/usr/share/gap/lib/ctblmaps.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 | #############################################################################
##
#W ctblmaps.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of those functions that are used
## to construct maps (mostly fusion maps and power maps).
##
## 1. Maps Concerning Character Tables
## 2. Power Maps
## 3. Class Fusions between Character Tables
## 4. Utilities for Parametrized Maps
## 5. Subroutines for the Construction of Power Maps
## 6. Subroutines for the Construction of Class Fusions
##
#############################################################################
##
## 1. Maps Concerning Character Tables
##
## <#GAPDoc Label="[1]{ctblmaps}">
## Besides the characters, <E>power maps</E> are an important part of a
## character table, see Section <Ref Sect="Power Maps"/>.
## Often their computation is not easy, and if the table has no access to
## the underlying group then in general they cannot be obtained from the
## matrix of irreducible characters;
## so it is useful to store them on the table.
## <P/>
## If not only a single table is considered but different tables of a group
## and a subgroup or of a group and a factor group are used,
## also <E>class fusion maps</E>
## (see Section <Ref Sect="Class Fusions between Character Tables"/>)
## must be known to get information about the embedding or simply to induce
## or restrict characters,
## see Section <Ref Sect="Restricted and Induced Class Functions"/>).
## <P/>
## These are examples of functions from conjugacy classes which will be
## called <E>maps</E> in the following.
## (This should not be confused with the term mapping,
## cf. Chapter <Ref Chap="Mappings"/>.)
## In &GAP;, maps are represented by lists.
## Also each character, each list of element orders, of centralizer orders,
## or of class lengths are maps,
## and the list returned by <Ref Func="ListPerm"/>,
## when this function is called with a permutation of classes, is a map.
## <P/>
## When maps are constructed without access to a group, often one only knows
## that the image of a given class is contained in a set of possible images,
## e. g., that the image of a class under a subgroup fusion is in the set of
## all classes with the same element order.
## Using further information, such as centralizer orders, power maps and the
## restriction of characters, the sets of possible images can be restricted
## further.
## In many cases, at the end the images are uniquely determined.
## <P/>
## Because of this approach, many functions in this chapter work not only
## with maps but with <E>parametrized maps</E>
## (or <E>paramaps</E> for short).
## More about parametrized maps can be found
## in Section <Ref Sect="Parametrized Maps"/>.
## <P/>
## The implementation follows <Cite Key="Bre91"/>,
## a description of the main ideas together with several examples
## can be found in <Cite Key="Bre99"/>.
## <#/GAPDoc>
##
#############################################################################
##
## 2. Power Maps
##
## <#GAPDoc Label="[2]{ctblmaps}">
## The <M>n</M>-th power map of a character table is represented by a list
## that stores at position <M>i</M> the position of the class containing
## the <M>n</M>-th powers of the elements in the <M>i</M>-th class.
## The <M>n</M>-th power map can be composed from the power maps of the
## prime divisors of <M>n</M>,
## so usually only power maps for primes are actually stored in the
## character table.
## <P/>
## For an ordinary character table <A>tbl</A> with access to its underlying
## group <M>G</M>,
## the <M>p</M>-th power map of <A>tbl</A> can be computed using the
## identification of the conjugacy classes of <M>G</M> with the classes of
## <A>tbl</A>.
## For an ordinary character table without access to a group,
## in general the <M>p</M>-th power maps (and hence also the element orders)
## for prime divisors <M>p</M> of the group order are not uniquely
## determined by the matrix of irreducible characters.
## So only necessary conditions can be checked in this case,
## which in general yields only a list of several possibilities for the
## desired power map.
## Character tables of the &GAP; character table library store all
## <M>p</M>-th power maps for prime divisors <M>p</M> of the group order.
## <P/>
## Power maps of Brauer tables can be derived from the power maps of the
## underlying ordinary tables.
## <P/>
## For (computing and) accessing the <M>n</M>-th power map of a character
## table, <Ref Func="PowerMap"/> can be used;
## if the <M>n</M>-th power map cannot be uniquely determined then
## <Ref Func="PowerMap"/> returns <K>fail</K>.
## <P/>
## The list of all possible <M>p</M>-th power maps of a table in the sense
## that certain necessary conditions are satisfied can be computed with
## <Ref Func="PossiblePowerMaps"/>.
## This provides a default strategy, the subroutines are listed in
## Section <Ref Sect="Subroutines for the Construction of Power Maps"/>.
## <#/GAPDoc>
##
#############################################################################
##
#O PowerMap( <tbl>, <n>[, <class>] )
#O PowerMapOp( <tbl>, <n>[, <class>] )
#A ComputedPowerMaps( <tbl> )
##
## <#GAPDoc Label="PowerMap">
## <ManSection>
## <Oper Name="PowerMap" Arg='tbl, n[, class]'/>
## <Oper Name="PowerMapOp" Arg='tbl, n[, class]'/>
## <Attr Name="ComputedPowerMaps" Arg='tbl'/>
##
## <Description>
## Called with first argument a character table <A>tbl</A>
## and second argument an integer <A>n</A>,
## <Ref Oper="PowerMap"/> returns the <A>n</A>-th power map of <A>tbl</A>.
## This is a list containing at position <M>i</M> the position of the class
## of <A>n</A>-th powers of the elements in the <M>i</M>-th class of
## <A>tbl</A>.
## <P/>
## If the additional third argument <A>class</A> is present then the
## position of <A>n</A>-th powers of the <A>class</A>-th class is returned.
## <P/>
## If the <A>n</A>-th power map is not uniquely determined by <A>tbl</A>
## then <K>fail</K> is returned.
## This can happen only if <A>tbl</A> has no access to its underlying group.
## <P/>
## The power maps of <A>tbl</A> that were computed already by
## <Ref Oper="PowerMap"/> are stored in <A>tbl</A> as value of the attribute
## <Ref Attr="ComputedPowerMaps"/>,
## the <M>n</M>-th power map at position <M>n</M>.
## <Ref Oper="PowerMap"/> checks whether the desired power map is already
## stored, computes it using the operation <Ref Oper="PowerMapOp"/> if it is
## not yet known, and stores it.
## So methods for the computation of power maps can be installed for
## the operation <Ref Oper="PowerMapOp"/>.
## <!-- % For power maps of groups, see <Ref Attr="PowerMapOfGroup"/>. -->
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "L3(2)" );;
## gap> ComputedPowerMaps( tbl );
## [ , [ 1, 1, 3, 2, 5, 6 ], [ 1, 2, 1, 4, 6, 5 ],,,,
## [ 1, 2, 3, 4, 1, 1 ] ]
## gap> PowerMap( tbl, 5 );
## [ 1, 2, 3, 4, 6, 5 ]
## gap> ComputedPowerMaps( tbl );
## [ , [ 1, 1, 3, 2, 5, 6 ], [ 1, 2, 1, 4, 6, 5 ],, [ 1, 2, 3, 4, 6, 5 ],
## , [ 1, 2, 3, 4, 1, 1 ] ]
## gap> PowerMap( tbl, 137, 2 );
## 2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PowerMap", [ IsNearlyCharacterTable, IsInt ] );
DeclareOperation( "PowerMap", [ IsNearlyCharacterTable, IsInt, IsInt ] );
DeclareOperation( "PowerMapOp", [ IsNearlyCharacterTable, IsInt ] );
DeclareOperation( "PowerMapOp", [ IsNearlyCharacterTable, IsInt, IsInt ] );
DeclareAttributeSuppCT( "ComputedPowerMaps",
IsNearlyCharacterTable, "mutable", [ "class" ] );
#############################################################################
##
#O PossiblePowerMaps( <tbl>, <p>[, <options>] )
##
## <#GAPDoc Label="PossiblePowerMaps">
## <ManSection>
## <Oper Name="PossiblePowerMaps" Arg='tbl, p[, options]'/>
##
## <Description>
## For the ordinary character table <A>tbl</A> of the group <M>G</M>, say,
## and a prime integer <A>p</A>,
## <Ref Oper="PossiblePowerMaps"/> returns the list of all maps that have
## the following properties of the <M>p</M>-th power map of <A>tbl</A>.
## (Representative orders are used only if the
## <Ref Func="OrdersClassRepresentatives"/> value of <A>tbl</A> is known.
##
## <Enum>
## <Item>
## For class <M>i</M>, the centralizer order of the image is a multiple of
## the <M>i</M>-th centralizer order;
## if the elements in the <M>i</M>-th class have order coprime to <M>p</M>
## then the centralizer orders of class <M>i</M> and its image are equal.
## </Item>
## <Item>
## Let <M>n</M> be the order of elements in class <M>i</M>.
## If <A>prime</A> divides <M>n</M> then the images have order <M>n/p</M>;
## otherwise the images have order <M>n</M>.
## These criteria are checked in <Ref Func="InitPowerMap"/>.
## </Item>
## <Item>
## For each character <M>\chi</M> of <M>G</M> and each element <M>g</M>
## in <M>G</M>, the values <M>\chi(g^p)</M> and
## <C>GaloisCyc</C><M>( \chi(g), p )</M> are
## algebraic integers that are congruent modulo <M>p</M>;
## if <M>p</M> does not divide the element order of <M>g</M>
## then the two values are equal.
## This congruence is checked for the characters specified below in
## the discussion of the <A>options</A> argument;
## For linear characters <M>\lambda</M> among these characters,
## the condition <M>\chi(g)^p = \chi(g^p)</M> is checked.
## The corresponding function is
## <Ref Func="Congruences" Label="for character tables"/>.
## </Item>
## <Item>
## For each character <M>\chi</M> of <M>G</M>, the kernel is a normal
## subgroup <M>N</M>, and <M>g^p \in N</M> for all <M>g \in N</M>;
## moreover, if <M>N</M> has index <M>p</M> in <M>G</M> then
## <M>g^p \in N</M> for all <M>g \in G</M>,
## and if the index of <M>N</M> in <M>G</M> is coprime to <M>p</M> then
## <M>g^p \not \in N</M> for each <M>g \not \in N</M>.
## These conditions are checked for the kernels of all characters
## <M>\chi</M> specified below,
## the corresponding function is <Ref Func="ConsiderKernels"/>.
## </Item>
## <Item>
## If <M>p</M> is larger than the order <M>m</M> of an element
## <M>g \in G</M> then the class of <M>g^p</M> is determined by the power
## maps for primes dividing the residue of <M>p</M> modulo <M>m</M>.
## If these power maps are stored in the <Ref Func="ComputedPowerMaps"/>
## value of <A>tbl</A> then this information is used.
## This criterion is checked in <Ref Func="ConsiderSmallerPowerMaps"/>.
## </Item>
## <Item>
## For each character <M>\chi</M> of <M>G</M>,
## the symmetrization <M>\psi</M> defined by
## <M>\psi(g) = (\chi(g)^p - \chi(g^p))/p</M> is a character.
## This condition is checked for the kernels of all characters
## <M>\chi</M> specified below,
## the corresponding function is
## <Ref Func="PowerMapsAllowedBySymmetrizations"/>.
## </Item>
## </Enum>
## <P/>
## If <A>tbl</A> is a Brauer table, the possibilities are computed
## from those for the underlying ordinary table.
## <P/>
## The optional argument <A>options</A>, if given, must be a record that may
## have the following components:
## <List>
## <Mark><C>chars</C>:</Mark>
## <Item>
## a list of characters which are used for the check of the criteria
## 3., 4., and 6.;
## the default is <C>Irr( <A>tbl</A> )</C>,
## </Item>
## <Mark><C>powermap</C>:</Mark>
## <Item>
## a parametrized map which is an approximation of the desired map
## </Item>
## <Mark><C>decompose</C>:</Mark>
## <Item>
## a Boolean;
## a <K>true</K> value indicates that all constituents of the
## symmetrizations of <C>chars</C> computed for criterion 6. lie in
## <C>chars</C>,
## so the symmetrizations can be decomposed into elements of <C>chars</C>;
## the default value of <C>decompose</C> is <K>true</K> if <C>chars</C>
## is not bound and <C>Irr( <A>tbl</A> )</C> is known,
## otherwise <K>false</K>,
## </Item>
## <Mark><C>quick</C>:</Mark>
## <Item>
## a Boolean;
## if <K>true</K> then the subroutines are called with value <K>true</K>
## for the argument <A>quick</A>;
## especially, as soon as only one candidate remains
## this candidate is returned immediately;
## the default value is <K>false</K>,
## </Item>
## <Mark><C>parameters</C>:</Mark>
## <Item>
## a record with components <C>maxamb</C>, <C>minamb</C> and <C>maxlen</C>
## which control the subroutine
## <Ref Func="PowerMapsAllowedBySymmetrizations"/>;
## it only uses characters with current indeterminateness up to
## <C>maxamb</C>,
## tests decomposability only for characters with current
## indeterminateness at least <C>minamb</C>,
## and admits a branch according to a character only if there is one
## with at most <C>maxlen</C> possible symmetrizations.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "U4(3).4" );;
## gap> PossiblePowerMaps( tbl, 2 );
## [ [ 1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4,
## 5, 6, 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18,
## 18, 20, 20, 20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PossiblePowerMaps", [ IsCharacterTable, IsInt ] );
DeclareOperation( "PossiblePowerMaps", [ IsCharacterTable, IsInt,
IsRecord ] );
#############################################################################
##
#F ElementOrdersPowerMap( <powermap> )
