/usr/share/gap/lib/ctbllatt.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 | #############################################################################
##
#W ctbllatt.gd GAP library Thomas Breuer
#W Ansgar Kaup
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of functions that mainly deal with
## lattices in the context of character tables.
##
#############################################################################
##
#F LLL( <tbl>, <characters>[, <y>][, "sort"][, "linearcomb"] )
##
## <#GAPDoc Label="LLL">
## <ManSection>
## <Func Name="LLL" Arg='tbl, characters[, y][, "sort"][, "linearcomb"]'/>
##
## <Description>
## <Index Subkey="for virtual characters">LLL algorithm</Index>
## <Index>short vectors spanning a lattice</Index>
## <Index Subkey="for virtual characters">lattice basis reduction</Index>
## <Ref Func="LLL"/> calls the LLL algorithm
## (see <Ref Func="LLLReducedBasis"/>) in the case of
## lattices spanned by the virtual characters <A>characters</A>
## of the ordinary character table <A>tbl</A>
## (see <Ref Func="ScalarProduct" Label="for characters"/>).
## By finding shorter vectors in the lattice spanned by <A>characters</A>,
## i.e., virtual characters of smaller norm,
## in some cases <Ref Func="LLL"/> is able to find irreducible characters.
## <P/>
## <Ref Func="LLL"/> returns a record with at least components
## <C>irreducibles</C> (the list of found irreducible characters),
## <C>remainders</C> (a list of reducible virtual characters),
## and <C>norms</C> (the list of norms of the vectors in <C>remainders</C>).
## <C>irreducibles</C> together with <C>remainders</C> form a basis of the
## <M>&ZZ;</M>-lattice spanned by <A>characters</A>.
## <P/>
## Note that the vectors in the <C>remainders</C> list are in general
## <E>not</E> orthogonal (see <Ref Func="ReducedClassFunctions"/>)
## to the irreducible characters in <C>irreducibles</C>.
## <P/>
## Optional arguments of <Ref Func="LLL"/> are
## <P/>
## <List>
## <Mark><A>y</A></Mark>
## <Item>
## controls the sensitivity of the algorithm,
## see <Ref Func="LLLReducedBasis"/>,
## </Item>
## <Mark><A>"sort"</A></Mark>
## <Item>
## <Ref Func="LLL"/> sorts <A>characters</A> and the <C>remainders</C>
## component of the result according to the degrees,
## </Item>
## <Mark><A>"linearcomb"</A></Mark>
## <Item>
## the returned record contains components <C>irreddecomp</C>
## and <C>reddecomp</C>, which are decomposition matrices of
## <C>irreducibles</C> and <C>remainders</C>,
## with respect to <A>characters</A>.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> s4:= CharacterTable( "Symmetric", 4 );;
## gap> chars:= [ [ 8, 0, 0, -1, 0 ], [ 6, 0, 2, 0, 2 ],
## > [ 12, 0, -4, 0, 0 ], [ 6, 0, -2, 0, 0 ], [ 24, 0, 0, 0, 0 ],
## > [ 12, 0, 4, 0, 0 ], [ 6, 0, 2, 0, -2 ], [ 12, -2, 0, 0, 0 ],
## > [ 8, 0, 0, 2, 0 ], [ 12, 2, 0, 0, 0 ], [ 1, 1, 1, 1, 1 ] ];;
## gap> LLL( s4, chars );
## rec(
## irreducibles :=
## [ Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 3, 1, -1, 0, -1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ) ],
## norms := [ ], remainders := [ ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "LLL" );
#############################################################################
##
#F Extract( <tbl>, <reducibles>, <grammat>[, <missing> ] )
