This file is indexed.

/usr/share/gap/lib/ctblmono.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
#############################################################################
##
#W  ctblmono.gi                 GAP library                     Thomas Breuer
#W                                                         & Erzsébet Horváth
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the functions dealing with monomiality questions for
##  solvable groups.
##
##  1. Character Degrees and Derived Length
##  2. Primitivity of Characters
##  3. Testing Monomiality
##  4. Minimal Nonmonomial Groups
##


#############################################################################
##
##  1. Character Degrees and Derived Length
##


#############################################################################
##
#M  Alpha( <G> )  . . . . . . . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( Alpha,
    "for a group",
    [ IsGroup ],
    function( G )

    local irr,        # irreducible characters of `G'
          degrees,    # set of degrees of `irr'
          chars,      # at position <i> all in `irr' of degree `degrees[<i>]'
          chi,        # one character
          alpha,      # result list
          max,        # maximal derived length found up to now
          kernels,    # at position <i> the kernels of all in `chars[<i>]'
          minimal,    # list of minimal kernels
          relevant,   # minimal kernels of one degree
          k,          # one kernel
          ker,
          dl;         # list of derived lengths

    Info( InfoMonomial, 1, "Alpha called for group ", G );

    # Compute the irreducible characters and the set of their degrees;
    # we need all irreducibles so it is reasonable to compute the table.
    irr:= List( Irr( G ), ValuesOfClassFunction );
    degrees:= Set( List( irr, x -> x[1] ) );
    RemoveSet( degrees, 1 );

    # Distribute characters to degrees.
    chars:= List( degrees, x -> [] );
    for chi in irr do
      if chi[1] > 1 then
        Add( chars[ Position( degrees, chi[1], 0 ) ], chi );
      fi;
    od;

    # Initialize
    alpha:= [ 1 ];
    max:= 1;

    # Compute kernels (as position lists)
    kernels:= List( chars, x -> Set( List( x, ClassPositionsOfKernel ) ) );

    # list of all minimal elements found up to now
    minimal:= [];

    Info( InfoMonomial, 1,
          "Alpha: There are ", Length( degrees )+1, " different degrees." );

    for ker in kernels do

      # We may remove kernels that contain a (minimal) kernel
      # of a character of smaller or equal degree.

      # Make sure to consider minimal elements of the actual degree first.
      Sort( ker, function(x,y) return Length(x) < Length(y); end );

      relevant:= [];

      for k in ker do
        if ForAll( minimal, x -> not IsSubsetSet( k, x ) ) then

          # new minimal element found
          Add( relevant, k );
          Add( minimal,  k );

        fi;
      od;

      # Give the trivial kernel a chance to be found first when we
      # consider the next larger degree.
      Sort( minimal, function(x,y) return Length(x) < Length(y); end );

      # Compute the derived lengths
      for k in relevant do

        dl:= DerivedLength( FactorGroupNormalSubgroupClasses(
                         OrdinaryCharacterTable( G ), k ) );
        if dl > max then
          max:= dl;
        fi;

      od;

      Add( alpha, max );

    od;

    Info( InfoMonomial, 1, "Alpha returns ", alpha );
    return alpha;
    end );


#############################################################################
##
#M  Delta( <G> )  . . . . . . . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( Delta,
    "for a group",
    [ IsGroup ],
    function( G )

    local delta,  # result list
          alpha,  # `Alpha( <G> )'
          r;      # loop variable

    delta:= [ 1 ];
    alpha:= Alpha( G );
    for r in [ 2 .. Length( alpha ) ] do
      delta[r]:= alpha[r] - alpha[r-1];
    od;

    return delta;
    end );


#############################################################################
##
#M  IsBergerCondition( <chi> )  . . . . . . . . . . . . . . . for a character
##
InstallOtherMethod( IsBergerCondition,
    "for a class function",
    [ IsClassFunction ],
    function( chi )

    local tbl,         # character table of <chi>
          values,      # values of `chi'
          ker,         # intersection of kernels of smaller degree
          deg,         # degree of <chi>
          psi,         # one irreducible character of $G$
          kerchi,      # kernel of <chi> (as group)
          isberger;    # result