##
## <#GAPDoc Label="ElementOrdersPowerMap">
## <ManSection>
## <Func Name="ElementOrdersPowerMap" Arg='powermap'/>
##
## <Description>
## Let <A>powermap</A> be a nonempty list containing at position <M>p</M>,
## if bound, the <M>p</M>-th power map of a character table or group.
## <Ref Func="ElementOrdersPowerMap"/> returns a list of the same length as
## each entry in <A>powermap</A>, with entry at position <M>i</M> equal to
## the order of elements in class <M>i</M> if this order is uniquely
## determined by <A>powermap</A>,
## and equal to an unknown (see Chapter <Ref Chap="Unknowns"/>)
## otherwise.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "U4(3).4" );;
## gap> known:= ComputedPowerMaps( tbl );;
## gap> Length( known );
## 7
## gap> sub:= ShallowCopy( known );; Unbind( sub[7] );
## gap> ElementOrdersPowerMap( sub );
## [ 1, 2, 3, 3, 3, 4, 4, 5, 6, 6, Unknown(1), Unknown(2), 8, 9, 12, 2,
## 2, 4, 4, 6, 6, 6, 8, 10, 12, 12, 12, Unknown(3), Unknown(4), 4, 4,
## 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 20, 20, 24, 24,
## Unknown(5), Unknown(6), Unknown(7), Unknown(8) ]
## gap> ord:= ElementOrdersPowerMap( known );
## [ 1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 12, 2, 2, 4, 4, 6, 6, 6,
## 8, 10, 12, 12, 12, 14, 14, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12,
## 12, 12, 12, 12, 20, 20, 24, 24, 28, 28, 28, 28 ]
## gap> ord = OrdersClassRepresentatives( tbl );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ElementOrdersPowerMap" );
#############################################################################
##
#F PowerMapByComposition( <tbl>, <n> ) . . for char. table and pos. integer
##
## <#GAPDoc Label="PowerMapByComposition">
## <ManSection>
## <Func Name="PowerMapByComposition" Arg='tbl, n'/>
##
## <Description>
## <A>tbl</A> must be a nearly character table,
## and <A>n</A> a positive integer.
## If the power maps for all prime divisors of <A>n</A> are stored in the
## <Ref Attr="ComputedPowerMaps"/> list of <A>tbl</A> then
## <Ref Func="PowerMapByComposition"/> returns
## the <A>n</A>-th power map of <A>tbl</A>.
## Otherwise <K>fail</K> is returned.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "U4(3).4" );; exp:= Exponent( tbl );
## 2520
## gap> PowerMapByComposition( tbl, exp );
## [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
## 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
## 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
## gap> Length( ComputedPowerMaps( tbl ) );
## 7
## gap> PowerMapByComposition( tbl, 11 );
## fail
## gap> PowerMap( tbl, 11 );;
## gap> PowerMapByComposition( tbl, 11 );
## [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
## 20, 21, 22, 23, 24, 26, 25, 27, 28, 29, 31, 30, 33, 32, 35, 34, 37,
## 36, 39, 38, 41, 40, 43, 42, 45, 44, 47, 46, 49, 48, 51, 50, 53, 52 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PowerMapByComposition" );
#############################################################################
##
## <#GAPDoc Label="[3]{ctblmaps}">
## The permutation group of matrix automorphisms
## (see <Ref Func="MatrixAutomorphisms"/>)
## acts on the possible power maps returned by
## <Ref Func="PossiblePowerMaps"/>
## by permuting a list via <Ref Func="Permuted"/>
## and then mapping the images via <Ref Func="OnPoints"/>.
## Note that by definition, the group of <E>table</E> automorphisms
## acts trivially.
## <#/GAPDoc>
##
#############################################################################
##
#F OrbitPowerMaps( <map>, <permgrp> )
##
## <#GAPDoc Label="OrbitPowerMaps">
## <ManSection>
## <Func Name="OrbitPowerMaps" Arg='map, permgrp'/>
##
## <Description>
## returns the orbit of the power map <A>map</A> under the action of the
## permutation group <A>permgrp</A>
## via a combination of <Ref Func="Permuted"/> and <Ref Func="OnPoints"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitPowerMaps" );
#############################################################################
##
#F RepresentativesPowerMaps( <listofmaps>, <permgrp> )
##
## <#GAPDoc Label="RepresentativesPowerMaps">
## <ManSection>
## <Func Name="RepresentativesPowerMaps" Arg='listofmaps, permgrp'/>
##
## <Description>
## <Index>matrix automorphisms</Index>
## returns a list of orbit representatives of the power maps in the list
## <A>listofmaps</A> under the action of the permutation group
## <A>permgrp</A>
## via a combination of <Ref Func="Permuted"/> and <Ref Func="OnPoints"/>.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "3.McL" );;
## gap> grp:= MatrixAutomorphisms( Irr( tbl ) ); Size( grp );
## <permutation group with 5 generators>
## 32
## gap> poss:= PossiblePowerMaps( CharacterTable( "3.McL" ), 3 );
## [ [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
## 4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37,
## 37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
## 49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ],
## [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
## 4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,
## 37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
## 49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ] ]
## gap> reps:= RepresentativesPowerMaps( poss, grp );
## [ [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
## 4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,
## 37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
## 49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ] ]
## gap> orb:= OrbitPowerMaps( reps[1], grp );
## [ [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
## 4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 8, 9, 37,
## 37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
## 49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ],
## [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
## 4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, 9, 8, 37,
## 37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52, 52, 49, 49,
## 49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ] ]
## gap> Parametrized( orb );
## [ 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 11, 11, 11, 14, 14, 14, 17, 17, 17,
## 4, 4, 4, 4, 4, 4, 29, 29, 29, 26, 26, 26, 32, 32, 32, [ 8, 9 ],
## [ 8, 9 ], 37, 37, 37, 40, 40, 40, 43, 43, 43, 11, 11, 11, 52, 52,
## 52, 49, 49, 49, 14, 14, 14, 14, 14, 14, 37, 37, 37, 37, 37, 37 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RepresentativesPowerMaps" );
#############################################################################
##
## 3. Class Fusions between Character Tables
##
## <#GAPDoc Label="[4]{ctblmaps}">
## <Index>fusions</Index><Index>subgroup fusions</Index>
## For a group <M>G</M> and a subgroup <M>H</M> of <M>G</M>,
## the fusion map between the character table of <M>H</M> and the character
## table of <M>G</M> is represented by a list that stores at position
## <M>i</M> the position of the <M>i</M>-th class of the table of <M>H</M>
## in the classes list of the table of <M>G</M>.
## <P/>
## For ordinary character tables <A>tbl1</A> and <A>tbl2</A> of <M>H</M> and
## <M>G</M>, with access to the groups <M>H</M> and <M>G</M>,
## the class fusion between <A>tbl1</A> and <A>tbl2</A> can be computed
## using the identifications of the conjugacy classes of <M>H</M> with the
## classes of <A>tbl1</A> and the conjugacy classes of <M>G</M> with the
## classes of <A>tbl2</A>.
## For two ordinary character tables without access to an underlying group,
## or in the situation that the group stored in <A>tbl1</A> is not
## physically a subgroup of the group stored in <A>tbl2</A> but an
## isomorphic copy, in general the class fusion is not uniquely determined
## by the information stored on the tables such as irreducible characters
## and power maps.
## So only necessary conditions can be checked in this case,
## which in general yields only a list of several possibilities for the
## desired class fusion.
## Character tables of the &GAP; character table library store various
## class fusions that are regarded as important,
## for example fusions from maximal subgroups
## (see <Ref Func="ComputedClassFusions"/>
## and <Ref Attr="Maxes" BookName="ctbllib"/> in the manual for the &GAP;
## Character Table Library).
## <P/>
## Class fusions between Brauer tables can be derived from the class fusions
## between the underlying ordinary tables.
## The class fusion from a Brauer table to the underlying ordinary table is
## stored when the Brauer table is constructed from the ordinary table,
## so no method is needed to compute such a fusion.
## <P/>
## For (computing and) accessing the class fusion between two character
## tables,
## <Ref Func="FusionConjugacyClasses" Label="for two character tables"/>
## can be used;
## if the class fusion cannot be uniquely determined then
## <Ref Func="FusionConjugacyClasses" Label="for two character tables"/>
## returns <K>fail</K>.
## <P/>
## The list of all possible class fusion between two tables in the sense
## that certain necessary conditions are satisfied can be computed with
## <Ref Func="PossibleClassFusions"/>.
## This provides a default strategy, the subroutines are listed in
## Section <Ref Sect="Subroutines for the Construction of Class Fusions"/>.
## <P/>
## It should be noted that all the following functions except
## <Ref Func="FusionConjugacyClasses" Label="for two character tables"/>
## deal only with the situation of class fusions from subgroups.
## The computation of <E>factor fusions</E> from a character table to the
## table of a factor group is not dealt with here.
## Since the ordinary character table of a group <M>G</M> determines the
## character tables of all factor groups of <M>G</M>, the factor fusion to a
## given character table of a factor group of <M>G</M> is determined up to
## table automorphisms (see <Ref Func="AutomorphismsOfTable"/>) once
## the class positions of the kernel of the natural epimorphism have been
## fixed.
## <#/GAPDoc>
##
#############################################################################
##
#O FusionConjugacyClasses( <tbl1>, <tbl2> )
#O FusionConjugacyClasses( <H>, <G> )
#O FusionConjugacyClasses( <hom>[, <tbl1>, <tbl2>] )
#O FusionConjugacyClassesOp( <tbl1>, <tbl2> )
#A FusionConjugacyClassesOp( <hom> )
