/usr/share/gap/lib/ctblauto.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 | #############################################################################
##
#W ctblauto.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
##
## This file contains functions to calculate automorphisms of matrices,
## e.g., the character matrices of character tables, and functions to
## calculate permutations transforming the rows of a matrix to the rows of
## another matrix.
##
## *Note*:
## The methods in this file do not use the partition backtrack techniques.
## It would be desirable to translate them.
##
#############################################################################
##
#F FamiliesOfRows( <mat>, <maps> )
##
InstallGlobalFunction( FamiliesOfRows, function( mat, maps )
local j, k, # loop variables
famreps, # (sorted) representatives for families
permutations, # list of perms for each family
families, # list of members of each family
copyrow, # sorted row
permrow, # permutation to sort the row
pos, # position in `famreps'
famlengths, # list of lengths of the families
perm, # permutation to sort
row; # loop over `maps'
famreps:= [ ShallowCopy( mat[1] ) ];
permutations:= [ [ Sortex( famreps[1] ) ] ];
families:= [ [ 1 ] ];
for j in [ 2 .. Length( mat ) ] do
# Get a sorted version of the `j'-th row.
copyrow := ShallowCopy( mat[j] );
permrow := Sortex( copyrow );
pos := PositionSorted( famreps, copyrow );
if IsBound( famreps[ pos ] ) and famreps[ pos ] = copyrow then
# We have found a member of the `pos'-th family.
Add( permutations[ pos ], permrow );
Add( families[ pos ], j );
else
# We have found a member of a new family.
for k in Reversed( [ pos .. Length( famreps ) ] ) do
famreps[ k+1 ]:= famreps[k];
permutations[ k+1 ]:= permutations[k];
families[ k+1 ]:= families[k];
od;
famreps[ pos ]:= copyrow;
permutations[ pos ]:= [ permrow ];
families[ pos ]:= [ j ];
fi;
od;
# Each row in `maps' is treated as a family of its own.
j:= Length( mat );
for row in maps do
j:= j+1;
Add( famreps, ShallowCopy( row ) );
Add( permutations, [ Sortex( famreps[ Length( famreps ) ] ) ] );
Add( families, [ j ] );
od;
# Sort the families according to their length, and adjust the data.
famlengths:= [];
for k in [ 1 .. Length( famreps ) ] do
famlengths[k]:= Length( permutations[k] );
od;
perm:= Sortex( famlengths );
famreps := Permuted( famreps, perm );
permutations := Permuted( permutations, perm );
families := Permuted( families, perm );
# Return the result.
return rec( famreps := famreps,
permutations := permutations,
families := families );
end );
#############################################################################
##
#F MatAutomorphismsFamily( <chainG>, <K>, <family>, <permutations> )
##
## Let <chainG> be a stabilizer chain for a group $G$,
## <K> a list of generators for a subgroup $K$ of $G$,
## <family> a ...,
## and <permutations> ... .
##
## `MatAutomorphismsFamily' returns a stabilizer chain for the closure of
## $K$ ...
##
## for a family <rows> of rows with representative (i.e., sorted vector)
## <famrep> and corresponding permutations
## `Sortex(<rows>[j])=<permutations>[j]',
## the group of column permutations in the group with stabilizer chain
## <chainG> is computed that acts on
## the set <rows>.
##
## <family> is a list that distributes the columns into families:
## Stabilizing <family> is equivalent to stabilizing <famrep>; so the
## elements of <permutations> must be computed with respect to <family>, too.
## Two columns <i>, <j> lie in the same family iff
## `<family>[<i>] = <family>[<j>'.
## (More precisely, <family>[i] is the list of all positions lying in the
## same family as i.)
##
## <K> is a list of permutation generators for a known subgroup of the
## required group.
##
## Note: The returned group has a base compatible with the base of $G$,
## i.e. not a reduced base (used for "TransformingPermutationFamily")
##
BindGlobal( "MatAutomorphismsFamily",
function( chainG, K, family, permutations )
local famlength, # number of rows in the family
nonbase, # points not in the base of `chainG'
stabilizes, # local function to check generators of $G$
gen, # loop over `chainG.generators'
chainK, # compatible stabilizer chain of $K$
allowed, # new parameter for the backtrack search
ElementPropertyCoset, # local function to search in a coset
FindSubgroupProperty; # local function to extend the stab. chain
famlength:= Length( permutations );
# Select an optimal base that allows us to prune the tree efficiently.
nonbase:= Difference( [ 1 .. Length( family) ],
BaseStabChain( chainG ) );