    Info( InfoMonomial, 1,
          "IsBergerCondition called for character ",
          CharacterString( chi, "chi" ) );

    values:= ValuesOfClassFunction( chi );
    deg:= values[1];
    tbl:= UnderlyingCharacterTable( chi );

    if 1 < deg then

      # We need all characters of smaller degree,
      # so it is reasonable to compute the character table of the group
      ker:= [ 1 .. Length( values ) ];
      for psi in Irr( UnderlyingCharacterTable( chi ) ) do
        if DegreeOfCharacter( psi ) < deg then
          IntersectSet( ker, ClassPositionsOfKernel( psi ) );
        fi;
      od;

      # Check whether the derived group of this normal subgroup
      # lies in the kernel of `chi'.
      kerchi:= ClassPositionsOfKernel( values );
      if IsSubsetSet( kerchi, ker ) then

        # no need to compute subgroups
        isberger:= true;
      else
        isberger:= IsSubset( KernelOfCharacter( chi ),
                     DerivedSubgroup( NormalSubgroupClasses( tbl, ker ) ) );
      fi;

    else
      isberger:= true;
    fi;

    Info( InfoMonomial, 1, "IsBergerCondition returns ", isberger );
    return isberger;
    end );


#############################################################################
##
#M  IsBergerCondition( <G> )  . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( IsBergerCondition,
    "for a group",
    [ IsGroup ],
    function( G )

    local tbl,         # character table of `G'
          psi,         # one irreducible character of `G'
          isberger,    # result
          degrees,     # different character degrees of `G'
          kernels,     #
          pos,         #
          i,           # loop variable
          leftinters,  #
          left,        #
          right;       #

    Info( InfoMonomial, 1, "IsBergerCondition called for group ", G );

    tbl:= OrdinaryCharacterTable( G );

    if Size( G ) mod 2 = 1 then

      isberger:= true;

    else

      # Compute the intersections of kernels of characters of same degree
      degrees:= [];
      kernels:= [];
      for psi in List( Irr( G ), ValuesOfClassFunction ) do
        pos:= Position( degrees, psi[1], 0 );
        if pos = fail then
          Add( degrees, psi[1] );
          Add( kernels, ShallowCopy( ClassPositionsOfKernel( psi ) ) );
        else
          IntersectSet( kernels[ pos ], ClassPositionsOfKernel( psi ) );
        fi;
      od;
      SortParallel( degrees, kernels );

      # Let $1 = f_1 \leq f_2 \leq\ldots \leq f_n$ the distinct
      # irreducible degrees of `G'.
      # We must have for all $1 \leq i \leq n-1$ that
      # $$
      #    ( \bigcap_{\psi(1) \leq f_i}  \ker(\psi) )^{\prime} \leq
      #      \bigcap_{\chi(1) = f_{i+1}} \ker(\chi)
      # $$

      i:= 1;
      isberger:= true;
      leftinters:= kernels[1];

      while i < Length( degrees ) and isberger do

        # `leftinters' becomes $\bigcap_{\psi(1) \leq f_i} \ker(\psi)$.
        IntersectSet( leftinters, kernels[i] );
        if not IsSubsetSet( kernels[i+1], leftinters ) then

          # we have to compute the groups
          left:= DerivedSubgroup( NormalSubgroupClasses( tbl, leftinters ) );
          right:= NormalSubgroupClasses( tbl, kernels[i+1] );
          if not IsSubset( right, left ) then
            isberger:= false;
            Info( InfoMonomial, 1,
                  "IsBergerCondition:  violated for character of degree ",
                  degrees[i+1] );
          fi;

        fi;
        i:= i+1;
      od;

    fi;

    Info( InfoMonomial, 1, "IsBergerCondition returns ", isberger );
    return isberger;
    end );


#############################################################################
##
##  2. Primitivity of Characters
##