##
## <#GAPDoc Label="FusionConjugacyClasses">
## <ManSection>
## <Heading>FusionConjugacyClasses</Heading>
## <Oper Name="FusionConjugacyClasses" Arg='tbl1, tbl2'
## Label="for two character tables"/>
## <Oper Name="FusionConjugacyClasses" Arg='H, G'
## Label="for two groups"/>
## <Oper Name="FusionConjugacyClasses" Arg='hom[, tbl1, tbl2]'
## Label="for a homomorphism"/>
## <Oper Name="FusionConjugacyClassesOp" Arg='tbl1, tbl2'
## Label="for two character tables"/>
## <Attr Name="FusionConjugacyClassesOp" Arg='hom'
## Label="for a homomorphism"/>
##
## <Description>
## Called with two character tables <A>tbl1</A> and <A>tbl2</A>,
## <Ref Oper="FusionConjugacyClasses" Label="for two character tables"/>
## returns the fusion of conjugacy classes between <A>tbl1</A> and
## <A>tbl2</A>.
## (If one of the tables is a Brauer table,
## it will delegate this task to the underlying ordinary table.)
## <P/>
## Called with two groups <A>H</A> and <A>G</A> where <A>H</A> is a subgroup
## of <A>G</A>,
## <Ref Oper="FusionConjugacyClasses" Label="for two groups"/> returns
## the fusion of conjugacy classes between <A>H</A> and <A>G</A>.
## This is done by delegating to the ordinary character tables of <A>H</A>
## and <A>G</A>,
## since class fusions are stored only for character tables and not for
## groups.
## <P/>
## Note that the returned class fusion refers to the ordering of conjugacy
## classes in the character tables if the arguments are character tables
## and to the ordering of conjugacy classes in the groups if the arguments
## are groups
## (see <Ref Attr="ConjugacyClasses" Label="for character tables"/>).
## <P/>
## Called with a group homomorphism <A>hom</A>,
## <Ref Oper="FusionConjugacyClasses" Label="for a homomorphism"/> returns
## the fusion of conjugacy classes between the preimage and the image of
## <A>hom</A>;
## contrary to the two cases above,
## also factor fusions can be handled by this variant.
## If <A>hom</A> is the only argument then the class fusion refers to the
## ordering of conjugacy classes in the groups.
## If the character tables of preimage and image are given as <A>tbl1</A>
## and <A>tbl2</A>, respectively (each table with its group stored),
## then the fusion refers to the ordering of classes in these tables.
## <P/>
## If no class fusion exists or if the class fusion is not uniquely
## determined, <K>fail</K> is returned; this may happen when
## <Ref Oper="FusionConjugacyClasses" Label="for two character tables"/> is
## called with two character tables that do not know compatible underlying
## groups.
## <P/>
## Methods for the computation of class fusions can be installed for
## the operation
## <Ref Oper="FusionConjugacyClassesOp" Label="for two character tables"/>.
## <P/>
## <Example><![CDATA[
## gap> s4:= SymmetricGroup( 4 );
## Sym( [ 1 .. 4 ] )
## gap> tbls4:= CharacterTable( s4 );;
## gap> d8:= SylowSubgroup( s4, 2 );
## Group([ (1,2), (3,4), (1,3)(2,4) ])
## gap> FusionConjugacyClasses( d8, s4 );
## [ 1, 2, 3, 3, 5 ]
## gap> tbls5:= CharacterTable( "S5" );;
## gap> FusionConjugacyClasses( CharacterTable( "A5" ), tbls5 );
## [ 1, 2, 3, 4, 4 ]
## gap> FusionConjugacyClasses(CharacterTable("A5"), CharacterTable("J1"));
## fail
## gap> PossibleClassFusions(CharacterTable("A5"), CharacterTable("J1"));
## [ [ 1, 2, 3, 4, 5 ], [ 1, 2, 3, 5, 4 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "FusionConjugacyClasses",
[ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "FusionConjugacyClasses", [ IsGroup, IsGroup ] );
DeclareOperation( "FusionConjugacyClasses", [ IsGeneralMapping ] );
DeclareOperation( "FusionConjugacyClasses",
[ IsGeneralMapping, IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareAttribute( "FusionConjugacyClassesOp", IsGeneralMapping );
DeclareOperation( "FusionConjugacyClassesOp",
[ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "FusionConjugacyClassesOp",
[ IsGeneralMapping, IsNearlyCharacterTable, IsNearlyCharacterTable ] );
#############################################################################
##
#A ComputedClassFusions( <tbl> )
##
## <#GAPDoc Label="ComputedClassFusions">
## <ManSection>
## <Attr Name="ComputedClassFusions" Arg='tbl'/>
##
## <Description>
## The class fusions from the character table <A>tbl</A> that have been
## computed already by
## <Ref Oper="FusionConjugacyClasses" Label="for two character tables"/> or
## explicitly stored by <Ref Func="StoreFusion"/>
## are stored in the <Ref Attr="ComputedClassFusions"/> list of <A>tbl1</A>.
## Each entry of this list is a record with the following components.
##
## <List>
## <Mark><C>name</C></Mark>
## <Item>
## the <Ref Attr="Identifier" Label="for character tables"/> value
## of the character table to which the fusion maps,
## </Item>
## <Mark><C>map</C></Mark>
## <Item>
## the list of positions of image classes,
## </Item>
## <Mark><C>text</C> (optional)</Mark>
## <Item>
## a string giving additional information about the fusion map,
## for example whether the map is uniquely determined by the character
## tables,
## </Item>
## <Mark><C>specification</C> (optional, rarely used)</Mark>
## <Item>
## a value that distinguishes different fusions between the same tables.
## </Item>
## </List>
## <P/>
## Note that stored fusion maps may differ from the maps returned by
## <Ref Func="GetFusionMap"/> and the maps entered by
## <Ref Func="StoreFusion"/> if the table <A>destination</A> has a
## nonidentity <Ref Attr="ClassPermutation"/> value.
## So if one fetches a fusion map from a table <A>tbl1</A> to a table
## <A>tbl2</A> via access to the data in the
## <Ref Attr="ComputedClassFusions"/> list of <A>tbl1</A> then the stored
## value must be composed with the <Ref Attr="ClassPermutation"/> value of
## <A>tbl2</A> in order to obtain the correct class fusion.
## (If one handles fusions only via <Ref Func="GetFusionMap"/> and
## <Ref Func="StoreFusion"/> then this adjustment is made automatically.)
## <P/>
## Fusions are identified via the
## <Ref Attr="Identifier" Label="for character tables"/> value of the
## destination table and not by this table itself because many fusions
## between character tables in the &GAP; character table library are stored
## on library tables,
## and it is not desirable to load together with a library table also all
## those character tables that occur as destinations of fusions from this
## table.
## <P/>
## For storing fusions and accessing stored fusions,
## see also <Ref Func="GetFusionMap"/>, <Ref Func="StoreFusion"/>.
## For accessing the identifiers of tables that store a fusion into a
## given character table, see <Ref Func="NamesOfFusionSources"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttributeSuppCT( "ComputedClassFusions",
IsNearlyCharacterTable, "mutable", [ "class" ] );
#############################################################################
##
#F GetFusionMap( <source>, <destination>[, <specification>] )
##
## <#GAPDoc Label="GetFusionMap">
## <ManSection>
## <Func Name="GetFusionMap" Arg='source, destination[, specification]'/>
##
## <Description>
## For two ordinary character tables <A>source</A> and <A>destination</A>,
## <Ref Func="GetFusionMap"/> checks whether the
## <Ref Attr="ComputedClassFusions"/> list of <A>source</A>
## contains a record with <C>name</C> component
## <C>Identifier( <A>destination</A> )</C>,
## and returns returns the <C>map</C> component of the first such record.
## <C>GetFusionMap( <A>source</A>, <A>destination</A>,
## <A>specification</A> )</C> fetches
## that fusion map for which the record additionally has the
## <C>specification</C> component <A>specification</A>.
## <P/>
## If both <A>source</A> and <A>destination</A> are Brauer tables,
## first the same is done, and if no fusion map was found then
## <Ref Func="GetFusionMap"/> looks whether a fusion map between the
## ordinary tables is stored;
## if so then the fusion map between <A>source</A> and <A>destination</A>
## is stored on <A>source</A>, and then returned.
## <P/>
## If no appropriate fusion is found, <Ref Func="GetFusionMap"/> returns
## <K>fail</K>.
## For the computation of class fusions, see
## <Ref Func="FusionConjugacyClasses" Label="for two character tables"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GetFusionMap" );
#############################################################################
##
#F StoreFusion( <source>, <fusion>, <destination> )
##
## <#GAPDoc Label="StoreFusion">
## <ManSection>
## <Func Name="StoreFusion" Arg='source, fusion, destination'/>
##
## <Description>
## For two character tables <A>source</A> and <A>destination</A>,
## <Ref Func="StoreFusion"/> stores the fusion <A>fusion</A> from
## <A>source</A> to <A>destination</A> in the
## <Ref Attr="ComputedClassFusions"/> list of <A>source</A>,
## and adds the <Ref Attr="Identifier" Label="for character tables"/> string
## of <A>destination</A> to the <Ref Attr="NamesOfFusionSources"/> list of
## <A>destination</A>.
## <P/>
## <A>fusion</A> can either be a fusion map (that is, the list of positions
## of the image classes) or a record as described
## in <Ref Func="ComputedClassFusions"/>.
## <P/>
## If fusions to <A>destination</A> are already stored on <A>source</A> then
## another fusion can be stored only if it has a record component
## <C>specification</C> that distinguishes it from the stored fusions.
## In the case of such an ambiguity, <Ref Func="StoreFusion"/> raises an
## error.
## <P/>
## <Example><![CDATA[
## gap> tbld8:= CharacterTable( d8 );;
## gap> ComputedClassFusions( tbld8 );
## [ rec( map := [ 1, 2, 3, 3, 5 ], name := "CT1" ) ]
## gap> Identifier( tbls4 );
## "CT1"
## gap> GetFusionMap( tbld8, tbls4 );
## [ 1, 2, 3, 3, 5 ]
## gap> GetFusionMap( tbls4, tbls5 );
## fail
## gap> poss:= PossibleClassFusions( tbls4, tbls5 );
## [ [ 1, 5, 2, 3, 6 ] ]
## gap> StoreFusion( tbls4, poss[1], tbls5 );
## gap> GetFusionMap( tbls4, tbls5 );
## [ 1, 5, 2, 3, 6 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "StoreFusion" );
#############################################################################
##
#A NamesOfFusionSources( <tbl> )
##
## <#GAPDoc Label="NamesOfFusionSources">
## <ManSection>
## <Attr Name="NamesOfFusionSources" Arg='tbl'/>
##
## <Description>
## For a character table <A>tbl</A>,
## <Ref Attr="NamesOfFusionSources"/> returns the list of identifiers of all
## those character tables that are known to have fusions to <A>tbl</A>
## stored.
## The <Ref Attr="NamesOfFusionSources"/> value is updated whenever a fusion
## to <A>tbl</A> is stored using <Ref Func="StoreFusion"/>.
## <P/>
## <Example><![CDATA[
## gap> NamesOfFusionSources( tbls4 );
## [ "CT2" ]
## gap> Identifier( CharacterTable( d8 ) );
## "CT2"
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttributeSuppCT( "NamesOfFusionSources",
IsNearlyCharacterTable, "mutable", [] );
#############################################################################
##
#O PossibleClassFusions( <subtbl>, <tbl>[, <options>] )
##
## <#GAPDoc Label="PossibleClassFusions">
## <ManSection>
## <Oper Name="PossibleClassFusions" Arg='subtbl, tbl[, options]'/>
##
## <Description>
## For two ordinary character tables <A>subtbl</A> and <A>tbl</A> of the
## groups <M>H</M> and <M>G</M>, say,
## <Ref Oper="PossibleClassFusions"/> returns the list of all maps that have
## the following properties of class fusions from <A>subtbl</A> to
## <A>tbl</A>.
##
## <Enum>
## <Item>
## For class <M>i</M>, the centralizer order of the image in <M>G</M> is a
## multiple of the <M>i</M>-th centralizer order in <M>H</M>,
## and the element orders in the <M>i</M>-th class and its image are
## equal.
## These criteria are checked in <Ref Func="InitFusion"/>.
## </Item>
## <Item>
## The class fusion commutes with power maps.
## This is checked using <Ref Func="TestConsistencyMaps"/>.
## </Item>
## <Item>
## If the permutation character of <M>G</M> corresponding to the action of
## <M>G</M> on the cosets of <M>H</M> is specified (see the discussion of
## the <A>options</A> argument below)
## then it prescribes for each class <M>C</M> of
## <M>G</M> the number of elements of <M>H</M> fusing into <M>C</M>.
## The corresponding function is <Ref Func="CheckPermChar"/>.
## </Item>
## <Item>
## The table automorphisms of <A>tbl</A>
## (see <Ref Func="AutomorphismsOfTable"/>) are
## used in order to compute only orbit representatives.
## (But note that the list returned by <Ref Oper="PossibleClassFusions"/>
## contains the full orbits.)
## </Item>
## <Item>
## For each character <M>\chi</M> of <M>G</M>, the restriction to <M>H</M>
## via the class fusion is a character of <M>H</M>.
## This condition is checked for all characters specified below,
## the corresponding function is
## <Ref Func="FusionsAllowedByRestrictions"/>.
## </Item>
## <Item>
## The class multiplication coefficients in <A>subtbl</A> do not exceed
## the corresponding coefficients in <A>tbl</A>.
## This is checked in <Ref Func="ConsiderStructureConstants"/>,
## see also the comment on the parameter <C>verify</C> below.
## </Item>
## </Enum>
## <P/>
## If <A>subtbl</A> and <A>tbl</A> are Brauer tables then the possibilities
## are computed from those for the underlying ordinary tables.
## <P/>
## The optional argument <A>options</A> must be a record that may have the
## following components:
##
## <List>
## <Mark><C>chars</C></Mark>
## <Item>
## a list of characters of <A>tbl</A> which are used for the check
## of 5.; the default is <C>Irr( <A>tbl</A> )</C>,
## </Item>
## <Mark><C>subchars</C></Mark>
## <Item>
## a list of characters of <A>subtbl</A> which are constituents of the
## restrictions of <C>chars</C>,
## the default is <C>Irr( <A>subtbl</A> )</C>,
## </Item>
## <Mark><C>fusionmap</C></Mark>
## <Item>
## a parametrized map which is an approximation of the desired map,
## </Item>
## <Mark><C>decompose</C></Mark>
## <Item>
## a Boolean;
## a <K>true</K> value indicates that all constituents of the restrictions
## of <C>chars</C> computed for criterion 5. lie in <C>subchars</C>,
## so the restrictions can be decomposed into elements of <C>subchars</C>;
## the default value of <C>decompose</C> is <K>true</K> if <C>subchars</C>
## is not bound and <C>Irr( <A>subtbl</A> )</C> is known,
## otherwise <K>false</K>,
## </Item>
## <Mark><C>permchar</C></Mark>
## <Item>
## (a values list of) a permutation character; only those fusions
## affording that permutation character are computed,
## </Item>
## <Mark><C>quick</C></Mark>
## <Item>
## a Boolean;
## if <K>true</K> then the subroutines are called with value <K>true</K>
## for the argument <A>quick</A>;
## especially, as soon as only one possibility remains
## then this possibility is returned immediately;
## the default value is <K>false</K>,
## </Item>
## <Mark><C>verify</C></Mark>
## <Item>
## a Boolean;
## if <K>false</K> then <Ref Func="ConsiderStructureConstants"/> is called
## only if more than one orbit of possible class fusions exists,
## under the action of the groups of table automorphisms;
## the default value is <K>false</K> (because the computation of the
## structure constants is usually very time consuming, compared with
## checking the other criteria),
## </Item>
## <Mark><C>parameters</C></Mark>
## <Item>
## a record with components <C>maxamb</C>, <C>minamb</C> and <C>maxlen</C>
## which control the subroutine
## <Ref Func="FusionsAllowedByRestrictions"/>;
## it only uses characters with current indeterminateness up to
## <C>maxamb</C>,
## tests decomposability only for characters with current
## indeterminateness at least <C>minamb</C>,
## and admits a branch according to a character only if there is one
## with at most <C>maxlen</C> possible restrictions.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable( "U3(3)" );; tbl:= CharacterTable( "J4" );;
## gap> PossibleClassFusions( subtbl, tbl );
## [ [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ],
## [ 1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21 ],
## [ 1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22 ],
## [ 1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22 ],
## [ 1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 15, 15, 22, 22 ],
## [ 1, 2, 4, 4, 6, 6, 6, 10, 13, 12, 16, 16, 22, 22 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "PossibleClassFusions",
[ IsNearlyCharacterTable, IsNearlyCharacterTable ] );
DeclareOperation( "PossibleClassFusions",
[ IsNearlyCharacterTable, IsNearlyCharacterTable, IsRecord ] );
