This file is indexed.

/usr/share/gap/lib/ctblmoli.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#############################################################################
##
#W  ctblmoli.gd                 GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##


#############################################################################
##
#F  MolienSeries( [<tbl>, ]<psi>[, <chi>] )
##
##  <#GAPDoc Label="MolienSeries">
##  <ManSection>
##  <Func Name="MolienSeries" Arg='[tbl, ]psi[, chi]'/>
##
##  <Description>
##  The <E>Molien series</E> of the character <M>\psi</M>,
##  relative to the character <M>\chi</M>, is the rational function given by
##  the series
##  <M>M_{{\psi,\chi}}(z) = \sum_{{d = 0}}^{\infty} [\chi,\psi^{[d]}] z^d</M>,
##  where <M>\psi^{[d]}</M> denotes the symmetrization of <M>\psi</M>
##  with the trivial character of the symmetric group <M>S_d</M>
##  (see&nbsp;<Ref Func="SymmetricParts"/>).
##  <P/>
##  <Ref Func="MolienSeries"/> returns the Molien series of <A>psi</A>,
##  relative to <A>chi</A>, where <A>psi</A> and <A>chi</A> must be
##  characters of the same character table;
##  this table must be entered as <A>tbl</A> if <A>chi</A> and <A>psi</A>
##  are only lists of character values.
##  The default for <A>chi</A> is the trivial character of <A>tbl</A>.
##  <P/>
##  The return value of <Ref Func="MolienSeries"/> stores a value for the
##  attribute <Ref Func="MolienSeriesInfo"/>.
##  This admits the computation of coefficients of the series with
##  <Ref Func="ValueMolienSeries"/>.
##  Furthermore, this attribute gives access to numerator and denominator
##  of the Molien series viewed as rational function,
##  where the denominator is a product of polynomials of the form
##  <M>(1-z^r)^k</M>; the Molien series is also displayed in this form.
##  Note that such a representation is not unique, one can use
##  <Ref Func="MolienSeriesWithGivenDenominator"/>
##  to obtain the series with a prescribed denominator.
##  <P/>
##  For more information about Molien series, see&nbsp;<Cite Key="NPP84"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> t:= CharacterTable( AlternatingGroup( 5 ) );;
##  gap> psi:= First( Irr( t ), x -> Degree( x ) = 3 );;
##  gap> mol:= MolienSeries( psi );
##  ( 1-z^2-z^3+z^6+z^7-z^9 ) / ( (1-z^5)*(1-z^3)*(1-z^2)^2 )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MolienSeries" );


#############################################################################
##
#F  MolienSeriesWithGivenDenominator( <molser>, <list> )
##
##  <#GAPDoc Label="MolienSeriesWithGivenDenominator">
##  <ManSection>
##  <Func Name="MolienSeriesWithGivenDenominator" Arg='molser, list'/>
##
##  <Description>
##  is a Molien series equal to <A>molser</A> as rational function,
##  but viewed as quotient with denominator
##  <M>\prod_{{i = 1}}^n (1-z^{{r_i}})</M>,
##  where <M><A>list</A> = [ r_1, r_2, \ldots, r_n ]</M>.
##  If <A>molser</A> cannot be represented this way,
##  <K>fail</K> is returned.
##  <P/>
##  <Example><![CDATA[
##  gap> MolienSeriesWithGivenDenominator( mol, [ 2, 6, 10 ] );
##  ( 1+z^15 ) / ( (1-z^10)*(1-z^6)*(1-z^2) )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MolienSeriesWithGivenDenominator" );