# Call a modified version of `SubgroupProperty'.
# Besides the parameter `K', we introduce the new parameter `allowed',
# a list of same length as `permutations';
# `allowed[<i>]' is the list of all <x> in `permutations' where the
# constructed permutation can lie in
# `permutations[<i>] * Stab( family> ) / <x>'.
# Initially this is `permutations' itself, but `allowed' is updated
# whenever an image of a base point is chosen.
# Find a subgroup $U$ of $G$ which preserves the property <prop>,
# i.e., $prop( x )$ implies $prop( x * u )$ for all $x \in G, u \in U$.
# (Note: This subgroup is changed in the algorithm, be careful!)
# Make this subgroup as large as possible with reasonable effort!
# Improvement in our special situation:
# We may add those generators <gen> of $G$ that stabilize the whole row
# family, i.e. for which holds
# `<family>[i] = <family>[ i^ ( x^-1 * gen * x ) ]'.
stabilizes:= function( family, gen, x )
local i;
for i in [ 1 .. Length( family ) ] do
if family[ i^x ] <> family[ ( i^gen )^x ] then
return false;
fi;
od;
return true;
end;
K:= SSortedList( K );
for gen in chainG.generators do
if ForAll( permutations, x -> stabilizes( family, gen, x ) ) then
AddSet( K, gen );
fi;
od;
# Make the bases of the stabilizer chains compatible.
chainK:= StabChainOp( GroupByGenerators( K, () ),
rec( base := BaseStabChain( chainG ),
reduced := false ) );
# Initialize `allowed'.
allowed:= ListWithIdenticalEntries( famlength, permutations );
# Search through the whole group $G = G * Id$ for an element with <prop>.
# Search for an element in a coset $S * s$ of some stabilizer $S$ of $G$.
# $L$ fixes $S*s$, i.e., $S*s*L = S*s$ and is a subgroup of the wanted
# subgroup $K$, thus $prop( x )$ implies $prop( x*l )$ for all $l \in L$.
# `S' is a stabilizer chain for $S$,
# `L' is a list of generators for $L$.
ElementPropertyCoset := function( S, s, L, allowed )
local i, j, points, p, ss, LL, elm, newallowed, union;
# If $S$ is the trivial group check whether $s$ has the property,
# i.e., also the non-base points are mapped correctly.
if IsEmpty( S.generators ) then
for i in [ 1 .. famlength ] do
for p in nonbase do
allowed[i]:= Filtered( allowed[i],
x -> ( p^s )^x in family[ p^permutations[i] ] );
od;
if IsEmpty( allowed[i] ) then
return fail;
fi;
od;
return s;
fi;
# Make `points' a subset of $S.orbit ^ s$ of those points which
# correspond to cosets that might contain elements satisfying <prop>.
# Make this set as small as possible with reasonable effort!
points:= SSortedList( OnTuples( S.orbit, s ) );
# Improvement in our special situation:
# For the basepoint `$b$ = S.orbit[1]' we have
# $b \pi \in orbit \cap \bigcap_{i}
# \bigcup_{\pi_j \in `allowed[i]'} [ family( b \pi_i ) ] \pi_j^{-1}$
for i in [ 1 .. famlength ] do
union:= [];
for j in allowed[i] do
UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
x -> x / j ) );
od;
IntersectSet( points, union );
od;
# run through the points, i.e., through the cosets of the stabilizer.
while not IsEmpty( points ) do
# Take a point $p$.
p:= points[1];
# Find a coset representative,
# i.e., $ss \in S$ with $S.orbit[1]^ss = p$.
ss:= s;
while S.orbit[1]^ss <> p do
ss:= LeftQuotient( S.transversal[p/ss], ss );
od;
# Find a subgroup $LL$ of $L$ which fixes $S.stabilizer * ss$,
# i.e., an approximation (subgroup) $LL$ of $Stabilizer( L, p )$.
# note that $LL$ preserves <prop> since it is a subgroup of $L$.
# Compute a better aproximation, for example using base change.
# `LL' is a list of generators of $LL$.
LL:= Filtered( L, l -> p^l = p );
# Search the coset $S.stabilizer * ss$ and return if successful.
# In our special situation, we adjust `allowed':
newallowed:= [];
for i in [ 1 .. famlength ] do
newallowed[i]:= Filtered( allowed[i], x -> p^x in
family[ S.orbit[1]^permutations[i] ] );
od;
elm:= ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
if elm <> fail then return elm; fi;
# If there was no element in $S.stab * Rep(p)$ satisfying <prop>
# there can be none in $S.stab * Rep(p^l) = S.stab * Rep(p) * l$
# for any $l \in L$ because $L$ preserves the property <prop>.
# Thus we can remove the entire $L$ orbit of $p$ from the points.
SubtractSet( points, OrbitPerms( L, p ) );
od;
# there is no element with the property <prop> in the coset $S * s$.
return fail;
end;