#############################################################################
##
## <#GAPDoc Label="[5]{ctblmaps}">
## The permutation groups of table automorphisms
## (see <Ref Func="AutomorphismsOfTable"/>)
## of the subgroup table <A>subtbl</A> and the supergroup table <A>tbl</A>
## act on the possible class fusions from <A>subtbl</A> to <A>tbl</A>
## that are returned by <Ref Func="PossibleClassFusions"/>,
## the former by permuting a list via <Ref Func="Permuted"/>,
## the latter by mapping the images via <Ref Func="OnPoints"/>.
## <P/>
## If a set of possible fusions with certain properties was computed
## that are not invariant under the full groups of table automorphisms
## then only a smaller group acts on this set.
## This may happen for example if a permutation character or if an explicit
## approximation of the fusion map was prescribed in the call of
## <Ref Oper="PossibleClassFusions"/>.
## <#/GAPDoc>
##
#############################################################################
##
#F OrbitFusions( <subtblautomorphisms>, <fusionmap>, <tblautomorphisms> )
##
## <#GAPDoc Label="OrbitFusions">
## <ManSection>
## <Func Name="OrbitFusions"
## Arg='subtblautomorphisms, fusionmap, tblautomorphisms'/>
##
## <Description>
## returns the orbit of the class fusion map <A>fusionmap</A> under the
## actions of the permutation groups <A>subtblautomorphisms</A> and
## <A>tblautomorphisms</A> of automorphisms of the character table of the
## subgroup and the supergroup, respectively.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitFusions" );
#############################################################################
##
#F RepresentativesFusions( <subtbl>, <listofmaps>, <tbl> )
##
## <#GAPDoc Label="RepresentativesFusions">
## <ManSection>
## <Func Name="RepresentativesFusions" Arg='subtbl, listofmaps, tbl'/>
##
## <Description>
## <Index>table automorphisms</Index>
## Let <A>listofmaps</A> be a list of class fusions from the character table
## <A>subtbl</A> to the character table <A>tbl</A>.
## <Ref Func="RepresentativesFusions"/> returns a list of orbit
## representatives of the class fusions under the action of maximal
## admissible subgroups of the table automorphism groups of these character
## tables.
## <P/>
## Instead of the character tables <A>subtbl</A> and <A>tbl</A>,
## also the permutation groups of their table automorphisms
## (see <Ref Attr="AutomorphismsOfTable"/>) may be entered.
## <P/>
## <Example><![CDATA[
## gap> fus:= GetFusionMap( subtbl, tbl );
## [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ]
## gap> orb:= OrbitFusions( AutomorphismsOfTable( subtbl ), fus,
## > AutomorphismsOfTable( tbl ) );
## [ [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ],
## [ 1, 2, 4, 4, 5, 5, 6, 10, 13, 12, 14, 14, 21, 21 ] ]
## gap> rep:= RepresentativesFusions( subtbl, orb, tbl );
## [ [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "RepresentativesFusions" );
#############################################################################
##
## 4. Utilities for Parametrized Maps
##
## <#GAPDoc Label="[6]{ctblmaps}">
## <Index Subkey="parametrized">map</Index>
## <Index>class functions</Index>
## A <E>parametrized map</E> is a list whose <M>i</M>-th entry is either
## unbound (which means that nothing is known about the image(s) of the
## <M>i</M>-th class) or the image of the <M>i</M>-th class
## (i.e., an integer for fusion maps, power maps, element orders etc.,
## and a cyclotomic for characters),
## or a list of possible images of the <M>i</M>-th class.
## In this sense, maps are special parametrized maps.
## We often identify a parametrized map <A>paramap</A> with the set of all
## maps <A>map</A> with the property that either
## <C><A>map</A>[i] = <A>paramap</A>[i]</C> or
## <C><A>map</A>[i]</C> is contained in the list <C><A>paramap</A>[i]</C>;
## we say then that <A>map</A> is contained in <A>paramap</A>.
## <P/>
## This definition implies that parametrized maps cannot be used to describe
## sets of maps where lists are possible images.
## An exception are strings which naturally arise as images when class names
## are considered.
## So strings and lists of strings are allowed in parametrized maps,
## and character constants
## (see Chapter <Ref Chap="Strings and Characters"/>)
## are not allowed in maps.
## <#/GAPDoc>
##
#############################################################################
##
#F CompositionMaps( <paramap2>, <paramap1>[, <class>] )
##
## <#GAPDoc Label="CompositionMaps">
## <ManSection>
## <Func Name="CompositionMaps" Arg='paramap2, paramap1[, class]'/>
##
## <Description>
## The composition of two parametrized maps <A>paramap1</A>, <A>paramap2</A>
## is defined as the parametrized map <A>comp</A> that contains
## all compositions <M>f_2 \circ f_1</M> of elements <M>f_1</M> of
## <A>paramap1</A> and <M>f_2</M> of <A>paramap2</A>.
## For example, the composition of a character <M>\chi</M> of a group
## <M>G</M> by a parametrized class fusion map from a subgroup <M>H</M> to
## <M>G</M> is the parametrized map that contains all restrictions of
## <M>\chi</M> by elements of the parametrized fusion map.
## <P/>
## <C>CompositionMaps(<A>paramap2</A>, <A>paramap1</A>)</C>
## is a parametrized map with entry
## <C>CompositionMaps(<A>paramap2</A>, <A>paramap1</A>, <A>class</A>)</C>
## at position <A>class</A>.
## If <C><A>paramap1</A>[<A>class</A>]</C> is an integer then
## <C>CompositionMaps(<A>paramap2</A>, <A>paramap1</A>, <A>class</A>)</C>
## is equal to <C><A>paramap2</A>[ <A>paramap1</A>[ <A>class</A> ] ]</C>.
## Otherwise it is the union of <C><A>paramap2</A>[<A>i</A>]</C> for
## <A>i</A> in <C><A>paramap1</A>[ <A>class</A> ]</C>.
## <P/>
## <Example><![CDATA[
## gap> map1:= [ 1, [ 2 .. 4 ], [ 4, 5 ], 1 ];;
## gap> map2:= [ [ 1, 2 ], 2, 2, 3, 3 ];;
## gap> CompositionMaps( map2, map1 );
## [ [ 1, 2 ], [ 2, 3 ], 3, [ 1, 2 ] ]
## gap> CompositionMaps( map1, map2 );
## [ [ 1, 2, 3, 4 ], [ 2, 3, 4 ], [ 2, 3, 4 ], [ 4, 5 ], [ 4, 5 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CompositionMaps" );
#############################################################################
##
#F InverseMap( <paramap> ) . . . . . . . . . . inverse of a parametrized map
##
## <#GAPDoc Label="InverseMap">
## <ManSection>
## <Func Name="InverseMap" Arg='paramap'/>
##
## <Description>
## For a parametrized map <A>paramap</A>,
## <Ref Func="InverseMap"/> returns a mutable parametrized map whose
## <M>i</M>-th entry is unbound if <M>i</M> is not in the image of
## <A>paramap</A>, equal to <M>j</M> if <M>i</M> is (in) the image of
## <C><A>paramap</A>[<A>j</A>]</C> exactly for <M>j</M>,
## and equal to the set of all preimages of <M>i</M> under <A>paramap</A>
## otherwise.
## <P/>
## We have
## <C>CompositionMaps( <A>paramap</A>, InverseMap( <A>paramap</A> ) )</C>
## the identity map.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "2.A5" );; f:= CharacterTable( "A5" );;
## gap> fus:= GetFusionMap( tbl, f );
## [ 1, 1, 2, 3, 3, 4, 4, 5, 5 ]
## gap> inv:= InverseMap( fus );
## [ [ 1, 2 ], 3, [ 4, 5 ], [ 6, 7 ], [ 8, 9 ] ]
## gap> CompositionMaps( fus, inv );
## [ 1, 2, 3, 4, 5 ]
## gap> # transfer a power map ``up'' to the factor group
## gap> pow:= PowerMap( tbl, 2 );
## [ 1, 1, 2, 4, 4, 8, 8, 6, 6 ]
## gap> CompositionMaps( fus, CompositionMaps( pow, inv ) );
## [ 1, 1, 3, 5, 4 ]
## gap> last = PowerMap( f, 2 );
## true
## gap> # transfer a power map of the factor group ``down'' to the group
## gap> CompositionMaps( inv, CompositionMaps( PowerMap( f, 2 ), fus ) );
## [ [ 1, 2 ], [ 1, 2 ], [ 1, 2 ], [ 4, 5 ], [ 4, 5 ], [ 8, 9 ],
## [ 8, 9 ], [ 6, 7 ], [ 6, 7 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "InverseMap" );
#############################################################################
##
#F ProjectionMap( <fusionmap> ) . . . . projection corresp. to a fusion map
##
## <#GAPDoc Label="ProjectionMap">
## <ManSection>
## <Func Name="ProjectionMap" Arg='fusionmap'/>
##
## <Description>
## For a map <A>fusionmap</A>,
## <Ref Func="ProjectionMap"/> returns a parametrized map
## whose <M>i</M>-th entry is unbound if <M>i</M> is not in the image of
## <A>fusionmap</A>,
## and equal to <M>j</M> if <M>j</M> is the smallest position such that
## <M>i</M> is the image of <A>fusionmap</A><C>[</C><M>j</M><C>]</C>.
## <P/>
## We have
## <C>CompositionMaps( <A>fusionmap</A>, ProjectionMap( <A>fusionmap</A> ) )</C>
## the identity map, i.e., first projecting and then fusing yields the
## identity.
## Note that <A>fusionmap</A> must <E>not</E> be a parametrized map.
## <P/>
## <Example><![CDATA[
## gap> ProjectionMap( [ 1, 1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6 ] );
## [ 1, 4, 7, 8, 9, 12 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ProjectionMap" );
#############################################################################
##
#F Indirected( <character>, <paramap> )
##
## <#GAPDoc Label="Indirected">
## <ManSection>
## <Func Name="Indirected" Arg='character, paramap'/>
##
## <Description>
## For a map <A>character</A> and a parametrized map <A>paramap</A>,
## <Ref Func="Indirected"/> returns a parametrized map whose entry at
## position <M>i</M> is
## <A>character</A><C>[ </C><A>paramap</A><C>[</C><M>i</M><C>] ]</C>
## if <A>paramap</A><C>[</C><M>i</M><C>]</C> is an integer,
## and an unknown (see Chapter <Ref Chap="Unknowns"/>) otherwise.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "M12" );;
## gap> fus:= [ 1, 3, 4, [ 6, 7 ], 8, 10, [ 11, 12 ], [ 11, 12 ],
## > [ 14, 15 ], [ 14, 15 ] ];;
## gap> List( Irr( tbl ){ [ 1 .. 6 ] }, x -> Indirected( x, fus ) );
## [ [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ],
## [ 11, 3, 2, Unknown(9), 1, 0, Unknown(10), Unknown(11), 0, 0 ],
## [ 11, 3, 2, Unknown(12), 1, 0, Unknown(13), Unknown(14), 0, 0 ],
## [ 16, 0, -2, 0, 1, 0, 0, 0, Unknown(15), Unknown(16) ],
## [ 16, 0, -2, 0, 1, 0, 0, 0, Unknown(17), Unknown(18) ],
## [ 45, -3, 0, 1, 0, 0, -1, -1, 1, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Indirected" );
#############################################################################
##
#F Parametrized( <list> )
##
## <#GAPDoc Label="Parametrized">
## <ManSection>
## <Func Name="Parametrized" Arg='list'/>
##
## <Description>
## For a list <A>list</A> of (parametrized) maps of the same length,
## <Ref Func="Parametrized"/> returns the smallest parametrized map
## containing all elements of <A>list</A>.
## <P/>
## <Ref Func="Parametrized"/> is the inverse function to
## <Ref Func="ContainedMaps"/>.
## <P/>
## <Example><![CDATA[
## gap> Parametrized( [ [ 1, 2, 3, 4, 5 ], [ 1, 3, 2, 4, 5 ],
## > [ 1, 2, 3, 4, 6 ] ] );
## [ 1, [ 2, 3 ], [ 2, 3 ], 4, [ 5, 6 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Parametrized" );
#############################################################################
##
#F ContainedMaps( <paramap> )