##
## <#GAPDoc Label="Extract">
## <ManSection>
## <Func Name="Extract" Arg='tbl, reducibles, grammat[, missing ]'/>
##
## <Description>
## Let <A>tbl</A> be an ordinary character table,
## <A>reducibles</A> a list of characters of <A>tbl</A>,
## and <A>grammat</A> the matrix of scalar products of <A>reducibles</A>
## (see <Ref Func="MatScalarProducts"/>).
## <Ref Func="Extract"/> tries to find irreducible characters by drawing
## conclusions out of the scalar products,
## using combinatorial and backtrack means.
## <P/>
## The optional argument <A>missing</A> is the maximal number of irreducible
## characters that occur as constituents of <A>reducibles</A>.
## Specification of <A>missing</A> may accelerate <Ref Func="Extract"/>.
## <P/>
## <Ref Func="Extract"/> returns a record <A>ext</A> with the components
## <C>solution</C> and <C>choice</C>,
## where the value of <C>solution</C> is a list <M>[ M_1, \ldots, M_n ]</M>
## of decomposition matrices <M>M_i</M> (up to permutations of rows)
## with the property that <M>M_i^{tr} \cdot X</M> is equal to
## the sublist at the positions <A>ext</A><C>.choice[i]</C> of
## <A>reducibles</A>,
## for a matrix <M>X</M> of irreducible characters;
## the value of <C>choice</C> is a list of length <M>n</M> whose entries are
## lists of indices.
## <P/>
## So the <M>j</M>-th column in each matrix <M>M_i</M> corresponds to
## <M><A>reducibles</A>[j]</M>, and each row in <M>M_i</M> corresponds to an
## irreducible character.
## <Ref Func="Decreased"/> can be used to examine the solution for
## computable irreducibles.
## <P/>
## <Example><![CDATA[
## gap> s4:= CharacterTable( "Symmetric", 4 );;
## gap> red:= [ [ 5, 1, 5, 2, 1 ], [ 2, 0, 2, 2, 0 ], [ 3, -1, 3, 0, -1 ],
## > [ 6, 0, -2, 0, 0 ], [ 4, 0, 0, 1, 2 ] ];;
## gap> gram:= MatScalarProducts( s4, red, red );
## [ [ 6, 3, 2, 0, 2 ], [ 3, 2, 1, 0, 1 ], [ 2, 1, 2, 0, 0 ],
## [ 0, 0, 0, 2, 1 ], [ 2, 1, 0, 1, 2 ] ]
## gap> ext:= Extract( s4, red, gram, 5 );
## rec( choice := [ [ 2, 5, 3, 4, 1 ] ],
## solution :=
## [
## [ [ 1, 1, 0, 0, 2 ], [ 1, 0, 1, 0, 1 ], [ 0, 1, 0, 1, 0 ],
## [ 0, 0, 1, 0, 1 ], [ 0, 0, 0, 1, 0 ] ] ] )
## gap> dec:= Decreased( s4, red, ext.solution[1], ext.choice[1] );
## rec(
## irreducibles :=
## [ Character( CharacterTable( "Sym(4)" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 3, 1, -1, 0, -1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ) ],
## matrix := [ ], remainders := [ ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Extract" );
#############################################################################
##
#F OrthogonalEmbeddingsSpecialDimension( <tbl>, <reducibles>, <grammat>,
#F ["positive",] <dim> )