# Make $L$ the subgroup with the property of some stabilizer $S$ of $G$.
# Upon entry $L$ is already a subgroup of this wanted subgroup.
# `S' and `L' are stabilizer chains.
FindSubgroupProperty := function( S, L, allowed )
local i, j, points, p, ss, LL, elm, newallowed, union;
# If $S$ is the trivial group, then so is $L$ and we are ready.
if IsEmpty( S.generators ) then return; fi;
# Improvement in our special situation:
# Adjust `allowed' (we search in the stabilizer of `S.orbit[1]').
newallowed:= [];
for i in [ 1 .. famlength ] do
newallowed[i]:= Filtered( allowed[i],
x -> S.orbit[1]^x in
family[ S.orbit[1]^permutations[i] ] );
od;
# Make $L.stab$ the full subgroup of $S.stab$ satisfying <prop>.
FindSubgroupProperty( S.stabilizer, L.stabilizer, newallowed );
# Add the generators of `L.stabilizer' to `L.generators',
# update `orbit' and `transversal':
for elm in L.stabilizer.generators do
if not elm in L.generators then
AddGeneratorsExtendSchreierTree( L, [ elm ] );
fi;
od;
# Make `points' a subset of $S.orbit$ of those points which
# correspond to cosets that might contain elements satisfying <prop>.
# Make this set as small as possible with reasonable effort!
points := SSortedList( S.orbit );
# Improvement in our special situation:
# For the basepoint `$b$ = S.orbit[1]', we have
# $b \pi \in orbit \cap \bigcap_{i}
# \bigcup_{j \in `allowed[i]'} [ family[ b \pi_i ] ] \pi_j^{-1}$.
for i in [ 1 .. famlength ] do
union:= [];
for j in allowed[i] do
UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
x -> x / j ) );
od;
IntersectSet( points, union );
od;
# Suppose that $x \in S.stab * Rep(S.orbit[1]^l)$ satisfies <prop>,
# since $S.stab*Rep(S.orbit[1]^l)=S.stab*l$ we have $x/l \in S.stab$.
# Because $l \in L$ it follows that $x/l$ satisfies <prop> also, and
# since $L.stab$ is the full subgroup of $S.stab$ satisfying <prop>
# it follows that $x/l \in L.stab$ and so $x \in L.stab * l \<= L$.
# thus we can remove the entire $L$ orbit of $p$ from the points.
SubtractSet( points, OrbitPerms( L.generators, S.orbit[1] ) );
# Run through the points, i.e., through the cosets of the stabilizer.
while not IsEmpty( points ) do
# Take a point $p$.
p:= points[1];
# Find a coset representative,
# i.e., $ss \in S, S.orbit[1]^ss = p$.
ss:= S.identity;
while S.orbit[1]^ss <> p do
ss:= LeftQuotient( S.transversal[p/ss], ss );
od;
# Find a subgroup $LL$ of $L$ which fixes $S.stabilizer * ss$,
# i.e., an approximation (subgroup) $LL$ of $Stabilizer( L, p )$.
# Note that $LL$ preserves <prop> since it is a subgroup of $L$.
# Compute a better aproximation, for example using base change.
LL:= Filtered( L.generators, l -> p^l = p );
# Search the coset $S.stabilizer * ss$ and add if successful.
# Adjust `allowed'.
newallowed:= [];
for i in [ 1 .. famlength ] do
newallowed[i]:= Filtered( allowed[i], x -> p^x in
family[ S.orbit[1]^permutations[i] ] );
od;
elm:= ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
if elm <> fail then
AddGeneratorsExtendSchreierTree( L, [ elm ] );
fi;
# If there was no element in $S.stab * Rep(p)$ satisfying <prop>
# there can be none in $S.stab * Rep(p^l) = S.stab * Rep(p) * l$
# for any $l \in L$ because $L$ preserves the property <prop>.
# Thus we can remove the entire $L$ orbit of $p$ from the points.
# <<this must be reformulated>>
SubtractSet( points, OrbitPerms( L.generators, p ) );
od;
# There is no element with the property <prop> in the coset $S * s$.
return;
end;
FindSubgroupProperty( chainG, chainK, allowed );
return chainK;
end );
#############################################################################
##
#M MatrixAutomorphisms( <mat>[, <maps>, <subgroup>] )
##
InstallMethod( MatrixAutomorphisms,
"for a matrix",
[ IsMatrix ],
mat -> MatrixAutomorphisms( mat, [], Group( () ) ) );
InstallMethod( MatrixAutomorphisms,
"for matrix, list of maps, and subgroup",
[ IsMatrix, IsList, IsPermGroup ],
function( mat, maps, subgroup )
local fam, # result of `FamiliesOfRows'
nonfixedpoints, # positions of not nec. fixed columns
i, j, k, # loop variables
row, # one row in `mat'
colfam, # current set of columns
values, # values of `row' on `colfam'
G, # current aut. group resp. its stabilizer chain
famreps,
permutations,
pos,
famlengths,
support,
family,
famrep;