##
## <#GAPDoc Label="ContainedMaps">
## <ManSection>
## <Func Name="ContainedMaps" Arg='paramap'/>
##
## <Description>
## For a parametrized map <A>paramap</A>,
## <Ref Func="ContainedMaps"/> returns the set of all
## maps contained in <A>paramap</A>.
## <P/>
## <Ref Func="ContainedMaps"/> is the inverse function to
## <Ref Func="Parametrized"/> in the sense that
## <C>Parametrized( ContainedMaps( <A>paramap</A> ) )</C>
## is equal to <A>paramap</A>.
## <P/>
## <Example><![CDATA[
## gap> ContainedMaps( [ 1, [ 2, 3 ], [ 2, 3 ], 4, [ 5, 6 ] ] );
## [ [ 1, 2, 2, 4, 5 ], [ 1, 2, 2, 4, 6 ], [ 1, 2, 3, 4, 5 ],
## [ 1, 2, 3, 4, 6 ], [ 1, 3, 2, 4, 5 ], [ 1, 3, 2, 4, 6 ],
## [ 1, 3, 3, 4, 5 ], [ 1, 3, 3, 4, 6 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ContainedMaps" );
#############################################################################
##
#F UpdateMap( <character>, <paramap>, <indirected> )
##
## <#GAPDoc Label="UpdateMap">
## <ManSection>
## <Func Name="UpdateMap" Arg='character, paramap, indirected'/>
##
## <Description>
## Let <A>character</A> be a map, <A>paramap</A> a parametrized map,
## and <A>indirected</A> a parametrized map that is contained in
## <C>CompositionMaps( <A>character</A>, <A>paramap</A> )</C>.
## <P/>
## Then <Ref Func="UpdateMap"/> changes <A>paramap</A> to the parametrized
## map containing exactly the maps whose composition with <A>character</A>
## is equal to <A>indirected</A>.
## <P/>
## If a contradiction is detected then <K>false</K> is returned immediately,
## otherwise <K>true</K>.
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable("S4(4).2");; tbl:= CharacterTable("He");;
## gap> fus:= InitFusion( subtbl, tbl );;
## gap> fus;
## [ 1, 2, 2, [ 2, 3 ], 4, 4, [ 7, 8 ], [ 7, 8 ], 9, 9, 9, [ 10, 11 ],
## [ 10, 11 ], 18, 18, 25, 25, [ 26, 27 ], [ 26, 27 ], 2, [ 6, 7 ],
## [ 6, 7 ], [ 6, 7, 8 ], 10, 10, 17, 17, 18, [ 19, 20 ], [ 19, 20 ] ]
## gap> chi:= Irr( tbl )[2];
## Character( CharacterTable( "He" ), [ 51, 11, 3, 6, 0, 3, 3, -1, 1, 2,
## 0, 3*E(7)+3*E(7)^2+3*E(7)^4, 3*E(7)^3+3*E(7)^5+3*E(7)^6, 2,
## E(7)+E(7)^2+2*E(7)^3+E(7)^4+2*E(7)^5+2*E(7)^6,
## 2*E(7)+2*E(7)^2+E(7)^3+2*E(7)^4+E(7)^5+E(7)^6, 1, 1, 0, 0,
## -E(7)-E(7)^2-E(7)^4, -E(7)^3-E(7)^5-E(7)^6, E(7)+E(7)^2+E(7)^4,
## E(7)^3+E(7)^5+E(7)^6, 1, 0, 0, -1, -1, 0, 0, E(7)+E(7)^2+E(7)^4,
## E(7)^3+E(7)^5+E(7)^6 ] )
## gap> filt:= Filtered( Irr( subtbl ), x -> x[1] = 50 );
## [ Character( CharacterTable( "S4(4).2" ),
## [ 50, 10, 10, 2, 5, 5, -2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1,
## 10, 2, 2, 2, 1, 1, 0, 0, 0, -1, -1 ] ),
## Character( CharacterTable( "S4(4).2" ),
## [ 50, 10, 10, 2, 5, 5, -2, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1,
## -10, -2, -2, -2, -1, -1, 0, 0, 0, 1, 1 ] ) ]
## gap> UpdateMap( chi, fus, filt[1] + TrivialCharacter( subtbl ) );
## true
## gap> fus;
## [ 1, 2, 2, 3, 4, 4, 8, 7, 9, 9, 9, 10, 10, 18, 18, 25, 25,
## [ 26, 27 ], [ 26, 27 ], 2, [ 6, 7 ], [ 6, 7 ], [ 6, 7 ], 10, 10,
## 17, 17, 18, [ 19, 20 ], [ 19, 20 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "UpdateMap" );
#############################################################################
##
#F MeetMaps( <paramap1>, <paramap2> )
##
## <#GAPDoc Label="MeetMaps">
## <ManSection>
## <Func Name="MeetMaps" Arg='paramap1, paramap2'/>
##
## <Description>
## For two parametrized maps <A>paramap1</A> and <A>paramap2</A>,
## <Ref Func="MeetMaps"/> changes <A>paramap1</A> such that the image of
## class <M>i</M> is the intersection of
## <A>paramap1</A><C>[</C><M>i</M><C>]</C>
## and <A>paramap2</A><C>[</C><M>i</M><C>]</C>.
## <P/>
## If this implies that no images remain for a class, the position of such a
## class is returned.
## If no such inconsistency occurs,
## <Ref Func="MeetMaps"/> returns <K>true</K>.
## <P/>
## <Example><![CDATA[
## gap> map1:= [ [ 1, 2 ], [ 3, 4 ], 5, 6, [ 7, 8, 9 ] ];;
## gap> map2:= [ [ 1, 3 ], [ 3, 4 ], [ 5, 6 ], 6, [ 8, 9, 10 ] ];;
## gap> MeetMaps( map1, map2 ); map1;
## true
## [ 1, [ 3, 4 ], 5, 6, [ 8, 9 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MeetMaps" );
#############################################################################
##
#F ImproveMaps( <map2>, <map1>, <composition>, <class> )
##
## <ManSection>
## <Func Name="ImproveMaps" Arg='map2, map1, composition, class'/>
##
## <Description>
## <Ref Func="ImproveMaps"/> is a utility for
## <Ref Func="CommutativeDiagram"/> and <Ref Func="TestConsistencyMaps"/>.
## <P/>
## <A>composition</A> must be a set that is known to be an upper bound for
## the composition <M>( <A>map2</A> \circ <A>map1</A> )[ <A>class</A> ]</M>.
## If <C><A>map1</A>[ <A>class</A> ]</C><M> = x</M> is unique then
## <M><A>map2</A>[ x ]</M> must be a set,
## it will be replaced by its intersection with <A>composition</A>;
## if <A>map1</A>[ <A>class</A> ] is a set then all elements <C>x</C> with
## empty <C>Intersection( <A>map2</A>[ x ], <A>composition</A> )</C>
## are excluded.
## <P/>
## <Ref Func="ImproveMaps"/> returns
## <List>
## <Mark>0</Mark>
## <Item>
## if no improvement was found,
## </Item>
## <Mark>-1</Mark>
## <Item>
## if <A>map1</A>[ <A>class</A> ] was improved,
## </Item>
## <Mark><A>x</A></Mark>
## <Item>
## if <A>map2</A>[ <A>x</A> ] was improved.
## </Item>
## </List>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ImproveMaps" );
#############################################################################
##
#F CommutativeDiagram( <paramap1>, <paramap2>, <paramap3>, <paramap4>[,
#F <improvements>] )
##
## <#GAPDoc Label="CommutativeDiagram">
## <ManSection>
## <Func Name="CommutativeDiagram"
## Arg='paramap1, paramap2, paramap3, paramap4[, improvements]'/>
##
## <Description>
## Let <A>paramap1</A>, <A>paramap2</A>, <A>paramap3</A>, <A>paramap4</A> be
## parametrized maps covering parametrized maps <M>f_1</M>, <M>f_2</M>,
## <M>f_3</M>, <M>f_4</M> with the property
## that <C>CompositionMaps</C><M>( f_2, f_1 )</M> is equal to
## <C>CompositionMaps</C><M>( f_4, f_3 )</M>.
## <P/>
## <Ref Func="CommutativeDiagram"/> checks this consistency,
## and changes the arguments such that all possible images are removed that
## cannot occur in the parametrized maps <M>f_i</M>.
## <P/>
## The return value is <K>fail</K> if an inconsistency was found.
## Otherwise a record with the components <C>imp1</C>, <C>imp2</C>,
## <C>imp3</C>, <C>imp4</C> is returned, each bound to the list of positions
## where the corresponding parametrized map was changed,
## <P/>
## The optional argument <A>improvements</A> must be a record with
## components <C>imp1</C>, <C>imp2</C>, <C>imp3</C>, <C>imp4</C>.
## If such a record is specified then only diagrams are considered where
## entries of the <M>i</M>-th component occur as preimages of the
## <M>i</M>-th parametrized map.
## <P/>
## When an inconsistency is detected,
## <Ref Func="CommutativeDiagram"/> immediately returns <K>fail</K>.
## Otherwise a record is returned that contains four lists <C>imp1</C>,
## <M>\ldots</M>, <C>imp4</C>:
## The <M>i</M>-th component is the list of classes where the <M>i</M>-th
## argument was changed.
## <P/>
## <Example><![CDATA[
## gap> map1:= [[ 1, 2, 3 ], [ 1, 3 ]];; map2:= [[ 1, 2 ], 1, [ 1, 3 ]];;
## gap> map3:= [ [ 2, 3 ], 3 ];; map4:= [ , 1, 2, [ 1, 2 ] ];;
## gap> imp:= CommutativeDiagram( map1, map2, map3, map4 );
## rec( imp1 := [ 2 ], imp2 := [ 1 ], imp3 := [ ], imp4 := [ ] )
## gap> map1; map2; map3; map4;
## [ [ 1, 2, 3 ], 1 ]
## [ 2, 1, [ 1, 3 ] ]
## [ [ 2, 3 ], 3 ]
## [ , 1, 2, [ 1, 2 ] ]
## gap> imp2:= CommutativeDiagram( map1, map2, map3, map4, imp );
## rec( imp1 := [ ], imp2 := [ ], imp3 := [ ], imp4 := [ ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CommutativeDiagram" );
#############################################################################
##
#F CheckFixedPoints( <inside1>, <between>, <inside2> )
##
## <#GAPDoc Label="CheckFixedPoints">
## <ManSection>
## <Func Name="CheckFixedPoints" Arg='inside1, between, inside2'/>
##
## <Description>
## Let <A>inside1</A>, <A>between</A>, <A>inside2</A> be parametrized maps,
## where <A>between</A> is assumed to map each fixed point of <A>inside1</A>
## (that is, <A>inside1</A><C>[</C><M>i</M><C>] = </C><A>i</A>)
## to a fixed point of <A>inside2</A>
## (that is, <A>between</A><C>[</C><M>i</M><C>]</C> is either an integer
## that is fixed by <A>inside2</A> or a list that has nonempty intersection
## with the union of its images under <A>inside2</A>).
## <Ref Func="CheckFixedPoints"/> changes <A>between</A> and <A>inside2</A>
## by removing all those entries violate this condition.
## <P/>
## When an inconsistency is detected,
## <Ref Func="CheckFixedPoints"/> immediately returns <K>fail</K>.
## Otherwise the list of positions is returned where changes occurred.
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable( "L4(3).2_2" );;
## gap> tbl:= CharacterTable( "O7(3)" );;
## gap> fus:= InitFusion( subtbl, tbl );; fus{ [ 48, 49 ] };
## [ [ 54, 55, 56, 57 ], [ 54, 55, 56, 57 ] ]
## gap> CheckFixedPoints( ComputedPowerMaps( subtbl )[5], fus,
## > ComputedPowerMaps( tbl )[5] );
## [ 48, 49 ]
## gap> fus{ [ 48, 49 ] };
## [ [ 56, 57 ], [ 56, 57 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CheckFixedPoints" );
#############################################################################
##
#F TransferDiagram( <inside1>, <between>, <inside2>[, <improvements>] )
