This file is indexed.

/usr/share/gap/lib/ctblauto.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
#############################################################################
##
#W  ctblauto.gi                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains functions to calculate automorphisms of matrices,
##  e.g., the character matrices of character tables, and functions to
##  calculate permutations transforming the rows of a matrix to the rows of
##  another matrix.
##
##  *Note*:
##  The methods in this file do not use the partition backtrack techniques.
##  It would be desirable to translate them.
##


#############################################################################
##
#F  FamiliesOfRows( <mat>, <maps> )
##
InstallGlobalFunction( FamiliesOfRows, function( mat, maps )
    local j, k,          # loop variables
          famreps,       # (sorted) representatives for families
          permutations,  # list of perms for each family
          families,      # list of members of each family
          copyrow,       # sorted row
          permrow,       # permutation to sort the row
          pos,           # position in `famreps'
          famlengths,    # list of lengths of the families
          perm,          # permutation to sort
          row;           # loop over `maps'

    famreps:= [ ShallowCopy( mat[1] ) ];
    permutations:= [ [ Sortex( famreps[1] ) ] ];
    families:= [ [ 1 ] ];

    for j in [ 2 .. Length( mat ) ] do

      # Get a sorted version of the `j'-th row.
      copyrow := ShallowCopy( mat[j] );
      permrow := Sortex( copyrow );
      pos     := PositionSorted( famreps, copyrow );

      if IsBound( famreps[ pos ] ) and famreps[ pos ] = copyrow then

        # We have found a member of the `pos'-th family.
        Add( permutations[ pos ], permrow );
        Add( families[ pos ], j );

      else

        # We have found a member of a new family.
        for k in Reversed( [ pos .. Length( famreps ) ] ) do
          famreps[ k+1 ]:= famreps[k];
          permutations[ k+1 ]:= permutations[k];
          families[ k+1 ]:= families[k];
        od;
        famreps[ pos ]:= copyrow;
        permutations[ pos ]:= [ permrow ];
        families[ pos ]:= [ j ];

       fi;

    od;

    # Each row in `maps' is treated as a family of its own.
    j:= Length( mat );
    for row in maps do
      j:= j+1;
      Add( famreps, ShallowCopy( row ) );
      Add( permutations, [ Sortex( famreps[ Length( famreps ) ] ) ] );
      Add( families, [ j ] );
    od;

    # Sort the families according to their length, and adjust the data.
    famlengths:= [];
    for k in [ 1 .. Length( famreps ) ] do
      famlengths[k]:= Length( permutations[k] );
    od;
    perm:= Sortex( famlengths );
    famreps      := Permuted( famreps,      perm );
    permutations := Permuted( permutations, perm );
    families     := Permuted( families,     perm );

    # Return the result.
    return rec( famreps      := famreps,
                permutations := permutations,
                families     := families      );
end );


#############################################################################
##
#F  MatAutomorphismsFamily( <chainG>, <K>, <family>, <permutations> )
##
##  Let <chainG> be a stabilizer chain for a group $G$,
##  <K> a list of generators for a subgroup $K$ of $G$,
##  <family> a ...,
##  and <permutations> ... .
##
##  `MatAutomorphismsFamily' returns a stabilizer chain for the closure of
##  $K$ ...
##
##  for a family <rows> of rows with representative (i.e., sorted vector)
##  <famrep> and corresponding permutations
##  `Sortex(<rows>[j])=<permutations>[j]',
##  the group of column permutations in the group with stabilizer chain
##  <chainG> is computed that acts on
##  the set <rows>.
##
##  <family> is a list that distributes the columns into families:
##  Stabilizing <family> is equivalent to stabilizing <famrep>; so the
##  elements of <permutations> must be computed with respect to <family>, too.
##  Two columns <i>, <j> lie in the same family iff
##  `<family>[<i>] = <family>[<j>'.
##  (More precisely, <family>[i] is the list of all positions lying in the
##  same family as i.)
##
##  <K> is a list of permutation generators for a known subgroup of the
##  required group.
##
##  Note: The returned group has a base compatible with the base of $G$,
##        i.e. not a reduced base (used for "TransformingPermutationFamily")
##
BindGlobal( "MatAutomorphismsFamily",
    function( chainG, K, family, permutations )
    local famlength,             # number of rows in the family
          nonbase,               # points not in the base of `chainG'
          stabilizes,            # local function to check generators of $G$
          gen,                   # loop over `chainG.generators'
          chainK,                # compatible stabilizer chain of $K$
          allowed,               # new parameter for the backtrack search
          ElementPropertyCoset,  # local function to search in a coset
          FindSubgroupProperty;  # local function to extend the stab. chain

    famlength:= Length( permutations );
        
    # Select an optimal base that allows us to prune the tree efficiently.
    nonbase:= Difference( [ 1 .. Length( family) ],
                          BaseStabChain( chainG ) );
    
    # Call a modified version of `SubgroupProperty'.
    # Besides the parameter `K', we introduce the new parameter `allowed',
    # a list of same length as `permutations';
    # `allowed[<i>]' is the list of all <x> in `permutations' where the
    # constructed permutation can lie in
    # `permutations[<i>] * Stab( family> ) / <x>'.
    # Initially this is `permutations' itself, but `allowed' is updated
    # whenever an image of a base point is chosen.
    