#############################################################################
##
#F  TestHomogeneous( <chi>, <N> )
##
InstallGlobalFunction( TestHomogeneous, function( chi, N )

    local t,        # character table of `G'
          classes,  # class lengths of `t'
          values,   # values of <chi>
          cl,       # classes of `G' that form <N>
          norm,     # norm of the restriction of <chi> to <N>
          tn,       # table of <N>
          fus,      # fusion of conjugacy classes <N> in $G$
          rest,     # restriction of <chi> to <N>
          i,        # loop over characters of <N>
          scpr;     # one scalar product in <N>

    values:= ValuesOfClassFunction( chi );

    if IsList( N ) then
      cl:= N;
    else
      cl:= ClassPositionsOfNormalSubgroup( UnderlyingCharacterTable( chi ),
                                           N );
    fi;

    t:= UnderlyingCharacterTable( chi );
    classes:= SizesConjugacyClasses( t );
    norm:= Sum( cl, c -> classes[c] * values[c]
                                    * GaloisCyc( values[c], -1 ), 0 );

    if norm = Sum( classes{ cl }, 0 ) then

      # The restriction is irreducible.
      return rec( isHomogeneous := true,
                  comment       := "restricts irreducibly" );

    else

      # `chi' restricts reducibly.
      # Compute the table of `N' if necessary,
      # and check the constituents of the restriction
      N:= NormalSubgroupClasses( t, cl );
      tn:= CharacterTable( N );
      fus:= FusionConjugacyClasses( tn, t );
      rest:= values{ fus };

      for i in Irr( tn ) do
        scpr:= ScalarProduct( tn, ValuesOfClassFunction( i ), rest );
        if scpr <> 0 then

          # Return info about the constituent.
          return rec( isHomogeneous := ( scpr * DegreeOfCharacter( i )
                                         = values[1] ),
                      comment       := "restriction checked",
                      character     := i,
                      multiplicity  := scpr  );

        fi;
      od;

    fi;
end );


#############################################################################
##
#M  TestQuasiPrimitive( <chi> ) . . . . . . . . . . . . . . . for a character
##
InstallMethod( TestQuasiPrimitive,
    "for a character",
    [ IsCharacter ],
    function( chi )

    local values,   # list of character values
          t,        # character table of `chi'
          nsg,      # list of normal subgroups of `t'
          cen,      # centre of `chi'
          allhomog, # are all restrictions up to now homogeneous?
          j,        # loop over normal subgroups
          testhom,  # test of homogeneous restriction
          test;     # result record

    Info( InfoMonomial, 1,
          "TestQuasiPrimitive called for character ",
          CharacterString( chi, "chi" ) );

    values:= ValuesOfClassFunction( chi );

    # Linear characters are primitive.
    if values[1] = 1 then

      test:= rec( isQuasiPrimitive := true,
                  comment          := "linear character" );

    else

      t:= UnderlyingCharacterTable( chi );

      # Compute the normal subgroups of `G' containing the centre of `chi'.

      # Note that `chi' restricts homogeneously to all normal subgroups
      # of `G' if (and only if) it restricts homogeneously to all those
      # normal subgroups containing the centre of `chi'.

      # {\em Proof:}
      # Let $N \unlhd G$ such that $Z(\chi) \not\leq N$.
      # We have to show that $\chi$ restricts homogeneously to $N$.
      # By our assumption $\chi_{N Z(\chi)}$ is homogeneous,
      # take $\vartheta$ the irreducible constituent.
      # Let $D$ a representation affording $\vartheta$ such that
      # the restriction to $N$ consists of block diagonal matrices
      # corresponding to the irreducible constituents.
      # $D( Z(\chi) )$ consists of scalar matrices,
      # thus $D( n^x ) = D( n )$ for $n\in N$, $x\in Z(\chi)$,
      # i.e., $Z(\chi)$ acts trivially on the irreducible constituents
      # of $\vartheta_N$,
      # i.e., every constituent of $\vartheta_N$ is invariant in $N Z(\chi)$,
      # i.e., $\vartheta$ (and thus $\chi$) restricts homogeneously to $N$.

      cen:= ClassPositionsOfCentre( values );
      nsg:= ClassPositionsOfNormalSubgroups( t );
      nsg:= Filtered( nsg, x -> IsSubsetSet( x, cen ) );

      allhomog:= true;
      j:= 1;

      while allhomog and j <= Length( nsg ) do

        testhom:= TestHomogeneous( chi, nsg[j] );
        if not testhom.isHomogeneous then

          # nonhomogeneous restriction found
          allhomog:= false;
          test:= rec( isQuasiPrimitive := false,
                      comment          := testhom.comment,
                      character        := testhom.character );

        fi;

        j:= j+1;

      od;

      if allhomog then
        test:= rec( isQuasiPrimitive := true,
                    comment          := "all restrictions checked" );
      fi;

    fi;