##
## <#GAPDoc Label="TransferDiagram">
## <ManSection>
## <Func Name="TransferDiagram"
## Arg='inside1, between, inside2[, improvements]'/>
##
## <Description>
## Let <A>inside1</A>, <A>between</A>, <A>inside2</A> be parametrized maps
## covering parametrized maps <M>m_1</M>, <M>f</M>, <M>m_2</M> with the
## property that <C>CompositionMaps</C><M>( m_2, f )</M> is equal to
## <C>CompositionMaps</C><M>( f, m_1 )</M>.
## <P/>
## <Ref Func="TransferDiagram"/> checks this consistency, and changes the
## arguments such that all possible images are removed that cannot occur in
## the parametrized maps <M>m_i</M> and <M>f</M>.
## <P/>
## So <Ref Func="TransferDiagram"/> is similar to
## <Ref Func="CommutativeDiagram"/>,
## but <A>between</A> occurs twice in each diagram checked.
## <P/>
## If a record <A>improvements</A> with fields <C>impinside1</C>,
## <C>impbetween</C>, and <C>impinside2</C> is specified,
## only those diagrams with elements of <C>impinside1</C> as preimages of
## <A>inside1</A>, elements of <C>impbetween</C> as preimages of
## <A>between</A> or elements of <C>impinside2</C> as preimages of
## <A>inside2</A> are considered.
## <P/>
## When an inconsistency is detected,
## <Ref Func="TransferDiagram"/> immediately returns <K>fail</K>.
## Otherwise a record is returned that contains three lists
## <C>impinside1</C>, <C>impbetween</C>, and <C>impinside2</C> of positions
## where the arguments were changed.
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable( "2F4(2)" );; tbl:= CharacterTable( "Ru" );;
## gap> fus:= InitFusion( subtbl, tbl );;
## gap> permchar:= Sum( Irr( tbl ){ [ 1, 5, 6 ] } );;
## gap> CheckPermChar( subtbl, tbl, fus, permchar );; fus;
## [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [ 13, 15 ], 16, [ 18, 19 ], 20,
## [ 25, 26 ], [ 25, 26 ], 5, 5, 6, 8, 14, [ 13, 15 ], [ 18, 19 ],
## [ 18, 19 ], [ 25, 26 ], [ 25, 26 ], 27, 27 ]
## gap> tr:= TransferDiagram(PowerMap( subtbl, 2), fus, PowerMap(tbl, 2));
## rec( impbetween := [ 12, 23 ], impinside1 := [ ], impinside2 := [ ]
## )
## gap> tr:= TransferDiagram(PowerMap(subtbl, 3), fus, PowerMap( tbl, 3 ));
## rec( impbetween := [ 14, 24, 25 ], impinside1 := [ ],
## impinside2 := [ ] )
## gap> tr:= TransferDiagram( PowerMap(subtbl, 3), fus, PowerMap(tbl, 3),
## > tr );
## rec( impbetween := [ ], impinside1 := [ ], impinside2 := [ ] )
## gap> fus;
## [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [ 25, 26 ],
## [ 25, 26 ], 5, 5, 6, 8, 14, 13, 19, 19, [ 25, 26 ], [ 25, 26 ], 27,
## 27 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TransferDiagram" );
#############################################################################
##
#F TestConsistencyMaps( <powermap1>, <fusionmap>, <powermap2>[, <fusimp>] )
##
## <#GAPDoc Label="TestConsistencyMaps">
## <ManSection>
## <Func Name="TestConsistencyMaps"
## Arg='powermap1, fusionmap, powermap2[, fusimp]'/>
##
## <Description>
## Let <A>powermap1</A> and <A>powermap2</A> be lists of parametrized maps,
## and <A>fusionmap</A> a parametrized map,
## such that for each <M>i</M>, the <M>i</M>-th entry in <A>powermap1</A>,
## <A>fusionmap</A>, and the <M>i</M>-th entry in <A>powermap2</A>
## (if bound) are valid arguments for <Ref Func="TransferDiagram"/>.
## So a typical situation for applying <Ref Func="TestConsistencyMaps"/> is
## that <A>fusionmap</A> is an approximation of a class fusion,
## and <A>powermap1</A>, <A>powermap2</A> are the lists of power maps of the
## subgroup and the group.
## <P/>
## <Ref Func="TestConsistencyMaps"/> repeatedly applies
## <Ref Func="TransferDiagram"/> to these arguments for all <M>i</M> until
## no more changes occur.
## <P/>
## If a list <A>fusimp</A> is specified then only those diagrams with
## elements of <A>fusimp</A> as preimages of <A>fusionmap</A> are
## considered.
## <P/>
## When an inconsistency is detected,
## <Ref Func="TestConsistencyMaps"/> immediately returns <K>false</K>.
## Otherwise <K>true</K> is returned.
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable( "2F4(2)" );; tbl:= CharacterTable( "Ru" );;
## gap> fus:= InitFusion( subtbl, tbl );;
## gap> permchar:= Sum( Irr( tbl ){ [ 1, 5, 6 ] } );;
## gap> CheckPermChar( subtbl, tbl, fus, permchar );; fus;
## [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [ 13, 15 ], 16, [ 18, 19 ], 20,
## [ 25, 26 ], [ 25, 26 ], 5, 5, 6, 8, 14, [ 13, 15 ], [ 18, 19 ],
## [ 18, 19 ], [ 25, 26 ], [ 25, 26 ], 27, 27 ]
## gap> TestConsistencyMaps( ComputedPowerMaps( subtbl ), fus,
## > ComputedPowerMaps( tbl ) );
## true
## gap> fus;
## [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, 15, 16, 18, 20, [ 25, 26 ],
## [ 25, 26 ], 5, 5, 6, 8, 14, 13, 19, 19, [ 25, 26 ], [ 25, 26 ], 27,
## 27 ]
## gap> Indeterminateness( fus );
## 16
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TestConsistencyMaps" );
#############################################################################
##
#F Indeterminateness( <paramap> ) . . . . the indeterminateness of a paramap
##
## <#GAPDoc Label="Indeterminateness">
## <ManSection>
## <Func Name="Indeterminateness" Arg='paramap'/>
##
## <Description>
## For a parametrized map <A>paramap</A>, <Ref Func="Indeterminateness"/>
## returns the number of maps contained in <A>paramap</A>, that is,
## the product of lengths of lists in <A>paramap</A> denoting lists of
## several images.
## <P/>
## <Example><![CDATA[
## gap> Indeterminateness([ 1, [ 2, 3 ], [ 4, 5 ], [ 6, 7, 8, 9, 10 ], 11 ]);
## 20
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Indeterminateness" );
#############################################################################
##
#F IndeterminatenessInfo( <paramap> )
##
## <ManSection>
## <Func Name="IndeterminatenessInfo" Arg='paramap'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "IndeterminatenessInfo" );
#############################################################################
##
#F PrintAmbiguity( <list>, <paramap> ) . . . . ambiguity of characters with
#F respect to a paramap
##
## <#GAPDoc Label="PrintAmbiguity">
## <ManSection>
## <Func Name="PrintAmbiguity" Arg='list, paramap'/>
##
## <Description>
## For each map in the list <A>list</A>, <Ref Func="PrintAmbiguity"/> prints
## its position in <A>list</A>,
## the indeterminateness (see <Ref Func="Indeterminateness"/>) of the
## composition with the parametrized map <A>paramap</A>,
## and the list of positions where a list of images occurs in this
## composition.
## <P/>
## <Example><![CDATA[
## gap> paramap:= [ 1, [ 2, 3 ], [ 3, 4 ], [ 2, 3, 4 ], 5 ];;
## gap> list:= [ [ 1, 1, 1, 1, 1 ], [ 1, 1, 2, 2, 3 ], [ 1, 2, 3, 4, 5 ] ];;
## gap> PrintAmbiguity( list, paramap );
## 1 1 [ ]
## 2 4 [ 2, 4 ]
## 3 12 [ 2, 3, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PrintAmbiguity" );
#############################################################################
##
#F ContainedSpecialVectors( <tbl>, <chars>, <paracharacter>, <func> )
#F IntScalarProducts( <tbl>, <chars>, <candidate> )
#F NonnegIntScalarProducts( <tbl>, <chars>, <candidate> )
#F ContainedPossibleVirtualCharacters( <tbl>, <chars>, <paracharacter> )
#F ContainedPossibleCharacters( <tbl>, <chars>, <paracharacter> )
##
## <#GAPDoc Label="ContainedSpecialVectors">
## <ManSection>
## <Func Name="ContainedSpecialVectors"
## Arg='tbl, chars, paracharacter, func'/>
## <Func Name="IntScalarProducts" Arg='tbl, chars, candidate'/>
## <Func Name="NonnegIntScalarProducts" Arg='tbl, chars, candidate'/>
## <Func Name="ContainedPossibleVirtualCharacters"
## Arg='tbl, chars, paracharacter'/>
## <Func Name="ContainedPossibleCharacters"
## Arg='tbl, chars, paracharacter'/>
##
## <Description>
## Let <A>tbl</A> be an ordinary character table,
## <A>chars</A> a list of class functions (or values lists),
## <A>paracharacter</A> a parametrized class function of <A>tbl</A>,
## and <A>func</A> a function that expects the three arguments <A>tbl</A>,
## <A>chars</A>, and a values list of a class function, and that returns
## either <K>true</K> or <K>false</K>.
## <P/>
## <Ref Func="ContainedSpecialVectors"/> returns
## the list of all those elements <A>vec</A> of <A>paracharacter</A> that
## have integral norm,
## have integral scalar product with the principal character of <A>tbl</A>,
## and that satisfy
## <A>func</A><C>( </C><A>tbl</A>, <A>chars</A>, <A>vec</A> <C>) = </C><K>true</K>.
## <P/>
## Two special cases of <A>func</A> are the check whether the scalar
## products in <A>tbl</A> between the vector <A>vec</A> and all lists in
## <A>chars</A> are integers or nonnegative integers, respectively.
## These functions are accessible as global variables
## <Ref Func="IntScalarProducts"/> and
## <Ref Func="NonnegIntScalarProducts"/>,
## and <Ref Func="ContainedPossibleVirtualCharacters"/> and
## <Ref Func="ContainedPossibleCharacters"/> provide access to these special
## cases of <Ref Func="ContainedSpecialVectors"/>.
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable( "HSM12" );; tbl:= CharacterTable( "HS" );;
## gap> fus:= InitFusion( subtbl, tbl );;
## gap> rest:= CompositionMaps( Irr( tbl )[8], fus );
## [ 231, [ -9, 7 ], [ -9, 7 ], [ -9, 7 ], 6, 15, 15, [ -1, 15 ],
## [ -1, 15 ], 1, [ 1, 6 ], [ 1, 6 ], [ 1, 6 ], [ 1, 6 ], [ -2, 0 ],
## [ 1, 2 ], [ 1, 2 ], [ 1, 2 ], 0, 0, 1, 0, 0, 0, 0 ]
## gap> irr:= Irr( subtbl );;
## gap> # no further condition
## gap> cont1:= ContainedSpecialVectors( subtbl, irr, rest,
## > function( tbl, chars, vec ) return true; end );;
## gap> Length( cont1 );
## 24
## gap> # require scalar products to be integral
## gap> cont2:= ContainedSpecialVectors( subtbl, irr, rest,
## > IntScalarProducts );
## [ [ 231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ],
## [ 231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ],
## [ 231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ],
## [ 231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ] ]
## gap> # additionally require scalar products to be nonnegative
## gap> cont3:= ContainedSpecialVectors( subtbl, irr, rest,
## > NonnegIntScalarProducts );
## [ [ 231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ],
## [ 231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ] ]
## gap> cont2 = ContainedPossibleVirtualCharacters( subtbl, irr, rest );
## true
## gap> cont3 = ContainedPossibleCharacters( subtbl, irr, rest );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ContainedSpecialVectors" );
DeclareGlobalFunction( "IntScalarProducts" );
DeclareGlobalFunction( "NonnegIntScalarProducts" );
DeclareGlobalFunction( "ContainedPossibleVirtualCharacters" );
DeclareGlobalFunction( "ContainedPossibleCharacters" );
#############################################################################
##
#F ContainedDecomposables( <constituents>, <moduls>, <parachar>, <func> )
#F ContainedCharacters( <tbl>, <constituents>, <parachar> )