    # Find a subgroup $U$ of $G$ which preserves the property <prop>,
    # i.e., $prop( x )$ implies $prop( x * u )$ for all $x \in G, u \in U$.
    # (Note:  This subgroup is changed in the algorithm, be careful!)
    # Make this subgroup as large as possible with reasonable effort!
    
    # Improvement in our special situation:
    # We may add those generators <gen> of $G$ that stabilize the whole row
    # family, i.e. for which holds
    # `<family>[i] = <family>[ i^ ( x^-1 * gen * x ) ]'.
    
    stabilizes:= function( family, gen, x )
      local i;
      for i in [ 1 .. Length( family ) ] do
        if family[ i^x ] <> family[ ( i^gen )^x ] then
          return false;
        fi;
      od;
      return true;
    end;

    K:= SSortedList( K );
    for gen in chainG.generators do
      if ForAll( permutations, x -> stabilizes( family, gen, x ) ) then
        AddSet( K, gen );
      fi;
    od;

    # Make the bases of the stabilizer chains compatible.
    chainK:= StabChainOp( GroupByGenerators( K, () ),
                          rec( base    := BaseStabChain( chainG ),
                               reduced := false ) );

    # Initialize `allowed'.
    allowed:= ListWithIdenticalEntries( famlength, permutations );
    
    # Search through the whole group $G = G * Id$ for an element with <prop>.

    # Search for an element in a coset $S * s$ of some stabilizer $S$ of $G$.
    # $L$ fixes $S*s$, i.e., $S*s*L = S*s$ and is a subgroup of the wanted
    # subgroup $K$, thus $prop( x )$ implies $prop( x*l )$ for all $l \in L$.

    # `S' is a stabilizer chain for $S$,
    # `L' is a list of generators for $L$.
    ElementPropertyCoset := function( S, s, L, allowed )

      local i, j, points, p, ss, LL, elm, newallowed, union;

      # If $S$ is the trivial group check whether $s$ has the property,
      # i.e., also the non-base points are mapped correctly.

      if IsEmpty( S.generators ) then
        for i in [ 1 .. famlength ] do
          for p in nonbase do
            allowed[i]:= Filtered( allowed[i],
                           x -> ( p^s )^x in family[ p^permutations[i] ] );
          od;
          if IsEmpty( allowed[i] ) then
            return fail;
          fi;
        od;
        return s;
      fi;

      # Make `points' a subset of $S.orbit ^ s$ of those points which
      # correspond to cosets that might contain elements satisfying <prop>.
      # Make this set as small as possible with reasonable effort!
      points:= SSortedList( OnTuples( S.orbit, s ) );

      # Improvement in our special situation:
      # For the basepoint `$b$ = S.orbit[1]' we have
      # $b \pi \in orbit \cap \bigcap_{i}
      # \bigcup_{\pi_j \in `allowed[i]'} [ family( b \pi_i ) ] \pi_j^{-1}$

      for i in [ 1 .. famlength ] do
        union:= [];
        for j in allowed[i] do
          UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
                                 x -> x / j ) );
        od;
        IntersectSet( points, union );
      od;

      # run through the points, i.e., through the cosets of the stabilizer.
      while not IsEmpty( points ) do

        # Take a point $p$.
        p:= points[1];

        # Find a coset representative,
        # i.e., $ss \in S$ with $S.orbit[1]^ss = p$.
        ss:= s;
        while S.orbit[1]^ss <> p do
          ss:= LeftQuotient( S.transversal[p/ss], ss );
        od;

        # Find a subgroup $LL$ of $L$ which fixes $S.stabilizer * ss$,
        # i.e., an approximation (subgroup) $LL$ of $Stabilizer( L, p )$.
        # note that $LL$ preserves <prop> since it is a subgroup of $L$.
        # Compute a better aproximation, for example using base change.
        # `LL' is a list of generators of $LL$.
        LL:= Filtered( L, l -> p^l = p );

        # Search the coset $S.stabilizer * ss$ and return if successful.

        # In our special situation, we adjust `allowed': 
        newallowed:= [];
        for i in [ 1 .. famlength ] do
          newallowed[i]:= Filtered( allowed[i], x -> p^x in
                              family[ S.orbit[1]^permutations[i] ] );
        od;

        elm:= ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
        if elm <> fail then return elm; fi;

        # If there was no element in $S.stab * Rep(p)$ satisfying <prop>
        # there can be none in $S.stab * Rep(p^l) = S.stab * Rep(p) * l$
        # for any $l \in L$ because $L$ preserves the property <prop>.
        # Thus we can remove the entire $L$ orbit of $p$ from the points.
        SubtractSet( points, OrbitPerms( L, p ) );

      od;

      # there is no element with the property <prop> in the coset  $S * s$.
      return fail;
    end;

    # Make $L$ the subgroup with the property of some stabilizer $S$ of $G$.
    # Upon entry $L$ is already a subgroup of this wanted subgroup.