##
## <#GAPDoc Label="OrthogonalEmbeddingsSpecialDimension">
## <ManSection>
## <Func Name="OrthogonalEmbeddingsSpecialDimension"
## Arg='tbl, reducibles, grammat[, "positive"], dim'/>
##
## <Description>
## <Ref Func="OrthogonalEmbeddingsSpecialDimension"/> is a variant of
## <Ref Func="OrthogonalEmbeddings"/> for the situation
## that <A>tbl</A> is an ordinary character table,
## <A>reducibles</A> is a list of virtual characters of <A>tbl</A>,
## <A>grammat</A> is the matrix of scalar products
## (see <Ref Func="MatScalarProducts"/>),
## and <A>dim</A> is an upper bound for the number of irreducible characters
## of <A>tbl</A> that occur as constituents of <A>reducibles</A>;
## if the vectors in <A>reducibles</A> are known to be proper characters then
## the string <C>"positive"</C> may be entered as fourth argument.
## (See <Ref Func="OrthogonalEmbeddings"/> for information why this may
## help.)
## <P/>
## <Ref Func="OrthogonalEmbeddingsSpecialDimension"/> first uses
## <Ref Func="OrthogonalEmbeddings"/> to compute all orthogonal embeddings
## of <A>grammat</A> into a standard lattice of dimension up to <A>dim</A>,
## and then calls <Ref Func="Decreased"/> in order to find irreducible
## characters of <A>tbl</A>.
## <P/>
## <Ref Func="OrthogonalEmbeddingsSpecialDimension"/> returns a record with
## the following components.
## <P/>
## <List>
## <Mark><C>irreducibles</C></Mark>
## <Item>
## a list of found irreducibles, the intersection of all lists of
## irreducibles found by <Ref Func="Decreased"/>,
## for all possible embeddings, and
## </Item>
## <Mark><C>remainders</C></Mark>
## <Item>
## a list of remaining reducible virtual characters.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> s6:= CharacterTable( "S6" );;
## gap> red:= InducedCyclic( s6, "all" );;
## gap> Add( red, TrivialCharacter( s6 ) );
## gap> lll:= LLL( s6, red );;
## gap> irred:= lll.irreducibles;
## [ Character( CharacterTable( "A6.2_1" ),
## [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A6.2_1" ),
## [ 9, 1, 0, 0, 1, -1, -3, -3, 1, 0, 0 ] ),
## Character( CharacterTable( "A6.2_1" ),
## [ 16, 0, -2, -2, 0, 1, 0, 0, 0, 0, 0 ] ) ]
## gap> Set( Flat( MatScalarProducts( s6, irred, lll.remainders ) ) );
## [ 0 ]
## gap> dim:= NrConjugacyClasses( s6 ) - Length( lll.irreducibles );
## 8
## gap> rem:= lll.remainders;; Length( rem );
## 8
## gap> gram:= MatScalarProducts( s6, rem, rem );; RankMat( gram );
## 8
## gap> emb1:= OrthogonalEmbeddings( gram, 8 );
## rec( norms := [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],
## solutions := [ [ 1, 2, 3, 7, 11, 12, 13, 15 ],
## [ 1, 2, 4, 8, 10, 12, 13, 14 ], [ 1, 2, 5, 6, 9, 12, 13, 16 ] ],
## vectors :=
## [ [ -1, 0, 1, 0, 1, 0, 1, 0 ], [ 1, 0, 0, 1, 0, 1, 0, 0 ],
## [ 0, 1, 1, 0, 0, 0, 1, 1 ], [ 0, 1, 1, 0, 0, 0, 1, 0 ],
## [ 0, 1, 1, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 1, 0 ],
## [ 0, -1, 0, 0, 0, 0, 0, 1 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ],
## [ 0, 0, 1, 0, 0, 0, 1, 1 ], [ 0, 0, 1, 0, 0, 0, 0, 1 ],
## [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, -1, 1, 0, 0, 0 ],
## [ 0, 0, 0, 0, 0, 1, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1, 1 ],
## [ 0, 0, 0, 0, 0, 0, 1, 0 ], [ 0, 0, 0, 0, 0, 0, 0, 1 ] ] )
## ]]></Example>
## <P/>
## In the following example we temporarily decrease the line length limit
## from its default value <M>80</M> to <M>62</M>
## in order to get a nicer output format.
## <P/>
## <Example><![CDATA[
## gap> emb2:= OrthogonalEmbeddingsSpecialDimension( s6, rem, gram, 8 );
## rec(
## irreducibles :=
## [ Character( CharacterTable( "A6.2_1" ),
## [ 5, 1, -1, 2, -1, 0, 1, -3, -1, 1, 0 ] ),
## Character( CharacterTable( "A6.2_1" ),
## [ 5, 1, 2, -1, -1, 0, -3, 1, -1, 0, 1 ] ),
## Character( CharacterTable( "A6.2_1" ),
## [ 10, -2, 1, 1, 0, 0, -2, 2, 0, 1, -1 ] ),
## Character( CharacterTable( "A6.2_1" ),
## [ 10, -2, 1, 1, 0, 0, 2, -2, 0, -1, 1 ] ) ],
## remainders :=
## [ VirtualCharacter( CharacterTable( "A6.2_1" ),
## [ 0, 0, 3, -3, 0, 0, 4, -4, 0, 1, -1 ] ),
## VirtualCharacter( CharacterTable( "A6.2_1" ),
## [ 6, 2, 3, 0, 0, 1, 2, -2, 0, -1, -2 ] ),
## VirtualCharacter( CharacterTable( "A6.2_1" ),
## [ 10, 2, 1, 1, 2, 0, 2, 2, -2, -1, -1 ] ),
## VirtualCharacter( CharacterTable( "A6.2_1" ),
## [ 14, 2, 2, -1, 0, -1, 6, 2, 0, 0, -1 ] ) ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OrthogonalEmbeddingsSpecialDimension" );
#############################################################################
##
#F Decreased( <tbl>, <chars>, <decompmat>[, <choice>] )