# Step 0:
# Check the arguments.
if IsPermGroup( subgroup ) then
subgroup:= SSortedList( GeneratorsOfGroup( subgroup ) );
elif IsList( subgroup )
and ( IsEmpty( subgroup ) or IsPermCollection( subgroup ) ) then
subgroup:= ShallowCopy( subgroup );
else
Error( "<subgroup> must be a permutation group" );
fi;
# Step 1:
# Distribute the rows into row families.
fam:= FamiliesOfRows( mat, maps );
mat:= Concatenation( mat, maps );
# Step 2:
# Distribute the columns into families using only the fact that
# row families of length 1 must be fixed by every automorphism.
nonfixedpoints:= [ [ 1 .. Length( mat[1] ) ] ];
i:= 1;
while i <= Length( fam.famreps ) and Length( fam.families[i] ) = 1 do
row:= mat[ fam.families[i][1] ];
for j in [ 1 .. Length( nonfixedpoints ) ] do
# Split `nonfixedpoints[j]' according to the entries of the vector.
colfam:= nonfixedpoints[j];
values:= Set( row{ colfam } );
nonfixedpoints[j]:= Filtered( colfam, x -> row[x] = values[1] );
for k in [ 2 .. Length( values ) ] do
Add( nonfixedpoints, Filtered( colfam, x -> row[x] = values[k] ) );
od;
od;
nonfixedpoints:= Filtered( nonfixedpoints, x -> 1 < Length(x) );
i:= i+1;
od;
# Step 3:
# Refine the column families using the fact that members of a family
# must have the same sorted column in the restriction to every row
# family.
# Since trivial row families are already examined, we consider only
# nontrivial ones.
while i <= Length( fam.famreps ) do
row:= MutableTransposedMat( mat{ fam.families[i] } );
for j in row do
Sort( j );
od;
for j in [ 1 .. Length( nonfixedpoints ) ] do
colfam:= nonfixedpoints[j];
values:= SSortedList( row{ colfam } );
nonfixedpoints[j]:= Filtered( colfam, x -> row[x] = values[1] );
for k in [ 2 .. Length( values ) ] do
Add( nonfixedpoints, Filtered( colfam, x -> row[x] = values[k] ) );
od;
od;
nonfixedpoints:= Filtered( nonfixedpoints, x -> 1 < Length(x) );
i:= i+1;
od;
if IsEmpty( nonfixedpoints ) then
Info( InfoMatrix, 2,
"MatAutomorphisms: return trivial group without hard test" );
return GroupByGenerators( [], () );
fi;
# Step 4:
# Compute a direct product of symmetric groups that covers the
# group of matrix automorphisms.
G:= [];
for i in nonfixedpoints do
Add( G, ( i[1], i[2] ) );
if 2 < Length( i ) then
Add( G, MappingPermListList( i,
Concatenation( i{[2..Length(i)]}, [ i[1] ] ) ) );
fi;
od;
G:= GroupByGenerators( G );
# Step 5:
# Enter the backtrack search for permutation groups.
permutations:= fam.permutations;
famreps:= fam.famreps;
G:= StabChain( G );
Info( InfoMatrix, 2,
"MatAutomorphisms: There are ", Length( permutations ),
" families (",
Length( Filtered( permutations, x -> Length(x) =1 ) ),
" trivial)" );
for i in [ 1 .. Length( famreps ) ] do
if 1 < Length( permutations[i] ) then
Info( InfoMatrix, 2,
"MatAutomorphismsFamily called for family no. ", i );