    # `S' and `L' are stabilizer chains.
    FindSubgroupProperty := function( S, L, allowed )

      local i, j, points, p, ss, LL, elm, newallowed, union;

      # If $S$ is the trivial group, then so is $L$ and we are ready.
      if IsEmpty( S.generators ) then return; fi;

      # Improvement in our special situation:
      # Adjust `allowed' (we search in the stabilizer of `S.orbit[1]').

      newallowed:= [];
      for i in [ 1 .. famlength ] do
        newallowed[i]:= Filtered( allowed[i],
                                  x -> S.orbit[1]^x in
                                 family[ S.orbit[1]^permutations[i] ] );
      od;

      # Make $L.stab$ the full subgroup of $S.stab$ satisfying <prop>.
      FindSubgroupProperty( S.stabilizer, L.stabilizer, newallowed );

      # Add the generators of `L.stabilizer' to `L.generators',
      # update `orbit' and `transversal':
      for elm in L.stabilizer.generators do
        if not elm in L.generators then
          AddGeneratorsExtendSchreierTree( L, [ elm ] );
        fi;
      od;

      # Make `points' a subset of $S.orbit$ of those points which
      # correspond to cosets that might contain elements satisfying <prop>.
      # Make this set as small as possible with reasonable effort!
      points := SSortedList( S.orbit );

      # Improvement in our special situation:
      # For the basepoint `$b$ = S.orbit[1]', we have
      # $b \pi \in orbit \cap \bigcap_{i}
      # \bigcup_{j \in `allowed[i]'} [ family[ b \pi_i ] ] \pi_j^{-1}$.
      for i in [ 1 .. famlength ] do
        union:= [];
        for j in allowed[i] do
          UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
                                 x -> x / j ) );
        od;
        IntersectSet( points, union );
      od;

      # Suppose that $x \in S.stab * Rep(S.orbit[1]^l)$ satisfies <prop>,
      # since $S.stab*Rep(S.orbit[1]^l)=S.stab*l$ we have $x/l \in S.stab$.
      # Because $l \in L$ it follows that $x/l$ satisfies <prop> also, and
      # since $L.stab$ is the full subgroup of $S.stab$ satisfying <prop>
      # it follows that $x/l \in L.stab$ and so $x \in L.stab * l \<= L$.
      # thus we can remove the entire $L$ orbit of $p$ from the points.
      SubtractSet( points, OrbitPerms( L.generators, S.orbit[1] ) );

      # Run through the points, i.e., through the cosets of the stabilizer.
      while not IsEmpty( points ) do

        # Take a point $p$.
        p:= points[1];

        # Find a coset representative,
        # i.e., $ss  \in  S, S.orbit[1]^ss = p$.
        ss:= S.identity;
        while S.orbit[1]^ss <> p do
          ss:= LeftQuotient( S.transversal[p/ss], ss );
        od;

        # Find a subgroup $LL$ of $L$ which fixes $S.stabilizer * ss$,
        # i.e., an approximation (subgroup) $LL$ of $Stabilizer( L, p )$.
        # Note that $LL$ preserves <prop> since it is a subgroup of $L$.
        # Compute a better aproximation, for example using base change.
        LL:= Filtered( L.generators, l -> p^l = p );

        # Search the coset $S.stabilizer * ss$ and add if successful.

        # Adjust `allowed'.
        newallowed:= [];
        for i in [ 1 .. famlength ] do
          newallowed[i]:= Filtered( allowed[i], x -> p^x in
                                   family[ S.orbit[1]^permutations[i] ] );
        od;

        elm:= ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
        if elm <> fail then
          AddGeneratorsExtendSchreierTree( L, [ elm ] );
        fi;

        # If there was no element in $S.stab * Rep(p)$ satisfying  <prop>
        # there can be none in  $S.stab * Rep(p^l) = S.stab * Rep(p) * l$
        # for any $l \in L$ because $L$ preserves  the  property  <prop>.
        # Thus we can remove the entire $L$ orbit of $p$ from the points.
        # <<this must be reformulated>>
        SubtractSet( points, OrbitPerms( L.generators, p ) );

      od;

      # There is no element with the property <prop> in the coset $S * s$.
      return;
    end;

    FindSubgroupProperty( chainG, chainK, allowed );
    return chainK;
end );


#############################################################################
##
#M  MatrixAutomorphisms( <mat>[, <maps>, <subgroup>] )
##
InstallMethod( MatrixAutomorphisms,
    "for a matrix",
    [ IsMatrix ],
    mat -> MatrixAutomorphisms( mat, [], Group( () ) ) );

InstallMethod( MatrixAutomorphisms,
    "for matrix, list of maps, and subgroup",
    [ IsMatrix, IsList, IsPermGroup ],
    function( mat, maps, subgroup )
    local fam,             # result of `FamiliesOfRows'
          nonfixedpoints,  # positions of not nec. fixed columns
          i, j, k,         # loop variables
          row,             # one row in `mat'
          colfam,          # current set of columns
          values,          # values of `row' on `colfam'
          G,               # current aut. group resp. its stabilizer chain

          famreps,
          permutations,
          pos,
          famlengths,
          support,
          family,
          famrep;