    Info( InfoMonomial, 1,
          "TestQuasiPrimitive returns `", test.isQuasiPrimitive, "'" );

    return test;
    end );


#############################################################################
##
#M  IsQuasiPrimitive( <chi> ) . . . . . . . . . . . . . . . . for a character
##
InstallMethod( IsQuasiPrimitive,
    "for a character",
    [ IsCharacter ],
    chi -> TestQuasiPrimitive( chi ).isQuasiPrimitive );


#############################################################################
##
#M  IsPrimitiveCharacter( <chi> ) . . . . . . . . . . . . . . for a character
##
InstallMethod( IsPrimitiveCharacter,
    "for a class function",
    [ IsClassFunction ],
    function( chi )
    if not IsSolvableGroup( UnderlyingGroup( chi ) ) then
      TryNextMethod();
    fi;
    return IsCharacter( chi ) and TestQuasiPrimitive( chi ).isQuasiPrimitive;
    end );


#############################################################################
##
#M  IsPrimitive( <chi> )  . . . . . . . . . . . . . . . . . . for a character
##
InstallOtherMethod( IsPrimitive,
    "for a character",
    [ IsClassFunction ],
    IsPrimitiveCharacter );
#T really install this?


#############################################################################
##
#F  TestInducedFromNormalSubgroup( <chi>[, <N>] )
##
InstallGlobalFunction( TestInducedFromNormalSubgroup, function( arg )

    local sizeN,      # size of <N>
          sizefactor, # size of $G / <N>$
          values,     # values list of `chi'
          m,          # list of all maximal normal subgroups of $G$
          test,       # intermediate result
          tn,         # character table of <N>
          irr,        # irreducibles of `tn'
          i,          # loop variable
          scpr,       # one scalar product in <N>
          N,          # optional second argument
          cl,         # classes corresponding to `N'
          chi;        # first argument

    # check the arguments
    if Length( arg ) < 1 or Length( arg ) > 2
       or not IsCharacter( arg[1] ) then
      Error( "usage: TestInducedFromNormalSubgroup( <chi>[, <N>] )" );
    fi;

    chi:= arg[1];

    Info( InfoMonomial, 1,
          "TestInducedFromNormalSubgroup called with character ",
          CharacterString( chi, "chi" ) );

    if Length( arg ) = 1 then

      # `TestInducedFromNormalSubgroup( <chi> )'
      if DegreeOfCharacter( chi ) = 1 then

        return rec( isInduced:= false,
                    comment  := "linear character" );

      else

        # Get all maximal normal subgroups.
        m:= ClassPositionsOfMaximalNormalSubgroups(
                UnderlyingCharacterTable( chi ) );

        for N in m do

          test:= TestInducedFromNormalSubgroup( chi, N );
          if test.isInduced then
            return test;
          fi;

        od;

        return rec( isInduced := false,
                    comment   := "all maximal normal subgroups checked" );
      fi;

    else

      # `TestInducedFromNormalSubgroup( <chi>, <N> )'

      N:= arg[2];

      # 1. If the degree of <chi> is not divisible by the index of <N> in $G$
      #    then <chi> cannot be induced from <N>.
      # 2. If <chi> does not vanish outside <N> it cannot be induced from
      #    <N>.
      # 3. Provided that <chi> vanishes outside <N>,
      #    <chi> is induced from <N> if and only if the restriction of <chi>
      #    to <N> has an irreducible constituent with multiplicity 1.
      #
      #    Since the scalar product of the restriction with itself has value
      #    $G \: N$, multiplicity 1 means that there are $G \: N$ conjugates
      #    of this constituent, so <chi> is induced from each of them.
      #
      #    This gives another necessary condition that is easy to check.
      #    Namely, <N> must have more than $G \: <N>$ conjugacy classes if
      #    <chi> is induced from <N>.