# First convert <famreps>[i] to `family': `family[<k>]' is the list
# of all positions <j> in <famreps>[i] with
# `<famreps>[i][<k>] = <famreps>[i][<j>]'.
# So each permutation stabilizing <famreps>[i] will have to map <k>
# to a point in `<family>[<k>]'.
# (Note that <famreps>[i] is sorted.)
famrep:= famreps[i];
support:= Length( famrep );
family:= [ ];
j:= 1;
while j <= support do
family[j]:= [ j ];
k:= j+1;
while k <= support and famrep[k] = famrep[j] do
Add( family[j], k );
family[k]:= family[j];
k:= k+1;
od;
j:= k;
od;
G:= MatAutomorphismsFamily( G, subgroup, family, permutations[i] );
ReduceStabChain( G );
fi;
od;
return GroupStabChain( G );
end );
#############################################################################
##
#M TableAutomorphisms( <tbl>, <characters> )
#M TableAutomorphisms( <tbl>, <characters>, \"closed\" )
#M TableAutomorphisms( <tbl>, <characters>, <subgroup> )
##
InstallMethod( TableAutomorphisms,
"for a character table and a list of characters",
[ IsCharacterTable, IsList ],
function( tbl, characters )
return TableAutomorphisms( tbl, characters, Group( () ) );
end );
InstallMethod( TableAutomorphisms,
"for a character table, a list of characters, and a string",
[ IsCharacterTable, IsList, IsString ],
function( tbl, characters, closed )
if closed = "closed" then
return TableAutomorphisms( tbl, characters,
GroupByGenerators( GaloisMat( TransposedMat( characters )
).generators, () ) );
else
return TableAutomorphisms( tbl, characters, Group( () ) );
fi;
end );
InstallMethod( TableAutomorphisms,
"for a character table, a list of characters, and a perm. group",
[ IsCharacterTable, IsList, IsPermGroup ],
function( tbl, characters, subgroup )
local maut, # matrix automorphisms of `characters'
# that respect element orders and centralizer orders
gens, # generators of `maut'
nccl, # no. of conjugacy classes of `tbl'
powermap, # list of relevant power maps
admissible; # generators that commute with all power maps
# Compute the matrix automorphisms.
maut:= MatrixAutomorphisms( characters,
[ OrdersClassRepresentatives( tbl ),
SizesCentralizers( tbl ) ],
subgroup );
gens:= GeneratorsOfGroup( maut );
nccl:= NrConjugacyClasses( tbl );
# Check whether all generators commute with all power maps.
powermap:= List( Set( Factors( Size( tbl ) ) ),
p -> PowerMap( tbl, p ) );
admissible:= Filtered( gens,
perm -> ForAll( powermap,
x -> ForAll( [ 1 .. nccl ],
y -> x[ y^perm ] = x[y]^perm ) ) );
# If not all matrix automorphisms are admissible then
# we compute the admissible subgroup with a second backtrack search
# inside the group of matrix automorphisms, with the group generated
# by the admissible matrix automorphisms as known subgroup.
if Length( admissible ) <> Length( gens ) then
Info( InfoMatrix, 2,
"TableAutomorphisms: ",
"not all matrix automorphisms admissible" );
admissible:= SubgroupProperty( maut,
perm -> ForAll( powermap,
x -> ForAll( [ 1 .. nccl ],
y -> x[ y^perm ] = x[y]^perm ) ),
GroupByGenerators( admissible, () ) );
else
admissible:= GroupByGenerators( admissible, () );
fi;
# Return the result.
return admissible;
end );
#############################################################################
##
#F TransformingPermutationFamily( <G>,<K>,<fam1>,<fam2>,<bij_col>,<family> )
##
## computes a transforming permutation of columns for equivalent families
## of rows of two matrices.
## (The parameters can be computed from the matrices <mat1>, <mat2> using
## "FamiliesOfRows").
##
## `TransformingPermutationFamily' returns either `false' or a record
## with fields `permutation' and `group'.
##
## <G>: group with the property that the transforming permutation lies in
## the coset `<bij_col> * <G>'
## <K>: a subgroup of the group of matrix automorphisms of <fam2> which is
## contained in <G>, e.g. Aut( <mat2> )
##
## Note: The bases of <G> and <K> must be compatible!!
##
## <fam1>: the permutations mapping the rows of the family in <mat1> to the
## representative (the so-called famrep)
## <fam2>: the permutations mapping the rows of the family in mat2 to the
## famrep
## <bij_col>: permutation corresponding to the bijection of columns in mat1
## and mat2
## <family>: map that distributes the columns into families; two columns
## <i>, <j> are in the same family iff
## `<family>[<i>] = <family>[<j>]'.
## <G> must stabilize <family>.
## Note: Stabilizing the famrep is
## equivalent to respecting <family>, so the calculation of
## <fam1> and <fam2> must respect <family>, too!
##
BindGlobal( "TransformingPermutationFamily",
function( chainG, K, fam1, fam2, bij_col, family )
local permutations, # translate `fam1' with `bij_col'
allowed, # list of lists of admissible points
ElementPropertyCoset, # local function to loop over a coset
nonbase; # list of nonbase points
# Step a:
# Replace permutations `p' in `fam1' by `bij_col^(-1) * p',
# initialize `allowed'.
permutations:= List( fam1, x -> LeftQuotient( bij_col, x ) );
allowed:= ListWithIdenticalEntries( Length( fam1 ), fam2 );