    # Step 0:
    # Check the arguments.

    if IsPermGroup( subgroup ) then
      subgroup:= SSortedList( GeneratorsOfGroup( subgroup ) );
    elif     IsList( subgroup )
         and ( IsEmpty( subgroup ) or IsPermCollection( subgroup ) ) then
      subgroup:= ShallowCopy( subgroup );
    else
      Error( "<subgroup> must be a permutation group" );
    fi;

    # Step 1:
    # Distribute the rows into row families.

    fam:= FamiliesOfRows( mat, maps );
    mat:= Concatenation( mat, maps );
    
    # Step 2:
    # Distribute the columns into families using only the fact that
    # row families of length 1 must be fixed by every automorphism.
    
    nonfixedpoints:= [ [ 1 .. Length( mat[1] ) ] ];
    i:= 1;
    while i <= Length( fam.famreps ) and Length( fam.families[i] ) = 1 do
      row:= mat[ fam.families[i][1] ];
      for j in [ 1 .. Length( nonfixedpoints ) ] do

        # Split `nonfixedpoints[j]' according to the entries of the vector.
        colfam:= nonfixedpoints[j];
        values:= Set( row{ colfam } );
        nonfixedpoints[j]:= Filtered( colfam, x -> row[x] = values[1] );
        for k in [ 2 .. Length( values ) ] do
          Add( nonfixedpoints, Filtered( colfam, x -> row[x] = values[k] ) );
        od;

      od;
      nonfixedpoints:= Filtered( nonfixedpoints, x -> 1 < Length(x) );
      i:= i+1;
    od;
    
    # Step 3:
    # Refine the column families using the fact that members of a family
    # must have the same sorted column in the restriction to every row
    # family.
    # Since trivial row families are already examined, we consider only
    # nontrivial ones.
    
    while i <= Length( fam.famreps ) do
      row:= MutableTransposedMat( mat{ fam.families[i] } );
      for j in row do
        Sort( j );
      od;
      for j in [ 1 .. Length( nonfixedpoints ) ] do
        colfam:= nonfixedpoints[j];
        values:= SSortedList( row{ colfam } );
        nonfixedpoints[j]:= Filtered( colfam, x -> row[x] = values[1] );
        for k in [ 2 .. Length( values ) ] do
          Add( nonfixedpoints, Filtered( colfam, x -> row[x] = values[k] ) );
        od;
      od;
      nonfixedpoints:= Filtered( nonfixedpoints, x -> 1 < Length(x) );
      i:= i+1;
    od;
    
    if IsEmpty( nonfixedpoints ) then
      Info( InfoMatrix, 2,
            "MatAutomorphisms: return trivial group without hard test" );
      return GroupByGenerators( [], () );
    fi;
    
    # Step 4:
    # Compute a direct product of symmetric groups that covers the
    # group of matrix automorphisms.
    
    G:= [];
    for i in nonfixedpoints do
      Add( G, ( i[1], i[2] ) );
      if 2 < Length( i ) then
        Add( G, MappingPermListList( i,
                    Concatenation( i{[2..Length(i)]}, [ i[1] ] ) ) );
      fi;
    od;
    G:= GroupByGenerators( G );
    
    # Step 5:
    # Enter the backtrack search for permutation groups.
    
    permutations:= fam.permutations;
    famreps:= fam.famreps;
    G:= StabChain( G );
    
    Info( InfoMatrix, 2,
          "MatAutomorphisms: There are ", Length( permutations ),
          " families (",
          Length( Filtered( permutations, x -> Length(x) =1 ) ),
          " trivial)" );
    
    for i in [ 1 .. Length( famreps ) ] do
      if 1 < Length( permutations[i] ) then
    
        Info( InfoMatrix, 2,
              "MatAutomorphismsFamily called for family no. ", i );
    
        # First convert <famreps>[i] to `family': `family[<k>]' is the list
        # of all positions <j> in <famreps>[i] with
        # `<famreps>[i][<k>] = <famreps>[i][<j>]'.
        # So each permutation stabilizing <famreps>[i] will have to map <k>
        # to a point in `<family>[<k>]'.
        # (Note that <famreps>[i] is sorted.)
    
        famrep:= famreps[i];
        support:= Length( famrep );
        family:= [ ];
        j:= 1;
        while j <= support do
          family[j]:= [ j ];
          k:= j+1;
          while k <= support and famrep[k] = famrep[j] do
            Add( family[j], k );
            family[k]:= family[j];
            k:= k+1;
          od;
          j:= k;
        od;
        G:= MatAutomorphismsFamily( G, subgroup, family, permutations[i] );
        ReduceStabChain( G );

      fi;
    od;

    return GroupStabChain( G );
    end );


#############################################################################
##
#M  TableAutomorphisms( <tbl>, <characters> )
#M  TableAutomorphisms( <tbl>, <characters>, \"closed\" )
#M  TableAutomorphisms( <tbl>, <characters>, <subgroup> )
##
InstallMethod( TableAutomorphisms,
    "for a character table and a list of characters",
    [ IsCharacterTable, IsList ],
    function( tbl, characters )
    return TableAutomorphisms( tbl, characters, Group( () ) );
    end );