##
## <#GAPDoc Label="Decreased">
## <ManSection>
## <Func Name="Decreased" Arg='tbl, chars, decompmat[, choice]'/>
##
## <Description>
## Let <A>tbl</A> be an ordinary character table,
## <A>chars</A> a list of virtual characters of <A>tbl</A>,
## and <A>decompmat</A> a decomposition matrix, that is,
## a matrix <M>M</M> with the property that
## <M>M^{tr} \cdot X = <A>chars</A></M> holds,
## where <M>X</M> is a list of irreducible characters of <A>tbl</A>.
## <Ref Func="Decreased"/> tries to compute the irreducibles in <M>X</M> or
## at least some of them.
## <P/>
## Usually <Ref Func="Decreased"/> is applied to the output of
## <Ref Func="Extract"/> or <Ref Func="OrthogonalEmbeddings"/> or
## <Ref Func="OrthogonalEmbeddingsSpecialDimension"/>.
## In the case of <Ref Func="Extract"/>,
## the choice component corresponding to the decomposition matrix must be
## entered as argument <A>choice</A> of <Ref Func="Decreased"/>.
## <P/>
## <Ref Func="Decreased"/> returns <K>fail</K> if it can prove that no list
## <M>X</M> of irreducible characters corresponding to the arguments exists;
## otherwise <Ref Func="Decreased"/> returns a record with the following
## components.
## <P/>
## <List>
## <Mark><C>irreducibles</C></Mark>
## <Item>
## the list of found irreducible characters,
## </Item>
## <Mark><C>remainders</C></Mark>
## <Item>
## the remaining reducible characters, and
## </Item>
## <Mark><C>matrix</C></Mark>
## <Item>
## the decomposition matrix of the characters in the <C>remainders</C>
## component.
## </Item>
## </List>
## <P/>
## In the following example we temporarily decrease the line length limit
## from its default value <M>80</M> to <M>62</M>
## in order to get a nicer output format.
## <P/>
## <Example><![CDATA[
## gap> s4:= CharacterTable( "Symmetric", 4 );;
## gap> x:= Irr( s4 );;
## gap> red:= [ x[1]+x[2], -x[1]-x[3], -x[1]+x[3], -x[2]-x[4] ];;
## gap> mat:= MatScalarProducts( s4, red, red );
## [ [ 2, -1, -1, -1 ], [ -1, 2, 0, 0 ], [ -1, 0, 2, 0 ],
## [ -1, 0, 0, 2 ] ]
## gap> emb:= OrthogonalEmbeddings( mat );
## rec( norms := [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],
## solutions := [ [ 1, 6, 7, 12 ], [ 2, 5, 8, 11 ], [ 3, 4, 9, 10 ] ],
## vectors := [ [ -1, 1, 1, 0 ], [ -1, 1, 0, 1 ], [ 1, -1, 0, 0 ],
## [ -1, 0, 1, 1 ], [ -1, 0, 1, 0 ], [ -1, 0, 0, 1 ],
## [ 0, -1, 1, 0 ], [ 0, -1, 0, 1 ], [ 0, 1, 0, 0 ],
## [ 0, 0, -1, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 0, 1 ] ] )
## gap> dec:= Decreased( s4, red, emb.vectors{ emb.solutions[1] } );
## rec(
## irreducibles :=
## [ Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 3, 1, -1, 0, -1 ] ) ],
## matrix := [ ], remainders := [ ] )
## gap> Decreased( s4, red, emb.vectors{ emb.solutions[2] } );
## fail
## gap> Decreased( s4, red, emb.vectors{ emb.solutions[3] } );
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Decreased" );
#############################################################################
##
#F DnLattice( <tbl>, <grammat>, <reducibles> )