##############################################################################
##
#A  MolienSeriesInfo( <ratfun> )
##
##  <#GAPDoc Label="MolienSeriesInfo">
##  <ManSection>
##  <Attr Name="MolienSeriesInfo" Arg='ratfun'/>
##
##  <Description>
##  If the rational function <A>ratfun</A> was constructed by
##  <Ref Func="MolienSeries"/>,
##  a representation as quotient of polynomials is known such that the
##  denominator is a product of terms of the form <M>(1-z^r)^k</M>.
##  This information is encoded as value of <Ref Func="MolienSeriesInfo"/>.
##  Additionally, there is a special <Ref Func="PrintObj"/> method
##  for Molien series based on this.
##  <P/>
##  <Ref Func="MolienSeriesInfo"/> returns a record that describes the
##  rational function <A>ratfun</A> as a Molien series.
##  The components of this record are
##
##  <List>
##  <Mark><C>numer</C></Mark>
##  <Item>
##       numerator of <A>ratfun</A> (in general a multiple of the numerator
##       one gets by <Ref Func="NumeratorOfRationalFunction"/>),
##  </Item>
##  <Mark><C>denom</C></Mark>
##  <Item>
##       denominator of <A>ratfun</A> (in general a multiple of the
##       denominator one gets by <Ref Func="NumeratorOfRationalFunction"/>),
##  </Item>
##  <Mark><C>ratfun</C></Mark>
##  <Item>
##       the rational function <A>ratfun</A> itself,
##  </Item>
##  <Mark><C>numerstring</C></Mark>
##  <Item>
##       string corresponding to the polynomial <C>numer</C>,
##       expressed in terms of <C>z</C>,
##  </Item>
##  <Mark><C>denomstring</C></Mark>
##  <Item>
##       string corresponding to the polynomial <C>denom</C>,
##       expressed in terms of <C>z</C>,
##  </Item>
##  <Mark><C>denominfo</C></Mark>
##  <Item>
##       a list of the form <M>[ [ r_1, k_1 ], \ldots, [ r_n, k_n ] ]</M>
##       such that <C>denom</C> is
##       <M>\prod_{{i = 1}}^n (1-z^{{r_i}})^{{k_i}}</M>.
##  </Item>
##  <Mark><C>summands</C></Mark>
##  <Item>
##       a list of records, each with the components <C>numer</C>, <C>r</C>,
##       and <C>k</C>,
##       describing the summand <C>numer</C><M> / (1-z^r)^k</M>,
##  </Item>
##  <Mark><C>size</C></Mark>
##  <Item>
##       the order of the underlying matrix group,
##  </Item>
##  <Mark><C>degree</C></Mark>
##  <Item>
##       the degree of the underlying matrix representation.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> HasMolienSeriesInfo( mol );
##  true
##  gap> MolienSeriesInfo( mol );
##  rec( degree := 3, 
##    denom := x_1^12-2*x_1^10-x_1^9+x_1^8+x_1^7+x_1^5+x_1^4-x_1^3-2*x_1^2\
##  +1, denominfo := [ 5, 1, 3, 1, 2, 2 ], 
##    denomstring := "(1-z^5)*(1-z^3)*(1-z^2)^2", 
##    numer := -x_1^9+x_1^7+x_1^6-x_1^3-x_1^2+1, 
##    numerstring := "1-z^2-z^3+z^6+z^7-z^9", 
##    ratfun := ( 1-z^2-z^3+z^6+z^7-z^9 ) / ( (1-z^5)*(1-z^3)*(1-z^2)^2 ),
##    size := 60, 
##    summands := [ rec( k := 1, numer := [ -24, -12, -24 ], r := 5 ), 
##        rec( k := 1, numer := [ -20 ], r := 3 ), 
##        rec( k := 2, numer := [ -45/4, 75/4, -15/4, -15/4 ], r := 2 ), 
##        rec( k := 3, numer := [ -1 ], r := 1 ), 
##        rec( k := 1, numer := [ -15/4 ], r := 1 ) ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "MolienSeriesInfo", IsRationalFunction );


#############################################################################
##
#F  CoefficientTaylorSeries( <numer>, <r>, <k>, <i> )
##
##  <ManSection>
##  <Func Name="CoefficientTaylorSeries" Arg='numer, r, k, i'/>
##
##  <Description>
##  is the coefficient of <M>z^<A>i</A></M> in the Taylor series expansion of
##  the quotient of polynomials
##  <M>p(z) / ( 1 - z^{<A>r</A>} )^{<A>k</A>}</M>,
##  where <A>numer</A> is the coefficients list of the numerator polynomial
##  <M>p(z)</M>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CoefficientTaylorSeries" );


#############################################################################
##
#F  SummandMolienSeries( <tbl>, <psi>, <chi>, <i> )
##
##  <ManSection>
##  <Func Name="SummandMolienSeries" Arg='tbl, psi, chi, i'/>
##
##  <Description>
##  is the summand of the Molien series of the character table <A>tbl</A>,
##  for the characters <A>psi</A> and <A>chi</A>, that corresponds to class
##  <A>i</A>.
##  That is, the returned value is the quotient
##  <Display Mode="M">
##     \chi(g) \cdot \det(D(g)) / \det(z I - D(g))
##  </Display>
##  where <M>g</M> is in class <A>i</A>, <M>D</M> is a representation with
##  character <A>psi</A>, and <M>z</M> is the indeterminate.
##  <P/>
##  The result is a record with components <C>numer</C> and <C>a</C>,
##  with the following meaning.
##  <P/>
##  Write the denominator as a product of cyclotomic polynomials,
##  encode this as a list <C>a</C> where at position <M>r</M> the
##  multiplicity of the <M>r</M>-th cyclotomic polynomial <M>\Phi_r</M>
##  is stored.
##  (For that, we possibly must change the numerator.)
##  We get
##  <Display Mode="M">
##     1 / \det(z I - D(g))
##              = P(z) / \left( \prod_{{d \mid n}} \Phi_d^{a_d}(z) \right) .
##  </Display>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SummandMolienSeries" );


#############################################################################
##
#F  ValueMolienSeries( <molser>, <i> )
##
##  <#GAPDoc Label="ValueMolienSeries">
##  <ManSection>
##  <Func Name="ValueMolienSeries" Arg='molser, i'/>
##
##  <Description>
##  is the <A>i</A>-th coefficient of the Molien series <A>series</A>
##  computed by <Ref Func="MolienSeries"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> List( [ 0 .. 20 ], i -> ValueMolienSeries( mol, i ) );
##  [ 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 3, 0, 4, 0, 4, 1, 5, 1, 6, 1, 7 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ValueMolienSeries" );


#############################################################################
##
#E