InstallMethod( TableAutomorphisms,
    "for a character table, a list of characters, and a string",
    [ IsCharacterTable, IsList, IsString ],
    function( tbl, characters, closed )

    if closed = "closed" then
      return TableAutomorphisms( tbl, characters,
                 GroupByGenerators( GaloisMat( TransposedMat( characters )
                     ).generators, () ) );
    else
      return TableAutomorphisms( tbl, characters, Group( () ) );
    fi;
    end );

InstallMethod( TableAutomorphisms,
    "for a character table, a list of characters, and a perm. group",
    [ IsCharacterTable, IsList, IsPermGroup ],
    function( tbl, characters, subgroup )
    local maut,         # matrix automorphisms of `characters'
                        # that respect element orders and centralizer orders
          gens,         # generators of `maut'
          nccl,         # no. of conjugacy classes of `tbl'
          powermap,     # list of relevant power maps
          admissible;   # generators that commute with all power maps

    # Compute the matrix automorphisms.
    maut:= MatrixAutomorphisms( characters, 
                                [ OrdersClassRepresentatives( tbl ),
                                  SizesCentralizers( tbl ) ],
                                subgroup );
    gens:= GeneratorsOfGroup( maut );
    nccl:= NrConjugacyClasses( tbl );

    # Check whether all generators commute with all power maps.
    powermap:= List( Set( Factors( Size( tbl ) ) ),
                     p -> PowerMap( tbl, p ) );
    admissible:= Filtered( gens, 
                           perm -> ForAll( powermap, 
                                         x -> ForAll( [ 1 .. nccl ],
                                         y -> x[ y^perm ] = x[y]^perm ) ) );

    # If not all matrix automorphisms are admissible then
    # we compute the admissible subgroup with a second backtrack search
    # inside the group of matrix automorphisms, with the group generated
    # by the admissible matrix automorphisms as known subgroup.
    if Length( admissible ) <> Length( gens ) then

      Info( InfoMatrix, 2,
            "TableAutomorphisms: ",
            "not all matrix automorphisms admissible" );
      admissible:= SubgroupProperty( maut,
                       perm -> ForAll( powermap, 
                                 x -> ForAll( [ 1 .. nccl ],
                                        y -> x[ y^perm ] = x[y]^perm ) ),
                                     GroupByGenerators( admissible, () ) );

    else
      admissible:= GroupByGenerators( admissible, () );
    fi;

    # Return the result.
    return admissible;
    end );


#############################################################################
##
#F  TransformingPermutationFamily( <G>,<K>,<fam1>,<fam2>,<bij_col>,<family> )
##
##  computes a transforming permutation of columns for equivalent families
##  of rows of two matrices.
##  (The parameters can be computed from the matrices <mat1>, <mat2> using
##  "FamiliesOfRows").
##
##  `TransformingPermutationFamily' returns either `false' or a record
##  with fields `permutation' and `group'.
##
##  <G>: group with the property that the transforming permutation lies in
##       the coset `<bij_col> * <G>'
##  <K>: a subgroup of the group of matrix automorphisms of <fam2> which is
##       contained in <G>, e.g. Aut( <mat2> )
##
##       Note: The bases of <G> and <K> must be compatible!!
##
##  <fam1>: the permutations mapping the rows of the family in <mat1> to the
##          representative (the so-called famrep)
##  <fam2>: the permutations mapping the rows of the family in mat2 to the
##          famrep
##  <bij_col>: permutation corresponding to the bijection of columns in mat1
##             and mat2
##  <family>: map that distributes the columns into families; two columns
##            <i>, <j> are in the same family iff
##            `<family>[<i>] = <family>[<j>]'.
##            <G> must stabilize <family>.
##            Note: Stabilizing the famrep is
##            equivalent to respecting <family>, so the calculation of
##            <fam1> and <fam2> must respect <family>, too!
##
BindGlobal( "TransformingPermutationFamily",
    function( chainG, K, fam1, fam2, bij_col, family )
    local permutations,           # translate `fam1' with `bij_col'
          allowed,                # list of lists of admissible points
          ElementPropertyCoset,   # local function to loop over a coset
          nonbase;                # list of nonbase points
    
    # Step a:
    # Replace permutations `p' in `fam1' by `bij_col^(-1) * p',
    # initialize `allowed'.
    
    permutations:= List( fam1, x -> LeftQuotient( bij_col, x ) );
    allowed:= ListWithIdenticalEntries( Length( fam1 ), fam2 );
    
    # Step b:
    # Define the local function `ElementProperty'.
    # It is exactly the same function as the one in `MatAutomorphismsFamily',
    # so we put it in here without comments.