##
## <#GAPDoc Label="ContainedDecomposables">
## <ManSection>
## <Func Name="ContainedDecomposables"
## Arg='constituents, moduls, parachar, func'/>
## <Func Name="ContainedCharacters" Arg='tbl, constituents, parachar'/>
##
## <Description>
## For these functions,
## let <A>constituents</A> be a list of <E>rational</E> class functions,
## <A>moduls</A> a list of positive integers,
## <A>parachar</A> a parametrized rational class function,
## <A>func</A> a function that returns either <K>true</K> or <K>false</K>
## when called with (a values list of) a class function,
## and <A>tbl</A> a character table.
## <P/>
## <Ref Func="ContainedDecomposables"/> returns the set of all elements
## <M>\chi</M> of <A>parachar</A> that satisfy
## <A>func</A><M>( \chi ) =</M> <K>true</K>
## and that lie in the <M>&ZZ;</M>-lattice spanned by <A>constituents</A>,
## modulo <A>moduls</A>.
## The latter means they lie in the <M>&ZZ;</M>-lattice spanned by
## <A>constituents</A> and the set
## <M>\{ <A>moduls</A>[i] \cdot e_i; 1 \leq i \leq n \}</M>
## where <M>n</M> is the length of <A>parachar</A> and <M>e_i</M> is the
## <M>i</M>-th standard basis vector.
## <P/>
## One application of <Ref Func="ContainedDecomposables"/> is the following.
## <A>constituents</A> is a list of (values lists of) rational characters of
## an ordinary character table <A>tbl</A>,
## <A>moduls</A> is the list of centralizer orders of <A>tbl</A>
## (see <Ref Func="SizesCentralizers"/>),
## and <A>func</A> checks whether a vector in the lattice mentioned above
## has nonnegative integral scalar product in <A>tbl</A> with all entries of
## <A>constituents</A>.
## This situation is handled by <Ref Func="ContainedCharacters"/>.
## Note that the entries of the result list are <E>not</E> necessary linear
## combinations of <A>constituents</A>,
## and they are <E>not</E> necessarily characters of <A>tbl</A>.
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable( "HSM12" );; tbl:= CharacterTable( "HS" );;
## gap> rat:= RationalizedMat( Irr( subtbl ) );;
## gap> fus:= InitFusion( subtbl, tbl );;
## gap> rest:= CompositionMaps( Irr( tbl )[8], fus );
## [ 231, [ -9, 7 ], [ -9, 7 ], [ -9, 7 ], 6, 15, 15, [ -1, 15 ],
## [ -1, 15 ], 1, [ 1, 6 ], [ 1, 6 ], [ 1, 6 ], [ 1, 6 ], [ -2, 0 ],
## [ 1, 2 ], [ 1, 2 ], [ 1, 2 ], 0, 0, 1, 0, 0, 0, 0 ]
## gap> # compute all vectors in the lattice
## gap> ContainedDecomposables( rat, SizesCentralizers( subtbl ), rest,
## > ReturnTrue );
## [ [ 231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ],
## [ 231, 7, -9, -9, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ],
## [ 231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ],
## [ 231, 7, -9, 7, 6, 15, 15, 15, 15, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ] ]
## gap> # compute only those vectors that are characters
## gap> ContainedDecomposables( rat, SizesCentralizers( subtbl ), rest,
## > x -> NonnegIntScalarProducts( subtbl, Irr( subtbl ), x ) );
## [ [ 231, 7, -9, -9, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ],
## [ 231, 7, -9, 7, 6, 15, 15, -1, -1, 1, 6, 6, 1, 1, -2, 1, 2, 2, 0,
## 0, 1, 0, 0, 0, 0 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ContainedDecomposables" );
DeclareGlobalFunction( "ContainedCharacters" );
#############################################################################
##
## 5. Subroutines for the Construction of Power Maps
##
#############################################################################
##
#F InitPowerMap( <tbl>, <prime> )
##
## <#GAPDoc Label="InitPowerMap">
## <ManSection>
## <Func Name="InitPowerMap" Arg='tbl, prime'/>
##
## <Description>
## For an ordinary character table <A>tbl</A> and a prime <A>prime</A>,
## <Ref Func="InitPowerMap"/> returns a parametrized map that is a first
## approximation of the <A>prime</A>-th powermap of <A>tbl</A>,
## using the conditions 1. and 2. listed in the description of
## <Ref Func="PossiblePowerMaps"/>.
## <P/>
## If there are classes for which no images are possible, according to these
## criteria, then <K>fail</K> is returned.
## <P/>
## <Example><![CDATA[
## gap> t:= CharacterTable( "U4(3).4" );;
## gap> pow:= InitPowerMap( t, 2 );
## [ 1, 1, 3, 4, 5, [ 2, 16 ], [ 2, 16, 17 ], 8, 3, [ 3, 4 ],
## [ 11, 12 ], [ 11, 12 ], [ 6, 7, 18, 19, 30, 31, 32, 33 ], 14,
## [ 9, 20 ], 1, 1, 2, 2, 3, [ 3, 4, 5 ], [ 3, 4, 5 ],
## [ 6, 7, 18, 19, 30, 31, 32, 33 ], 8, 9, 9, [ 9, 10, 20, 21, 22 ],
## [ 11, 12 ], [ 11, 12 ], 16, 16, [ 2, 16 ], [ 2, 16 ], 17, 17,
## [ 6, 18, 30, 31, 32, 33 ], [ 6, 18, 30, 31, 32, 33 ],
## [ 6, 7, 18, 19, 30, 31, 32, 33 ], [ 6, 7, 18, 19, 30, 31, 32, 33 ],
## 20, 20, [ 9, 20 ], [ 9, 20 ], [ 9, 10, 20, 21, 22 ],
## [ 9, 10, 20, 21, 22 ], 24, 24, [ 15, 25, 26, 40, 41, 42, 43 ],
## [ 15, 25, 26, 40, 41, 42, 43 ], [ 28, 29 ], [ 28, 29 ], [ 28, 29 ],
## [ 28, 29 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "InitPowerMap" );
#############################################################################
##
## <#GAPDoc Label="[7]{ctblmaps}">
## In the argument lists of the functions
## <Ref Func="Congruences" Label="for character tables"/>,
## <Ref Func="ConsiderKernels"/>,
## and <Ref Func="ConsiderSmallerPowerMaps"/>,
## <A>tbl</A> is an ordinary character table,
## <A>chars</A> a list of (values lists of) characters of <A>tbl</A>,
## <A>prime</A> a prime integer,
## <A>approxmap</A> a parametrized map that is an approximation for the
## <A>prime</A>-th power map of <A>tbl</A>
## (e.g., a list returned by <Ref Func="InitPowerMap"/>,
## and <A>quick</A> a Boolean.
## <P/>
## The <A>quick</A> value <K>true</K> means that only those classes are
## considered for which <A>approxmap</A> lists more than one possible image.
## <#/GAPDoc>
##
#############################################################################
##
#F Congruences( <tbl>, <chars>, <approxmap>, <prime>, <quick> )
##
## <#GAPDoc Label="Congruences">
## <ManSection>
## <Func Name="Congruences" Arg='tbl, chars, approxmap, prime, quick'
## Label="for character tables"/>
##
## <Description>
## <Ref Func="Congruences" Label="for character tables"/>
## replaces the entries of <A>approxmap</A> by improved values,
## according to condition 3. listed in the description
## of <Ref Func="PossiblePowerMaps"/>.
## <P/>
## For each class for which no images are possible according to the tests,
## the new value of <A>approxmap</A> is an empty list.
## <Ref Func="Congruences" Label="for character tables"/>
## returns <K>true</K> if no such inconsistencies occur,
## and <K>false</K> otherwise.
## <P/>
## <Example><![CDATA[
## gap> Congruences( t, Irr( t ), pow, 2, false ); pow;
## true
## [ 1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [ 6, 7 ], 14, 9, 1, 1, 2, 2,
## 3, 4, 5, [ 6, 7 ], 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18,
## 18, [ 18, 19 ], [ 18, 19 ], 20, 20, 20, 20, 22, 22, 24, 24,
## [ 25, 26 ], [ 25, 26 ], 28, 28, 29, 29 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Congruences" );
#############################################################################
##
#F ConsiderKernels( <tbl>, <chars>, <approxmap>, <prime>, <quick> )
##
## <#GAPDoc Label="ConsiderKernels">
## <ManSection>
## <Func Name="ConsiderKernels" Arg='tbl, chars, approxmap, prime, quick'/>
##
## <Description>
## <Ref Func="ConsiderKernels"/> replaces the entries of <A>approxmap</A> by
## improved values, according to condition 4. listed in the description
## of <Ref Func="PossiblePowerMaps"/>.
## <P/>
## <Ref Func="Congruences" Label="for character tables"/>
## returns <K>true</K> if the orders of the
## kernels of all characters in <A>chars</A> divide the order of the group
## of <A>tbl</A>, and <K>false</K> otherwise.
## <P/>
## <Example><![CDATA[
## gap> t:= CharacterTable( "A7.2" );; init:= InitPowerMap( t, 2 );
## [ 1, 1, 3, 4, [ 2, 9, 10 ], 6, 3, 8, 1, 1, [ 2, 9, 10 ], 3, [ 3, 4 ],
## 6, [ 7, 12 ] ]
## gap> ConsiderKernels( t, Irr( t ), init, 2, false );
## true
## gap> init;
## [ 1, 1, 3, 4, 2, 6, 3, 8, 1, 1, 2, 3, [ 3, 4 ], 6, 7 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConsiderKernels" );
#############################################################################
##
#F ConsiderSmallerPowerMaps( <tbl>, <approxmap>, <prime>, <quick> )
##
## <#GAPDoc Label="ConsiderSmallerPowerMaps">
## <ManSection>
## <Func Name="ConsiderSmallerPowerMaps"
## Arg='tbl, approxmap, prime, quick'/>
##
## <Description>
## <Ref Func="ConsiderSmallerPowerMaps"/> replaces the entries of
## <A>approxmap</A> by improved values,
## according to condition 5. listed in the description of
## <Ref Func="PossiblePowerMaps"/>.
## <P/>
## <Ref Func="ConsiderSmallerPowerMaps"/> returns <K>true</K> if each class
## admits at least one image after the checks, otherwise <K>false</K> is
## returned.
## If no element orders of <A>tbl</A> are stored
## (see <Ref Func="OrdersClassRepresentatives"/>) then <K>true</K> is
## returned without any tests.
## <P/>
## <Example><![CDATA[
## gap> t:= CharacterTable( "3.A6" );; init:= InitPowerMap( t, 5 );
## [ 1, [ 2, 3 ], [ 2, 3 ], 4, [ 5, 6 ], [ 5, 6 ], [ 7, 8 ], [ 7, 8 ],
## 9, [ 10, 11 ], [ 10, 11 ], 1, [ 2, 3 ], [ 2, 3 ], 1, [ 2, 3 ],
## [ 2, 3 ] ]
## gap> Indeterminateness( init );
## 4096
## gap> ConsiderSmallerPowerMaps( t, init, 5, false );
## true
## gap> Indeterminateness( init );
## 256
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConsiderSmallerPowerMaps" );
#############################################################################
##
#F MinusCharacter( <character>, <primepowermap>, <prime> )
##
## <#GAPDoc Label="MinusCharacter">
## <ManSection>
## <Func Name="MinusCharacter" Arg='character, primepowermap, prime'/>
##
## <Description>
## Let <A>character</A> be (the list of values of) a class function
## <M>\chi</M>, <A>prime</A> a prime integer <M>p</M>, and
## <A>primepowermap</A> a parametrized map that is an approximation of the
## <M>p</M>-th power map for the character table of <M>\chi</M>.
## <Ref Func="MinusCharacter"/> returns the parametrized map of values of
## <M>\chi^{{p-}}</M>,
## which is defined by
## <M>\chi^{{p-}}(g) = ( \chi(g)^p - \chi(g^p) ) / p</M>.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "S7" );; pow:= InitPowerMap( tbl, 2 );;
## gap> pow;
## [ 1, 1, 3, 4, [ 2, 9, 10 ], 6, 3, 8, 1, 1, [ 2, 9, 10 ], 3, [ 3, 4 ],
## 6, [ 7, 12 ] ]
## gap> chars:= Irr( tbl ){ [ 2 .. 5 ] };;
## gap> List( chars, x -> MinusCharacter( x, pow, 2 ) );
## [ [ 0, 0, 0, 0, [ 0, 1 ], 0, 0, 0, 0, 0, [ 0, 1 ], 0, 0, 0, [ 0, 1 ] ]
## ,
## [ 15, -1, 3, 0, [ -2, -1, 0 ], 0, -1, 1, 5, -3, [ 0, 1, 2 ], -1, 0,
## 0, [ 0, 1 ] ],
## [ 15, -1, 3, 0, [ -1, 0, 2 ], 0, -1, 1, 5, -3, [ 1, 2, 4 ], -1, 0,
## 0, 1 ],
## [ 190, -2, 1, 1, [ 0, 2 ], 0, 1, 1, -10, -10, [ 0, 2 ], -1, -1, 0,
## [ -1, 0 ] ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MinusCharacter" );
#############################################################################
##
#F PowerMapsAllowedBySymmetrizations( <tbl>, <subchars>, <chars>,
#F <approxmap>, <prime>, <parameters> )