# Step b:
# Define the local function `ElementProperty'.
# It is exactly the same function as the one in `MatAutomorphismsFamily',
# so we put it in here without comments.
ElementPropertyCoset := function ( S, s, L, allowed )
local i, j, points, p, ss, LL, elm, newallowed, union;
if IsEmpty( S.generators ) then
for i in [ 1 .. Length( permutations ) ] do
for p in nonbase do
allowed[i]:= Filtered( allowed[i],
x -> ( p^s )^x in family[ p^permutations[i] ] );
od;
if IsEmpty( allowed[i] ) then
return fail;
fi;
od;
return s;
fi;
points:= SSortedList( OnTuples( S.orbit, s ) );
for i in [ 1 .. Length( permutations ) ] do
union:= [];
for j in allowed[i] do
UniteSet( union, List( family[ S.orbit[1] ^ permutations[i] ],
x -> x / j ) );
od;
IntersectSet( points, union );
od;
while not IsEmpty( points ) do
p:= points[1];
ss:= s;
while S.orbit[1]^ss <> p do
ss:= LeftQuotient( S.transversal[p/ss], ss );
od;
LL:= Filtered( L, l -> p^l = p );
newallowed:= [];
for i in [ 1 .. Length( allowed ) ] do
newallowed[i]:= Filtered( allowed[i], x -> p^x in
family[ S.orbit[1]^permutations[i] ] );
od;
elm := ElementPropertyCoset( S.stabilizer, ss, LL, newallowed );
if elm <> fail then return elm; fi;
SubtractSet( points, OrbitPerms( L, p ) );
od;
return fail;
end;
# Compute a stabilizer chain for $G$.
# Select an optimal base that allows us to prune the tree efficiently!
nonbase:= Difference( [ 1 .. Length( family ) ],
BaseStabChain( chainG ) );
# Find a subgroup $K$ of $G$ which preserves the property <prop>,
# i.e., $prop( x )$ implies $prop( x * k )$ for all $x \in G, k \in K$.
# Make this subgroup as large as possible with reasonable effort!
# Search through the whole group $G = G * Id$ for an element with <prop>.
return ElementPropertyCoset( chainG, (), K, allowed );
end );
#############################################################################
##
#M TransformingPermutations( <mat1>, <mat2> )
##
InstallMethod( TransformingPermutations,
"for two matrices",
[ IsMatrix, IsMatrix ],
function( mat1, mat2 )
local i, j, k, # loop variables
fam1,
fam2,
bijection,
bij_col, # current bijection of columns of the matrices
pos,
G,
family,
fam,
nonfixedpoints,
famrep,
support,
subgrp,
trans,
image,
preimage,
row1,
row2,
values;
# Step 0:
# Handle trivial cases.
if Length( mat1 ) <> Length( mat2 ) then
return fail;
elif IsEmpty( mat1 ) then
return rec( columns := (),
rows := (),
group := GroupByGenerators( [], () ) );
fi;
# Step 1:
# Set up and check the bijection of row families using the fact that
# sorted rows must be equal.
# (Note that this is only a bijection of the representatives;
# we do not need a physical bijection of the rows themselves)
# Note that `FamiliesOfRows' first sorts families according to
# the representative, and then sorts this list *stable* (using `Sortex')
# according to the length of the family, so the bijection must
# be the identity.
#T check invariants first (matrix dimensions!)
fam1:= FamiliesOfRows( mat1, [] );
fam2:= FamiliesOfRows( mat2, [] );
if fam1.famreps <> fam2.famreps then
Info( InfoMatrix, 2,
"TransformingPermutations: no bijection of row families" );
return fail;
fi;
# Step 2:
# Initialize a bijection of column families using that row
# families of length 1 must be in bijection, i.e. the column
# families are constant on these rows.
# We will have `bij_col[1][i]' in bijection with `bij_col[2][i]'.
bij_col:= [];
bij_col[1]:= [ [ 1 .. Length( mat1[1] ) ] ]; # trivial column families
bij_col[2]:= [ [ 1 .. Length( mat1[1] ) ] ];
for i in [ 1 .. Length( fam1.famreps ) ] do
if Length( fam1.families[i] ) = 1 then
row1:= mat1[ fam1.families[i][1] ];
row2:= mat2[ fam2.families[i][1] ];
for j in [ 1 .. Length( bij_col[1] ) ] do
preimage:= bij_col[1][j];
image:= bij_col[2][j];
values:= SSortedList( row1{ preimage } );
if values <> SSortedList( row2{ image } ) then
Info( InfoMatrix, 2,
"TransformingPermutations: ",
"no bijection of column families" );
return fail;
fi;
bij_col[1][j]:= Filtered( preimage, x -> row1[x] = values[1] );
bij_col[2][j]:= Filtered( image, x -> row2[x] = values[1] );
if Length( bij_col[1][j] ) <> Length( bij_col[2][j] ) then
Info( InfoMatrix, 2,
"TransformingPermutations: ",
"no bijection of column families" );
return fail;
fi;
for k in [ 2 .. Length( values ) ] do
Add( bij_col[1], Filtered( preimage,
x -> row1[x] = values[k] ) );
Add( bij_col[2], Filtered( image,
x -> row2[x] = values[k] ) );
if Length( bij_col[1][ Length( bij_col[1] ) ] )
<> Length( bij_col[2][ Length( bij_col[2] ) ] ) then
Info( InfoMatrix, 2,
"TransformingPermutations: ",
"no bijection of column families" );
return fail;
fi;
od;
od;
fi;
od;