    ElementPropertyCoset := function ( S, s, L, allowed )

      local i, j, points, p, ss, LL, elm, newallowed, union;

      if IsEmpty( S.generators ) then                                     
        for i in [ 1 .. Length( permutations ) ] do
          for p in nonbase do                             
            allowed[i]:= Filtered( allowed[i],
                           x -> ( p^s )^x in family[ p^permutations[i] ] );
          od;                                                             
          if IsEmpty( allowed[i] ) then       
            return fail;                
          fi;                                     
        od;                                                            
        return s;
      fi;                                                            
    
      points:= SSortedList( OnTuples( S.orbit, s ) );

      for i in [ 1 .. Length( permutations ) ] do
        union:= [];
        for j in allowed[i] do
          UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
                                 x -> x / j ) );
        od;
        IntersectSet( points, union );
      od;

      while not IsEmpty( points ) do

        p:= points[1];
        ss:= s;
        while S.orbit[1]^ss <> p do
          ss:= LeftQuotient( S.transversal[p/ss], ss );
        od;

        LL:= Filtered( L, l -> p^l = p );

        newallowed:= [];
        for i in [ 1 .. Length( allowed ) ] do
          newallowed[i]:= Filtered( allowed[i], x -> p^x in
                              family[ S.orbit[1]^permutations[i] ] );
        od;

        elm := ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
        if elm <> fail then return elm; fi;

        SubtractSet( points, OrbitPerms( L, p ) );

      od;

      return fail;
    end;

    # Compute a stabilizer chain for $G$.
    # Select an optimal base that allows us to prune  the  tree  efficiently!
    nonbase:= Difference( [ 1 .. Length( family ) ],
                          BaseStabChain( chainG ) );

    # Find a subgroup  $K$  of  $G$  which  preserves  the  property  <prop>,
    # i.e., $prop( x )$ implies $prop( x * k )$  for all  $x \in G, k \in K$.
    # Make this  subgroup  as  large  as  possible  with  reasonable  effort!

    # Search through the whole group $G = G * Id$ for an element with <prop>.
    return ElementPropertyCoset( chainG, (), K, allowed );
    end );


#############################################################################
##
#M  TransformingPermutations( <mat1>, <mat2> )
##
InstallMethod( TransformingPermutations,
    "for two matrices",
    [ IsMatrix, IsMatrix ],
    function( mat1, mat2 )
    local i, j, k,        # loop variables
          fam1,
          fam2,
          bijection,
          bij_col,        # current bijection of columns of the matrices
          pos,
          G,
          family,
          fam,
          nonfixedpoints,
          famrep,
          support,
          subgrp,
          trans,
          image,
          preimage,
          row1,
          row2,
          values;

    # Step 0:
    # Handle trivial cases.
    if Length( mat1 ) <> Length( mat2 ) then
      return fail;
    elif IsEmpty( mat1 ) then
      return rec( columns := (),
                  rows    := (),
                  group   := GroupByGenerators( [], () ) );
    fi;
    
    # Step 1:
    # Set up and check the bijection of row families using the fact that
    # sorted rows must be equal.
    # (Note that this is only a bijection of the representatives;
    # we do not need a physical bijection of the rows themselves)
    # Note that `FamiliesOfRows' first sorts families according to
    # the representative, and then sorts this list *stable* (using `Sortex')
    # according to the length of the family, so the bijection must
    # be the identity.
    
#T check invariants first (matrix dimensions!)
    fam1:= FamiliesOfRows( mat1, [] );
    fam2:= FamiliesOfRows( mat2, [] );
    if fam1.famreps <> fam2.famreps then
      Info( InfoMatrix, 2,
            "TransformingPermutations: no bijection of row families" );
      return fail;
    fi;
    
    # Step 2:
    # Initialize a bijection of column families using that row
    # families of length 1 must be in bijection, i.e. the column
    # families are constant on these rows.
    # We will have `bij_col[1][i]' in bijection with `bij_col[2][i]'.
    
    bij_col:= [];
    bij_col[1]:= [ [ 1 .. Length( mat1[1] ) ] ]; # trivial column families
    bij_col[2]:= [ [ 1 .. Length( mat1[1] ) ] ];
    
    for i in [ 1 .. Length( fam1.famreps ) ] do
      if Length( fam1.families[i] ) = 1 then
        row1:= mat1[ fam1.families[i][1] ];
        row2:= mat2[ fam2.families[i][1] ];
        for j in [ 1 .. Length( bij_col[1] ) ] do
          preimage:= bij_col[1][j];
          image:=    bij_col[2][j];
          values:= SSortedList( row1{ preimage } );
          if values <> SSortedList( row2{ image } ) then
            Info( InfoMatrix, 2,
                  "TransformingPermutations: ",
                  "no bijection of column families" );
            return fail;
          fi;
          bij_col[1][j]:= Filtered( preimage, x -> row1[x] = values[1] );
          bij_col[2][j]:= Filtered( image, x -> row2[x] = values[1] );
          if Length( bij_col[1][j] ) <> Length( bij_col[2][j] ) then
            Info( InfoMatrix, 2,
                  "TransformingPermutations: ",
                  "no bijection of column families" );
            return fail;
          fi;
          for k in [ 2 .. Length( values ) ] do
            Add( bij_col[1], Filtered( preimage,
                                       x -> row1[x] = values[k] ) );
            Add( bij_col[2], Filtered( image,
                                       x -> row2[x] = values[k] ) );
            if Length( bij_col[1][ Length( bij_col[1] ) ] )
               <> Length( bij_col[2][ Length( bij_col[2] ) ] ) then
              Info( InfoMatrix, 2,
                    "TransformingPermutations: ",
                    "no bijection of column families" );
              return fail;
            fi;
          od;
        od;
      fi;
    od;
    