      if IsList( N ) then
        sizeN:= Sum( SizesConjugacyClasses(
                         UnderlyingCharacterTable( chi ) ){ N }, 0 );
      elif IsGroup( N ) then
        sizeN:= Size( N );
      else
        Error( "<N> must be a group or a list" );
      fi;

      sizefactor:= Size( UnderlyingCharacterTable( chi ) ) / sizeN;

      if   DegreeOfCharacter( chi ) mod sizefactor <> 0 then

        return rec( isInduced := false,
                    comment   := "degree not divisible by index" );

      elif sizeN <= sizefactor then

        return rec( isInduced := false,
                    comment   := "<N> has too few conjugacy classes" );

      fi;

      values:= ValuesOfClassFunction( chi );

      if IsList( N ) then

        # Check whether the character vanishes outside <N>.
        for i in [ 2 .. Length( values ) ] do
          if not i in N and values[i] <> 0 then
            return rec( isInduced := false,
                        comment   := "<chi> does not vanish outside <N>" );
          fi;
        od;

        cl:= N;
        N:= NormalSubgroupClasses( UnderlyingCharacterTable( chi ), N );

      else

        # Check whether <N> has less conjugacy classes than its index is.
        if Length( ConjugacyClasses( N ) ) <= sizefactor then

          return rec( isInduced := false,
                      comment   := "<N> has too few conjugacy classes" );

        fi;

        cl:= ClassPositionsOfNormalSubgroup( UnderlyingCharacterTable( chi ),
                                             N );

        # Check whether the character vanishes outside <N>.
        for i in [ 2 .. Length( values ) ] do
          if not i in cl and values[i] <> 0 then
            return rec( isInduced := false,
                        comment   := "<chi> does not vanish outside <N>" );
          fi;
        od;

      fi;

      # Compute the restriction to <N>.
      chi:= values{ FusionConjugacyClasses( OrdinaryCharacterTable( N ),
                        UnderlyingCharacterTable( chi ) ) };

      # Check possible constituents.
      tn:= CharacterTable( N );
      irr:= Irr( N );
      for i in [ 1 .. NrConjugacyClasses( tn ) - sizefactor + 1 ] do

        scpr:= ScalarProduct( tn, ValuesOfClassFunction( irr[i] ), chi );

        if   1 < scpr then

          return rec( isInduced := false,
                      comment   := Concatenation(
                                     "constituent with multiplicity ",
                                     String( scpr ) ) );

        elif scpr = 1 then

          return rec( isInduced := true,
                      comment   := "induced from component \'.character\'",
                      character := irr[i] );

        fi;

      od;

      return rec( isInduced := false,
                  comment   := "all irreducibles of <N> checked" );

    fi;
end );


#############################################################################
##
#M  IsInducedFromNormalSubgroup( <chi> )  . . . . . . . . . . for a character
##
InstallMethod( IsInducedFromNormalSubgroup,
    "for a character",
    [ IsCharacter ],
    chi -> TestInducedFromNormalSubgroup( chi ).isInduced );


#############################################################################
##
##  3. Testing Monomiality
##


#############################################################################
##
#M  TestSubnormallyMonomial( <G> )  . . . . . . . . . . . . . . . for a group
##
InstallMethod( TestSubnormallyMonomial,
    "for a group",
    [ IsGroup ],
    function( G )

    local test,       # result record
          orbits,     # orbits of characters
          chi,        # loop over `orbits'
          found,      # decision is found
          i;          # loop variable

    Info( InfoMonomial, 1,
          "TestSubnormallyMonomial called for group ",
          GroupString( G, "G" ) );

    if IsNilpotentGroup( G ) then

      # Nilpotent groups are subnormally monomial.
      test:= rec( isSubnormallyMonomial:= true,
                  comment := "nilpotent group" );

    else

      # Check SM character by character,
      # one representative of each orbit under Galois conjugacy
      # and multiplication with linear characters only.

      orbits:= OrbitRepresentativesCharacters( Irr( G ) );

      # For each representative check whether it is SM.
      # (omit linear characters, i.e., first position)
      found:= false;
      i:= 2;
      while ( not found ) and i <= Length( orbits ) do

        chi:= orbits[i];
        if not TestSubnormallyMonomial( chi ).isSubnormallyMonomial then

          found:= true;
          test:= rec( isSubnormallyMonomial := false,
                      character             := chi,
                      comment               := "found non-SM character" );

        fi;
        i:= i+1;

      od;

      if not found then

        test:= rec( isSubnormallyMonomial := true,
                    comment               := "all irreducibles checked" );

      fi;

    fi;