# Step 3:
# Refine the column families and the bijection using that members
# of a column family must have the same sorted column in the
# restriction to every row family. Since the trivial row families
# are already examined, now only use the nontrivial row families.
# Except that now the values are sorted lists, the algorithm is
# the same as in step 2.
for i in [ 1 .. Length( fam1.famreps ) ] do
if Length( fam1.families[i] ) > 1 then
row1:= MutableTransposedMat( mat1{ fam1.families[i] } );
row2:= MutableTransposedMat( mat2{ fam2.families[i] } );
for j in row1 do Sort( j ); od;
for j in row2 do Sort( j ); od;
for j in [ 1 .. Length( bij_col[1] ) ] do
preimage:= bij_col[1][j];
image:= bij_col[2][j];
values:= SSortedList( row1{ preimage } );
if values <> SSortedList( row2{ image } ) then
Info( InfoMatrix, 2,
"TransformingPermutations: ",
"no bijection of column families" );
return fail;
fi;
bij_col[1][j]:= Filtered( preimage,
x -> row1[x] = values[1] );
bij_col[2][j]:= Filtered( image,
x -> row2[x] = values[1] );
if Length( bij_col[1][j] ) <> Length( bij_col[2][j] ) then
Info( InfoMatrix, 2,
"TransformingPermutations: ",
"no bijection of column families" );
return fail;
fi;
for k in [ 2 .. Length( values ) ] do
Add( bij_col[1], Filtered( preimage,
x -> row1[x] = values[k] ) );
Add( bij_col[2], Filtered( image,
x -> row2[x] = values[k] ) );
if Length( bij_col[1][ Length( bij_col[1] ) ] )
<> Length( bij_col[2][ Length( bij_col[2] ) ] ) then
Info( InfoMatrix, 2,
"TransformingPermutations: ",
"no bijection of column families" );
return fail;
fi;
od;
od;
fi;
od;
# Choose an arbitrary bijection of columns
# that respects the bijection of column families.
bijection:= [];
for i in [ 1 .. Length( bij_col[1] ) ] do
for j in [ 1 .. Length( bij_col[1][i] ) ] do
bijection[ bij_col[1][i][j] ]:= bij_col[2][i][j];
od;
od;
nonfixedpoints:= Filtered( bij_col[2], x -> 1 < Length(x) );
# Step 4:
# Compute a direct prouct of symmetric groups that covers the
# group of table automorphisms of mat2, using column families
# given by `bij_col[2]'.
G:= [];
for i in nonfixedpoints do
Add( G, ( i[1], i[2] ) );
if 2 < Length( i ) then
Add( G, MappingPermListList( i,
Concatenation( i{[2..Length(i)]}, [ i[1] ] ) ) );
fi;
od;
G:= StabChain( GroupByGenerators( G, () ) );
# Step 5:
# Enter the backtrack search for permutation groups.
Info( InfoMatrix, 2,
"TransformingPermutations: start of backtrack search" );
bij_col:= PermList( bijection );
# Now loop over the row families;
# first convert `famreps[i]' to `family';
# `family[<k>]' is the list of all
# positions <j> in `famreps[i]' with
# `famreps[i][<k>] = famreps[i][<j>]'.
# So each permutation stabilizing `famreps[i]' will have to map
# <k> to a point in `family[<k>]'.
# (Note that `famreps[i]' is sorted.)
for i in [ 1 .. Length( fam1.famreps ) ] do
if Length( fam1.permutations[i] ) > 1 then
famrep:= fam1.famreps[i];
support:= Length( famrep );
family:= [ ];
j:= 1;
while j <= support do
family[j]:= [ j ];
k:= j+1;
while k <= support and famrep[k] = famrep[j] do
Add( family[j], k );
family[k]:= family[j];
k:= k+1;
od;
j:= k;
od;
subgrp:= MatAutomorphismsFamily( G, [], family,
fam2.permutations[i] );
trans:= TransformingPermutationFamily( G, subgrp.generators,
fam1.permutations[i],
fam2.permutations[i], bij_col,
family );
if trans = fail then
return fail;
fi;
G:= subgrp;
ReduceStabChain( G );
bij_col:= bij_col * trans;
fi;
od;