##
## <#GAPDoc Label="PowerMapsAllowedBySymmetrizations">
## <ManSection>
## <Func Name="PowerMapsAllowedBySymmetrizations"
## Arg='tbl, subchars, chars, approxmap, prime, parameters'/>
##
## <Description>
## Let <A>tbl</A> be an ordinary character table,
## <A>prime</A> a prime integer,
## <A>approxmap</A> a parametrized map that is an approximation of the
## <A>prime</A>-th power map of <A>tbl</A>
## (e.g., a list returned by <Ref Func="InitPowerMap"/>,
## <A>chars</A> and <A>subchars</A> two lists of (values lists of)
## characters of <A>tbl</A>,
## and <A>parameters</A> a record with components
## <C>maxlen</C>, <C>minamb</C>, <C>maxamb</C> (three integers),
## <C>quick</C> (a Boolean),
## and <C>contained</C> (a function).
## Usual values of <C>contained</C> are <Ref Func="ContainedCharacters"/> or
## <Ref Func="ContainedPossibleCharacters"/>.
## <P/>
## <Ref Func="PowerMapsAllowedBySymmetrizations"/> replaces the entries of
## <A>approxmap</A> by improved values,
## according to condition 6. listed in the description of
## <Ref Func="PossiblePowerMaps"/>.
## <P/>
## More precisely, the strategy used is as follows.
## <P/>
## First, for each <M>\chi \in <A>chars</A></M>,
## let <C>minus:= MinusCharacter(</C><M>\chi</M><C>, <A>approxmap</A>,
## <A>prime</A>)</C>.
## <List>
## <Item>
## If <C>Indeterminateness( minus )</C><M> = 1</M> and
## <C><A>parameters</A>.quick = false</C> then the scalar products of
## <C>minus</C> with <A>subchars</A> are checked;
## if not all scalar products are nonnegative integers then
## an empty list is returned,
## otherwise <M>\chi</M> is deleted from the list of characters to
## inspect.
## </Item>
## <Item>
## Otherwise if <C>Indeterminateness( minus )</C> is smaller than
## <C><A>parameters</A>.minamb</C> then <M>\chi</M> is deleted from the
## list of characters.
## </Item>
## <Item>
## If <C><A>parameters</A>.minamb</C> <M>\leq</M>
## <C>Indeterminateness( minus )</C> <M>\leq</M>
## <C><A>parameters</A>.maxamb</C> then
## construct the list of contained class functions
## <C>poss:= <A>parameters</A>.contained(<A>tbl</A>, <A>subchars</A>,
## minus)</C> and <C>Parametrized( poss )</C>,
## and improve the approximation of the power map using
## <Ref Func="UpdateMap"/>.
## </Item>
## </List>
## <P/>
## If this yields no further immediate improvements then we branch.
## If there is a character from <A>chars</A> left with less or equal
## <C><A>parameters</A>.maxlen</C> possible symmetrizations,
## compute the union of power maps allowed by these possibilities.
## Otherwise we choose a class <M>C</M> such that the possible
## symmetrizations of a character in <A>chars</A> differ at <M>C</M>,
## and compute recursively the union of all allowed power maps with image
## at <M>C</M> fixed in the set given by the current approximation of the
## power map.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "U4(3).4" );;
## gap> pow:= InitPowerMap( tbl, 2 );;
## gap> Congruences( tbl, Irr( tbl ), pow, 2 );; pow;
## [ 1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, [ 6, 7 ], 14, 9, 1, 1, 2, 2,
## 3, 4, 5, [ 6, 7 ], 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18,
## 18, [ 18, 19 ], [ 18, 19 ], 20, 20, 20, 20, 22, 22, 24, 24,
## [ 25, 26 ], [ 25, 26 ], 28, 28, 29, 29 ]
## gap> PowerMapsAllowedBySymmetrizations( tbl, Irr( tbl ), Irr( tbl ),
## > pow, 2, rec( maxlen:= 10, contained:= ContainedPossibleCharacters,
## > minamb:= 2, maxamb:= infinity, quick:= false ) );
## [ [ 1, 1, 3, 4, 5, 2, 2, 8, 3, 4, 11, 12, 6, 14, 9, 1, 1, 2, 2, 3, 4,
## 5, 6, 8, 9, 9, 10, 11, 12, 16, 16, 16, 16, 17, 17, 18, 18, 18,
## 18, 20, 20, 20, 20, 22, 22, 24, 24, 25, 26, 28, 28, 29, 29 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PowerMapsAllowedBySymmetrizations" );
DeclareSynonym( "PowerMapsAllowedBySymmetrisations",
PowerMapsAllowedBySymmetrizations );
#############################################################################
##
## 6. Subroutines for the Construction of Class Fusions
##
#############################################################################
##
#F InitFusion( <subtbl>, <tbl> )
##
## <#GAPDoc Label="InitFusion">
## <ManSection>
## <Func Name="InitFusion" Arg='subtbl, tbl'/>
##
## <Description>
## For two ordinary character tables <A>subtbl</A> and <A>tbl</A>,
## <Ref Func="InitFusion"/> returns a parametrized map that is a first
## approximation of the class fusion from <A>subtbl</A> to <A>tbl</A>,
## using condition 1. listed in the description of
## <Ref Func="PossibleClassFusions"/>.
## <P/>
## If there are classes for which no images are possible, according to this
## criterion, then <K>fail</K> is returned.
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable( "2F4(2)" );; tbl:= CharacterTable( "Ru" );;
## gap> fus:= InitFusion( subtbl, tbl );
## [ 1, 2, 2, 4, [ 5, 6 ], [ 5, 6, 7, 8 ], [ 5, 6, 7, 8 ], [ 9, 10 ],
## 11, 14, 14, [ 13, 14, 15 ], [ 16, 17 ], [ 18, 19 ], 20, [ 25, 26 ],
## [ 25, 26 ], [ 5, 6 ], [ 5, 6 ], [ 5, 6 ], [ 5, 6, 7, 8 ],
## [ 13, 14, 15 ], [ 13, 14, 15 ], [ 18, 19 ], [ 18, 19 ], [ 25, 26 ],
## [ 25, 26 ], [ 27, 28, 29 ], [ 27, 28, 29 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "InitFusion" );
#############################################################################
##
#F CheckPermChar( <subtbl>, <tbl>, <approxmap>, <permchar> )
##
## <#GAPDoc Label="CheckPermChar">
## <ManSection>
## <Func Name="CheckPermChar" Arg='subtbl, tbl, approxmap, permchar'/>
##
## <Description>
## <Index>permutation character</Index>
## <Ref Func="CheckPermChar"/> replaces the entries of the parametrized map
## <A>approxmap</A> by improved values,
## according to condition 3. listed in the description of
## <Ref Func="PossibleClassFusions"/>.
## <P/>
## <Ref Func="CheckPermChar"/> returns <K>true</K> if no inconsistency
## occurred, and <K>false</K> otherwise.
## <P/>
## <Example><![CDATA[
## gap> permchar:= Sum( Irr( tbl ){ [ 1, 5, 6 ] } );;
## gap> CheckPermChar( subtbl, tbl, fus, permchar ); fus;
## true
## [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [ 13, 15 ], 16, [ 18, 19 ], 20,
## [ 25, 26 ], [ 25, 26 ], 5, 5, 6, 8, 14, [ 13, 15 ], [ 18, 19 ],
## [ 18, 19 ], [ 25, 26 ], [ 25, 26 ], 27, 27 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "CheckPermChar" );
#############################################################################
##
#F ConsiderTableAutomorphisms( <approxmap>, <grp> )
##
## <#GAPDoc Label="ConsiderTableAutomorphisms">
## <ManSection>
## <Func Name="ConsiderTableAutomorphisms" Arg='approxmap, grp'/>
##
## <Description>
## <Index>table automorphisms</Index>
## <Ref Func="ConsiderTableAutomorphisms"/> replaces the entries of the
## parametrized map <A>approxmap</A> by improved values, according to
## condition 4. listed in the description of
## <Ref Func="PossibleClassFusions"/>.
## <P/>
## Afterwards exactly one representative of fusion maps (contained in
## <A>approxmap</A>) in each orbit under the action of the permutation group
## <A>grp</A> is contained in the modified parametrized map.
## <P/>
## <Ref Func="ConsiderTableAutomorphisms"/> returns the list of positions
## where <A>approxmap</A> was changed.
## <P/>
## <Example><![CDATA[
## gap> ConsiderTableAutomorphisms( fus, AutomorphismsOfTable( tbl ) );
## [ 16 ]
## gap> fus;
## [ 1, 2, 2, 4, 5, 7, 8, 9, 11, 14, 14, [ 13, 15 ], 16, [ 18, 19 ], 20,
## 25, [ 25, 26 ], 5, 5, 6, 8, 14, [ 13, 15 ], [ 18, 19 ], [ 18, 19 ],
## [ 25, 26 ], [ 25, 26 ], 27, 27 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConsiderTableAutomorphisms" );
#############################################################################
##
#F FusionsAllowedByRestrictions( <subtbl>, <tbl>, <subchars>, <chars>,
#F <approxmap>, <parameters> )
##
## <#GAPDoc Label="FusionsAllowedByRestrictions">
## <ManSection>
## <Func Name="FusionsAllowedByRestrictions"
## Arg='subtbl, tbl, subchars, chars, approxmap, parameters'/>
##
## <Description>
## Let <A>subtbl</A> and <A>tbl</A> be ordinary character tables,
## <A>subchars</A> and <A>chars</A> two lists of (values lists of)
## characters of <A>subtbl</A> and <A>tbl</A>, respectively,
## <A>approxmap</A> a parametrized map that is an approximation of the class
## fusion of <A>subtbl</A> in <A>tbl</A>,
## and <A>parameters</A> a record with components
## <C>maxlen</C>, <C>minamb</C>, <C>maxamb</C> (three integers),
## <C>quick</C> (a Boolean),
## and <C>contained</C> (a function).
## Usual values of <C>contained</C> are
## <Ref Func="ContainedCharacters"/> or
## <Ref Func="ContainedPossibleCharacters"/>.
## <P/>
## <Ref Func="FusionsAllowedByRestrictions"/> replaces the entries of
## <A>approxmap</A> by improved values,
## according to condition 5. listed in the description of
## <Ref Func="PossibleClassFusions"/>.
## <P/>
## More precisely, the strategy used is as follows.
## <P/>
## First, for each <M>\chi \in <A>chars</A></M>,
## let <C>restricted:= CompositionMaps( </C><M>\chi</M><C>,
## <A>approxmap</A> )</C>.
## <List>
## <Item>
## If <C>Indeterminateness( restricted )</C><M> = 1</M> and
## <C><A>parameters</A>.quick = false</C> then the scalar products of
## <C>restricted</C> with <A>subchars</A> are checked;
## if not all scalar products are nonnegative integers then
## an empty list is returned,
## otherwise <M>\chi</M> is deleted from the list of characters to
## inspect.
## </Item>
## <Item>
## Otherwise if <C>Indeterminateness( minus )</C> is smaller than
## <C><A>parameters</A>.minamb</C> then <M>\chi</M> is deleted from the
## list of characters.
## </Item>
## <Item>
## If <C><A>parameters</A>.minamb</C> <M>\leq</M>
## <C>Indeterminateness( restricted )</C>
## <M>\leq</M> <C><A>parameters</A>.maxamb</C> then construct
## <C>poss:= <A>parameters</A>.contained( <A>subtbl</A>, <A>subchars</A>,
## restricted )</C>
## and <C>Parametrized( poss )</C>,
## and improve the approximation of the fusion map using
## <Ref Func="UpdateMap"/>.
## </Item>
## </List>
## <!-- #T Would it help to exploit that the restriction of a <E>linear</E> character-->
## <!-- #T is again a linear character (not only a linear combination of linear-->
## <!-- #T characters?-->
## <!-- #T Branching in these cases would yield a short list of possibilities,-->
## <!-- #T so it should be recommended ...-->
## <P/>
## If this yields no further immediate improvements then we branch.
## If there is a character from <A>chars</A> left with less or equal
## <A>parameters</A><C>.maxlen</C> possible restrictions,
## compute the union of fusion maps allowed by these possibilities.
## Otherwise we choose a class <M>C</M> such that the possible restrictions
## of a character in <A>chars</A> differ at <M>C</M>,
## and compute recursively the union of all allowed fusion maps with image
## at <M>C</M> fixed in the set given by the current approximation of the
## fusion map.
## <P/>
## <Example><![CDATA[
## gap> subtbl:= CharacterTable( "U3(3)" );; tbl:= CharacterTable( "J4" );;
## gap> fus:= InitFusion( subtbl, tbl );;
## gap> TestConsistencyMaps( ComputedPowerMaps( subtbl ), fus,
## > ComputedPowerMaps( tbl ) );
## true
## gap> fus;
## [ 1, 2, 4, 4, [ 5, 6 ], [ 5, 6 ], [ 5, 6 ], 10, [ 12, 13 ],
## [ 12, 13 ], [ 14, 15, 16 ], [ 14, 15, 16 ], [ 21, 22 ], [ 21, 22 ] ]
## gap> ConsiderTableAutomorphisms( fus, AutomorphismsOfTable( tbl ) );
## [ 9 ]
## gap> fus;
## [ 1, 2, 4, 4, [ 5, 6 ], [ 5, 6 ], [ 5, 6 ], 10, 12, [ 12, 13 ],
## [ 14, 15, 16 ], [ 14, 15, 16 ], [ 21, 22 ], [ 21, 22 ] ]
## gap> FusionsAllowedByRestrictions( subtbl, tbl, Irr( subtbl ),
## > Irr( tbl ), fus, rec( maxlen:= 10,
## > contained:= ContainedPossibleCharacters, minamb:= 2,
## > maxamb:= infinity, quick:= false ) );
## [ [ 1, 2, 4, 4, 5, 5, 6, 10, 12, 13, 14, 14, 21, 21 ],
## [ 1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 15, 15, 22, 22 ],
## [ 1, 2, 4, 4, 6, 6, 6, 10, 12, 13, 16, 16, 22, 22 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FusionsAllowedByRestrictions" );
#############################################################################
##
#F ConsiderStructureConstants( <subtbl>, <tbl>, <fusions>, <quick> )
##
## <#GAPDoc Label="ConsiderStructureConstants">
## <ManSection>
## <Func Name="ConsiderStructureConstants"
## Arg='subtbl, tbl, fusions, quick'/>
##
## <Description>
## Let <A>subtbl</A> and <A>tbl</A> be ordinary character tables and
## <A>fusions</A> be a list of possible class fusions from <A>subtbl</A> to
## <A>tbl</A>.
## <Ref Func="ConsiderStructureConstants"/> returns the list of those maps
## <M>\sigma</M> in <A>fusions</A> with the property that for all triples
## <M>(i,j,k)</M> of class positions,
## <C>ClassMultiplicationCoefficient</C><M>( <A>subtbl</A>, i, j, k )</M>
## is not bigger than
## <C>ClassMultiplicationCoefficient</C><M>( <A>tbl</A>, \sigma[i],
## \sigma[j], \sigma[k] )</M>;
## see <Ref Func="ClassMultiplicationCoefficient"
## Label="for character tables"/>
## for the definition of class multiplication coefficients/structure
## constants.
## <P/>
## The argument <A>quick</A> must be a Boolean; if it is <K>true</K> then
## only those triples are checked for which for which at least two entries
## in <A>fusions</A> have different images.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConsiderStructureConstants" );
#############################################################################
##
#E
|