    # Return the result.
    Info( InfoMonomial, 1,
          "TestSubnormallyMonomial returns with `",
          test.isSubnormallyMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  TestSubnormallyMonomial( <chi> )  . . . . . . . . . . . . for a character
##
InstallOtherMethod( TestSubnormallyMonomial,
    "for a character",
    [ IsClassFunction ],
    function( chi )

    local test,       # result record
          testsm;     # local function for recursive check

    Info( InfoMonomial, 1,
          "TestSubnormallyMonomial called for character ",
          CharacterString( chi, "chi" ) );

    if   DegreeOfCharacter( chi ) = 1 then

      # Linear characters are subnormally monomial.
      test:= rec( isSubnormallyMonomial := true,
                  comment               := "linear character",
                  character             := chi );

    elif     HasIsSubnormallyMonomial( UnderlyingGroup( chi ) )
         and IsSubnormallyMonomial( UnderlyingGroup( chi ) ) then

      # If the group knows that it is subnormally monomial return this.
      test:= rec( isSubnormallyMonomial := true,
                  comment               := "subnormally monomial group",
                  character             := chi );

    elif IsNilpotentGroup( UnderlyingGroup( chi ) ) then

      # Nilpotent groups are subnormally monomial.
      test:= rec( isSubnormallyMonomial := true,
                  comment               := "nilpotent group",
                  character             := chi );

    else

      # We have to check recursively.

      # Given a character `chi' of the group $N$, and two classes lists
      # `forbidden' and `allowed' that describe all maximal normal
      # subgroups of $N$, where `forbidden' denotes all those normal
      # subgroups through that `chi' cannot be subnormally induced,
      # return either a linear character of a subnormal subgroup of $N$
      # from that `chi' is induced, or `false' if no such character exists.
      # If we reach a nilpotent group then we return a character of this
      # group, so the character is not necessarily linear.

      testsm:= function( chi, forbidden, allowed )

      local N,       # group of `chi'
            mns,     # max. normal subgroups
            forbid,  #
            n,       # one maximal normal subgroup
            cl,
            len,
            nt,
            fus,
            rest,
            deg,
            const,
            nallowed,
            nforbid,
            gp,
            fusgp,
            test;

      forbid:= ShallowCopy( forbidden );
      N:= UnderlyingGroup( chi );
      chi:= ValuesOfClassFunction( chi );
      len:= Length( chi );

      # Loop over `allowed'.
      for cl in allowed do

        if ForAll( [ 1 .. len ], x -> chi[x] = 0 or x in cl ) then

          # `chi' vanishes outside `n', so is induced from `n'.

          n:= NormalSubgroupClasses( OrdinaryCharacterTable( N ), cl );
          nt:= CharacterTable( n );

          # Compute a constituent of the restriction of `chi' to `n'.
          fus:= FusionConjugacyClasses( nt, OrdinaryCharacterTable( N ) );
          rest:= chi{ fus };
          deg:= chi[1] * Size( n ) / Size( N );
          const:= First( Irr( n ),
                     x ->     DegreeOfCharacter( x ) = deg
                          and ScalarProduct( nt, ValuesOfClassFunction( x ),
                                                 rest ) <> 0 );

          # Check termination.
          if   deg = 1 or IsNilpotentGroup( n ) then
            return const;
          elif Length( allowed ) = 0 then
            return false;
          fi;

          # Compute allowed and forbidden maximal normal subgroups of `n'.
          mns:= ClassPositionsOfMaximalNormalSubgroups( nt );
          nallowed:= [];
          nforbid:= [];
          for gp in mns do

            # A group is forbidden if it is the intersection of a group
            # in `forbid' with `n'.
            fusgp:= Set( fus{ gp } );
            if ForAny( forbid, x -> IsSubsetSet( x, fusgp ) ) then
              Add( nforbid, gp );
            else
              Add( nallowed, gp );
            fi;

          od;

          # Check whether `const' is subnormally induced from `n'.
          test:= testsm( const, nforbid, nallowed );
          if test <> false then
            return test;
          fi;

        fi;

        # Add `n' to the forbidden subgroups.
        Add( forbid, cl );

      od;

      # All allowed normal subgroups have been checked.
      return false;
      end;


      # Run the recursive search.
      # Here all maximal normal subgroups are allowed.
      test:= testsm( chi, [], ClassPositionsOfMaximalNormalSubgroups(
                                  UnderlyingCharacterTable( chi ) ) );