    # Step 3:
    # Refine the column families and the bijection using that members
    # of a column family must have the same sorted column in the
    # restriction to every row family. Since the trivial row families
    # are already examined, now only use the nontrivial row families.
    # Except that now the values are sorted lists, the algorithm is
    # the same as in step 2.
    
    for i in [ 1 .. Length( fam1.famreps ) ] do
      if Length( fam1.families[i] ) > 1 then
        row1:= MutableTransposedMat( mat1{ fam1.families[i] } );
        row2:= MutableTransposedMat( mat2{ fam2.families[i] } );
        for j in row1 do Sort( j ); od;
        for j in row2 do Sort( j ); od;
        for j in [ 1 .. Length( bij_col[1] ) ] do
          preimage:= bij_col[1][j];
          image:=    bij_col[2][j];
          values:= SSortedList( row1{ preimage } );
          if values <> SSortedList( row2{ image } ) then
            Info( InfoMatrix, 2,
                  "TransformingPermutations: ",
                  "no bijection of column families" );
            return fail;
          fi;
          bij_col[1][j]:= Filtered( preimage,
                                    x -> row1[x] = values[1] );
          bij_col[2][j]:= Filtered( image,
                                    x -> row2[x] = values[1] );
          if Length( bij_col[1][j] ) <> Length( bij_col[2][j] ) then
            Info( InfoMatrix, 2,
                  "TransformingPermutations: ",
                  "no bijection of column families" );
            return fail;
          fi;
          for k in [ 2 .. Length( values ) ] do
            Add( bij_col[1], Filtered( preimage,
                                       x -> row1[x] = values[k] ) );
            Add( bij_col[2], Filtered( image,
                                       x -> row2[x] = values[k] ) );
            if Length( bij_col[1][ Length( bij_col[1] ) ] )
               <> Length( bij_col[2][ Length( bij_col[2] ) ] ) then
              Info( InfoMatrix, 2,
                    "TransformingPermutations: ",
                    "no bijection of column families" );
              return fail;
            fi;
          od;
        od;
      fi;
    od;
    
    # Choose an arbitrary bijection of columns
    # that respects the bijection of column families.
    
    bijection:= [];
    for i in [ 1 .. Length( bij_col[1] ) ] do
      for j in [ 1 .. Length( bij_col[1][i] ) ] do
        bijection[ bij_col[1][i][j] ]:= bij_col[2][i][j];
      od;
    od;
    nonfixedpoints:= Filtered( bij_col[2], x -> 1 < Length(x) );
    
    # Step 4:
    # Compute a direct prouct of symmetric groups that covers the
    # group of table automorphisms of mat2, using column families
    # given by `bij_col[2]'.
    
    G:= [];
    for i in nonfixedpoints do
      Add( G, ( i[1], i[2] ) );
      if 2 < Length( i ) then
        Add( G, MappingPermListList( i,
                    Concatenation( i{[2..Length(i)]}, [ i[1] ] ) ) );
      fi;
    od;
    G:= StabChain( GroupByGenerators( G, () ) );
    
    # Step 5:
    # Enter the backtrack search for permutation groups.

    Info( InfoMatrix, 2,
          "TransformingPermutations: start of backtrack search" );
    
    bij_col:= PermList( bijection );
    
    # Now loop over the row families;
    # first convert `famreps[i]' to `family';
    # `family[<k>]' is the list of all
    # positions <j> in `famreps[i]' with
    # `famreps[i][<k>] = famreps[i][<j>]'.
    # So each permutation stabilizing `famreps[i]' will have to map
    # <k> to a point in `family[<k>]'.
    # (Note that `famreps[i]' is sorted.)
    
    for i in [ 1 .. Length( fam1.famreps ) ] do
      if Length( fam1.permutations[i] ) > 1 then
        famrep:= fam1.famreps[i];
        support:= Length( famrep );
        family:= [ ];
        j:= 1;
        while j <= support do
          family[j]:= [ j ];
          k:= j+1;
          while k <= support and famrep[k] = famrep[j] do
            Add( family[j], k );
            family[k]:= family[j];
            k:= k+1;
          od;
          j:= k;
        od;
        subgrp:= MatAutomorphismsFamily( G, [], family,
                                         fam2.permutations[i] );
        trans:= TransformingPermutationFamily( G, subgrp.generators,
                               fam1.permutations[i],
                               fam2.permutations[i], bij_col,
                               family );
        if trans = fail then
          return fail;
        fi;
        G:= subgrp;
        ReduceStabChain( G );
        bij_col:= bij_col * trans;
      fi;
    od;

    # Return the result.
    return rec( columns := bij_col,
                rows    := Sortex( List( mat1, x -> Permuted( x, bij_col ) ) )
                           / Sortex( ShallowCopy( mat2 ) ),
                group   := GroupStabChain( G ) ); 
    end );