##
## <#GAPDoc Label="DnLattice">
## <ManSection>
## <Func Name="DnLattice" Arg='tbl, grammat, reducibles'/>
##
## <Description>
## Let <A>tbl</A> be an ordinary character table,
## and <A>reducibles</A> a list of virtual characters of <A>tbl</A>.
## <P/>
## <Ref Func="DnLattice"/> searches for sublattices isomorphic to root
## lattices of type <M>D_n</M>, for <M>n \geq 4</M>,
## in the lattice that is generated by <A>reducibles</A>;
## each vector in <A>reducibles</A> must have norm <M>2</M>, and the matrix
## of scalar products (see <Ref Func="MatScalarProducts"/>) of
## <A>reducibles</A> must be entered as argument <A>grammat</A>.
## <P/>
## <Ref Func="DnLattice"/> is able to find irreducible characters if there
## is a lattice of type <M>D_n</M> with <M>n > 4</M>.
## In the case <M>n = 4</M>, <Ref Func="DnLattice"/> may fail to determine
## irreducibles.
## <P/>
## <Ref Func="DnLattice"/> returns a record with components
## <List>
## <Mark><C>irreducibles</C></Mark>
## <Item>
## the list of found irreducible characters,
## </Item>
## <Mark><C>remainders</C></Mark>
## <Item>
## the list of remaining reducible virtual characters, and
## </Item>
## <Mark><C>gram</C></Mark>
## <Item>
## the Gram matrix of the vectors in <C>remainders</C>.
## </Item>
## </List>
## <P/>
## The <C>remainders</C> list is transformed in such a way that the
## <C>gram</C> matrix is a block diagonal matrix that exhibits the structure
## of the lattice generated by the vectors in <C>remainders</C>.
## So <Ref Func="DnLattice"/> might be useful even if it fails to find
## irreducible characters.
## <P/>
## In the following example we temporarily decrease the line length limit
## from its default value <M>80</M> to <M>62</M>
## in order to get a nicer output format.
## <P/>
## <Example><![CDATA[
## gap> s4:= CharacterTable( "Symmetric", 4 );;
## gap> red:= [ [ 2, 0, 2, 2, 0 ], [ 4, 0, 0, 1, 2 ],
## > [ 5, -1, 1, -1, 1 ], [ -1, 1, 3, -1, -1 ] ];;
## gap> gram:= MatScalarProducts( s4, red, red );
## [ [ 2, 1, 0, 0 ], [ 1, 2, 1, -1 ], [ 0, 1, 2, 0 ], [ 0, -1, 0, 2 ] ]
## gap> dn:= DnLattice( s4, gram, red );
## rec( gram := [ ],
## irreducibles :=
## [ Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ) ],
## remainders := [ ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DnLattice" );
#############################################################################
##
#F DnLatticeIterative( <tbl>, <reducibles> )
##
## <#GAPDoc Label="DnLatticeIterative">
## <ManSection>
## <Func Name="DnLatticeIterative" Arg='tbl, reducibles'/>
##
## <Description>
## Let <A>tbl</A> be an ordinary character table,
## and <A>reducibles</A> either a list of virtual characters of <A>tbl</A>
## or a record with components <C>remainders</C> and <C>norms</C>,
## for example a record returned by <Ref Func="LLL"/>.
## <P/>
## <Ref Func="DnLatticeIterative"/> was designed for iterative use of
## <Ref Func="DnLattice"/>.
## <Ref Func="DnLatticeIterative"/> selects the vectors of norm <M>2</M>
## among the given virtual character, calls <Ref Func="DnLattice"/> for
## them, reduces the virtual characters with found irreducibles,
## calls <Ref Func="DnLattice"/> again for the remaining virtual characters,
## and so on, until no new irreducibles are found.
## <P/>
## <Ref Func="DnLatticeIterative"/> returns a record with the same
## components and meaning of components as <Ref Func="LLL"/>.
## <P/>
## In the following example we temporarily decrease the line length limit
## from its default value <M>80</M> to <M>62</M>
## in order to get a nicer output format.
## <P/>
## <Example><![CDATA[
## gap> s4:= CharacterTable( "Symmetric", 4 );;
## gap> red:= [ [ 2, 0, 2, 2, 0 ], [ 4, 0, 0, 1, 2 ],
## > [ 5, -1, 1, -1, 1 ], [ -1, 1, 3, -1, -1 ] ];;
## gap> dn:= DnLatticeIterative( s4, red );
## rec(
## irreducibles :=
## [ Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, -1, 0 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 1, -1, 1, 1, -1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "Sym(4)" ), [ 3, -1, -1, 0, 1 ] ) ],
## norms := [ ], remainders := [ ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DnLatticeIterative" );
#############################################################################
##
#E
|