# Return the result.
return rec( columns := bij_col,
rows := Sortex( List( mat1, x -> Permuted( x, bij_col ) ) )
/ Sortex( ShallowCopy( mat2 ) ),
group := GroupStabChain( G ) );
end );
#############################################################################
##
#M TransformingPermutationsCharacterTables( <tbl1>, <tbl2> )
##
InstallMethod( TransformingPermutationsCharacterTables,
"for two character tables",
[ IsCharacterTable, IsCharacterTable ],
function( tbl1, tbl2 )
local primes, # prime divisors of the order of each table
irr1, irr2, # lists of irreducible characters of the tables
trans, # result record
gens, # generators of the matrix automorphisms of `tbl2'
nccl, # no. of conjugacy classes
powermap1, # list of power maps of `tbl1'
powermap2, # list of power maps of `tbl2'
admissible, # group of table automorphisms of `tbl2'
pi, pi2, # admissible column transformations
prop, # property used in `ElementProperty'
orders1, # element orders of `tbl1'
orders2; # element orders of `tbl2'
# Shortcuts:
# - If the group orders differ then return `fail'.
# - If irreducibles are stored in the two tables and coincide,
# and if the power maps are known and equal then return the identity.
primes:= Set( Factors( Size( tbl1 ) ) );
if Size( tbl1 ) <> Size( tbl2 ) then
return fail;
elif HasIrr( tbl1 ) and HasIrr( tbl2 ) and Irr( tbl1 ) = Irr( tbl2 )
and ForAll( primes, p -> IsBound( ComputedPowerMaps( tbl1 )[p] ) and
IsBound( ComputedPowerMaps( tbl1 )[p] ) and
ComputedPowerMaps( tbl1 )[p] =
ComputedPowerMaps( tbl2 )[p] ) then
if HasAutomorphismsOfTable( tbl1 ) then
return rec( columns:= (),
rows:= (),
group:= AutomorphismsOfTable( tbl1 ) );
else
return rec( columns:= (),
rows:= (),
group:= AutomorphismsOfTable( tbl2 ) );
fi;
fi;
# change: TransformingPermutations: should not access Irr until
# it is checked that centralizers and element orders match!
irr1:= Irr( tbl1 );
irr2:= Irr( tbl2 );
# Compute the transformations between the matrices of irreducibles.
trans:= TransformingPermutations( irr1, irr2 );
#T improve this: use element orders already here!
#T e.g. check sorted lists of el. orders as an invariant
if trans = fail then
return fail;
fi;
gens:= GeneratorsOfGroup( trans.group );
nccl:= NrConjugacyClasses( tbl2 );
# Compute the subgroup of table automorphisms of `tbl2' if it is not
# yet stored.
# Note that we know the group of matrix automorphisms already,
# so we use the same method as in `TableAutomorphisms'.
powermap1:= List( primes, p -> PowerMap( tbl1, p ) );
powermap2:= List( primes, p -> PowerMap( tbl2, p ) );
if HasAutomorphismsOfTable( tbl2 ) then
admissible:= AutomorphismsOfTable( tbl2 );
else
admissible:= Filtered( gens,
perm -> ForAll( powermap2,
x -> ForAll( [ 1 .. nccl ],
y -> x[ y^perm ] = x[y]^perm ) ) );
if Length( admissible ) = Length( gens ) then
admissible:= trans.group;
else
Info( InfoCharacterTable, 2,
"TransformingPermutationsCharTables: ",
"not all matrix automorphisms admissible" );
admissible:= SubgroupProperty( trans.group,
perm -> ForAll( powermap2,
x -> ForAll( [ 1 .. nccl ],
y -> x[y^perm] = x[y]^perm ) ),
GroupByGenerators( admissible, () ) );
fi;
# Store the automorphisms.
SetAutomorphismsOfTable( tbl2, admissible );
fi;
pi:= trans.columns;
orders1:= OrdersClassRepresentatives( tbl1 );
orders2:= OrdersClassRepresentatives( tbl2 );
if ForAll( [ 1 .. Length( primes ) ],
x -> ForAll( [ 1 .. nccl ],
y -> powermap2[x][ y^pi ] = powermap1[x][y]^pi ) )
and Permuted( orders1, pi ) = orders2 then
# `pi' itself respects the mappings.
trans.group:= admissible;
else
# Look if there is a coset of `trans.group' over `admissible' that
# consists of transforming permutations.
prop:= s -> ForAll( [ 1 .. Length( primes ) ],
x -> ForAll( [ 1 .. nccl ], y ->
powermap2[x][ (y^pi)^s ] = ( powermap1[x][y]^pi )^s ) )
and Permuted( orders1, pi*s ) = orders2;
pi2:= ElementProperty( trans.group, prop,
TrivialSubgroup( trans.group ), admissible );
if pi2 = fail then
return fail;
else
trans:= rec( columns:= pi * pi2,
rows:= Sortex( List( irr1,
x -> Permuted( x, pi * pi2 ) ) )
/ Sortex( ShallowCopy( irr2 ) ),
group:= admissible );
fi;
fi;
# Return the result.
return trans;
end );
#############################################################################
##
#E
|