#############################################################################
##
#M  TransformingPermutationsCharacterTables( <tbl1>, <tbl2> )
##
InstallMethod( TransformingPermutationsCharacterTables,
    "for two character tables",
    [ IsCharacterTable, IsCharacterTable ],
    function( tbl1, tbl2 )
    local primes,        # prime divisors of the order of each table
          irr1, irr2,    # lists of irreducible characters of the tables
          trans,         # result record
          gens,          # generators of the matrix automorphisms of `tbl2'
          nccl,          # no. of conjugacy classes
          powermap1,     # list of power maps of `tbl1'
          powermap2,     # list of power maps of `tbl2'
          admissible,    # group of table automorphisms of `tbl2'
          pi, pi2,       # admissible column transformations
          prop,          # property used in `ElementProperty'
          orders1,       # element orders of `tbl1'
          orders2;       # element orders of `tbl2'

    # Shortcuts:
    # - If the group orders differ then return `fail'.
    # - If irreducibles are stored in the two tables and coincide,
    #   and if the power maps are known and equal then return the identity.
    primes:= Set( Factors( Size( tbl1 ) ) );
    if Size( tbl1 ) <> Size( tbl2 ) then
      return fail;
    elif HasIrr( tbl1 ) and HasIrr( tbl2 ) and Irr( tbl1 ) = Irr( tbl2 )
         and ForAll( primes, p -> IsBound( ComputedPowerMaps( tbl1 )[p] ) and
                                  IsBound( ComputedPowerMaps( tbl1 )[p] ) and
                                  ComputedPowerMaps( tbl1 )[p] =
                                  ComputedPowerMaps( tbl2 )[p] ) then
      if HasAutomorphismsOfTable( tbl1 ) then
        return rec( columns:= (),
                    rows:= (),
                    group:= AutomorphismsOfTable( tbl1 ) );
      else
        return rec( columns:= (),
                    rows:= (),
                    group:= AutomorphismsOfTable( tbl2 ) );
      fi;
    fi;

# change: TransformingPermutations: should not access Irr until
#         it is checked that centralizers and element orders match!
    irr1:= Irr( tbl1 );
    irr2:= Irr( tbl2 );

    # Compute the transformations between the matrices of irreducibles.
    trans:= TransformingPermutations( irr1, irr2 );
#T improve this: use element orders already here!
#T e.g. check sorted lists of el. orders as an invariant
    if trans = fail then
      return fail;
    fi;
    gens:= GeneratorsOfGroup( trans.group );                               
    nccl:= NrConjugacyClasses( tbl2 );
    
    # Compute the subgroup of table automorphisms of `tbl2' if it is not
    # yet stored.
    # Note that we know the group of matrix automorphisms already,
    # so we use the same method as in `TableAutomorphisms'.

    powermap1:= List( primes, p -> PowerMap( tbl1, p ) );
    powermap2:= List( primes, p -> PowerMap( tbl2, p ) );

    if HasAutomorphismsOfTable( tbl2 ) then
      admissible:= AutomorphismsOfTable( tbl2 );
    else

      admissible:= Filtered( gens,
                           perm -> ForAll( powermap2,
                                         x -> ForAll( [ 1 .. nccl ],
                                         y -> x[ y^perm ] = x[y]^perm ) ) );
    
      if Length( admissible ) = Length( gens ) then
        admissible:= trans.group;
      else
        Info( InfoCharacterTable, 2,
              "TransformingPermutationsCharTables: ",
              "not all matrix automorphisms admissible" );
        admissible:= SubgroupProperty( trans.group,
                         perm -> ForAll( powermap2, 
                                   x -> ForAll( [ 1 .. nccl ],
                                          y -> x[y^perm] = x[y]^perm ) ),
                                       GroupByGenerators( admissible, () ) );
      fi;

      # Store the automorphisms.
      SetAutomorphismsOfTable( tbl2, admissible );

    fi;
    
    pi:= trans.columns;

    orders1:= OrdersClassRepresentatives( tbl1 );
    orders2:= OrdersClassRepresentatives( tbl2 );

    if ForAll( [ 1 .. Length( primes ) ],
               x -> ForAll( [ 1 .. nccl ],
                    y -> powermap2[x][ y^pi ] = powermap1[x][y]^pi ) )
       and Permuted( orders1, pi ) = orders2 then

      # `pi' itself respects the mappings.
      trans.group:= admissible;

    else
    
      # Look if there is a coset of `trans.group' over `admissible' that
      # consists of transforming permutations.
      prop:= s -> ForAll( [ 1 .. Length( primes ) ],
                          x -> ForAll( [ 1 .. nccl ], y ->
                powermap2[x][ (y^pi)^s ] = ( powermap1[x][y]^pi )^s ) )
             and Permuted( orders1, pi*s ) = orders2;

      pi2:= ElementProperty( trans.group, prop,
                TrivialSubgroup( trans.group ), admissible );
      if pi2 = fail then
        return fail;
      else
        trans:= rec( columns:= pi * pi2,
                     rows:= Sortex( List( irr1,
                                          x -> Permuted( x, pi * pi2 ) ) )
                            / Sortex( ShallowCopy( irr2 ) ),
                     group:= admissible  );
      fi;

    fi;

    # Return the result.
    return trans;
    end );


#############################################################################
##
#E