        group:= TrivialSubgroup( G );

      else

        # The group is not yet stored, we have to construct it.
        repres:= List( ConjugacyClasses( tbl ){ classes }, Representative );
        group := NormalClosure( G, SubgroupNC( G, repres ) );

      fi;

      if HasIsNaturalSymmetricGroup(G) then IsNaturalAlternatingGroup(group);fi;

      MakeImmutable( classes );
      Add( info.nsgclasses, classes );
      Add( info.nsg       , group   );
      pos:= Length( info.nsg );

    fi;

    return info.nsg[ pos ];
end );


##############################################################################
##
#F  FactorGroupNormalSubgroupClasses( <tbl>, <classes> )
##
InstallGlobalFunction( FactorGroupNormalSubgroupClasses,
    function( tbl, classes )

    local info,
          f,     # the result
          pos;   # position in list of normal subgroups

    info:= NormalSubgroupClassesInfo( tbl );
    pos:= Position( info.nsgclasses, classes );

    if pos = fail then
      f:= UnderlyingGroup( tbl ) / NormalSubgroupClasses( tbl, classes );
      info.nsgfactors[ Length( info.nsgclasses ) ]:= f;
    elif IsBound( info.nsgfactors[ pos ] ) then
      f:= info.nsgfactors[ pos ];
    else
      f:= UnderlyingGroup( tbl ) / info.nsg[ pos ];
      info.nsgfactors[ pos ]:= f;
    fi;

    return f;
end );


############################################################################
##
##  13. Auxiliary Stuff
##


#T ############################################################################
#T ##
#T #F  Lattice( <tbl> ) . .  lattice of normal subgroups of a c.t.
#T ##
#T Lattice := function( tbl )
#T
#T     local i, j,       # loop variables
#T           nsg,        # list of normal subgroups
#T           len,        # length of `nsg'
#T           sizes,      # sizes of normal subgroups
#T           max,        # one maximal subgroup
#T           maxes,      # list of maximal contained normal subgroups
#T           actsize,    # actuel size of normal subgroups
#T           actmaxes,
#T           latt;       # the lattice record
#T
#T     # Compute normal subgroups and their sizes
#T     nsg:= ClassPositionsOfNormalSubgroups( tbl );
#T     len:= Length( nsg );
#T     sizes:= List( nsg, x -> Sum( tbl.classes{ x }, 0 ) );
#T     SortParallel( sizes, nsg );
#T
#T     # For each normal subgroup, compute the maximal contained ones.
#T     maxes:= [];
#T     i:= 1;
#T     while i <= len do
#T       actsize:= sizes[i];
#T       actmaxes:= Filtered( [ 1 .. i-1 ], x -> actsize mod sizes[x] = 0 );
#T       while i <= len and sizes[i] = actsize do
#T         max:= Filtered( actmaxes, x -> IsSubset( nsg[i], nsg[x] ) );
#T         for j in Reversed( max ) do
#T           SubtractSet( max, maxes[j] );
#T         od;
#T         Add( maxes, max );
#T         i:= i+1;
#T       od;
#T     od;
#T
#T     # construct the lattice record
#T     latt:= rec( domain          := tbl,
#T                 normalSubgroups := nsg,
#T                 sizes           := sizes,
#T                 maxes           := maxes,
#T                 XGAP            := rec( vertices := [ 1 .. len ],
#T                                         sizes    := sizes,
#T                                         maximals := maxes ),
#T                 operations      := PreliminaryLatticeOps );
#T
#T     # return the lattice record
#T     return latt;
#T end;


#############################################################################
##
#E