      # Prepare the output.
      if test = false then
        test:= rec( isSubnormallyMonomial := false,
                    comment   := "all subnormal subgroups checked" );
      elif DegreeOfCharacter( test ) = 1 then
        test:= rec( isSubnormallyMonomial := true,
                    comment   := "reduced to linear character",
                    character := test );
      else
        test:= rec( isSubnormallyMonomial := true,
                    comment   := "reduced to nilpotent subgroup",
                    character := test );
      fi;

    fi;

    Info( InfoMonomial, 1,
          "TestSubnormallyMonomial returns with `",
          test.isSubnormallyMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  IsSubnormallyMonomial( <G> )  . . . . . . . . . . . . . . . . for a group
#M  IsSubnormallyMonomial( <chi> )  . . . . . . . . . . . . . for a character
##
InstallMethod( IsSubnormallyMonomial,
    "for a group",
    [ IsGroup ],
    G -> TestSubnormallyMonomial( G ).isSubnormallyMonomial );

InstallOtherMethod( IsSubnormallyMonomial,
    "for a character",
    [ IsClassFunction ],
    chi -> TestSubnormallyMonomial( chi ).isSubnormallyMonomial );


#############################################################################
##
#M  IsMonomialNumber( <n> ) . . . . . . . . . . . . .  for a positive integer
##
InstallMethod( IsMonomialNumber,
    "for a positive integer",
    [ IsPosInt ],
    function( n )

    local factors,   # list of prime factors of `n'
          collect,   # list of (prime divisor, exponent) pairs
          nu2,       # $\nu_2(n)$
          pair,      # loop over `collect'
          pair2,     # loop over `collect'
          ord;       # multiplicative order

    factors := FactorsInt( n );
    collect := Collected( factors );

    # Get $\nu_2(n)$.
    if 2 in factors then
      nu2:= collect[1][2];
    else
      nu2:= 0;
    fi;

    # Check for minimal nonmonomial groups of type 1.
    if nu2 >= 2 then
      for pair in collect do
        if pair[1] mod 4 = 3 and pair[2] >= 3 then
          return false;
        fi;
      od;
    fi;

    # Check for minimal nonmonomial groups of type 2.
    if nu2 >= 3 then
      for pair in collect do
        if pair[1] mod 4 = 1 and pair[2] >= 3 then
          return false;
        fi;
      od;
    fi;

    # Check for minimal nonmonomial groups of type 3.
    for pair in collect do
      for pair2 in collect do
        if pair[1] <> pair2[1] and pair2[1] <> 2 then
          ord:= OrderMod( pair[1], pair2[1] );
          if ord mod 2 = 0 and ord < pair[2] then
            return false;
          fi;
        fi;
      od;
    od;

    # Check for minimal nonmonomial groups of type 4.
    if nu2 >= 4 then
      for pair in collect do
        if pair[1] <> 2 and nu2 >= 2* OrderMod( 2, pair[1] ) + 2 then
          return false;
        fi;
      od;
    fi;

    # Check for minimal nonmonomial groups of type 5.
    if nu2 >= 2 then
      for pair in collect do
        if pair[1] mod 4 = 1 and pair[2] >= 3 then
          for pair2 in collect do
            if pair2[1] <> 2 then
              ord:= OrderMod( pair[1], pair2[1] );
              if ord mod 2 = 1 and 2 * ord < pair[2] then
                return false;
              fi;
            fi;
          od;
        fi;
      od;
    fi;

    # None of the five cases can occur.
    return true;
    end );


#############################################################################
##
#M  TestMonomialQuick( <chi> )  . . . . . . . . . . . . . . . for a character
##
InstallMethod( TestMonomialQuick,
    "for a character",
    [ IsClassFunction ],
    function( chi )

    local G,          # group of `chi'
          factsize,   # size of the kernel factor of `chi'
          codegree,   # codegree of `chi'
          pi,         # prime divisors of a Hall subgroup
          hall,       # size of `pi' Hall subgroup of kernel factor
          ker,        # kernel of `chi'
          t,          # character table of `G'
          grouptest;  # result of the call to `G / ker'

    Info( InfoMonomial, 1,
          "TestMonomialQuick called for character ",
          CharacterString( chi, "chi" ) );

    if   HasIsMonomialCharacter( chi ) then

      # The character knows about being monomial.
      Info( InfoMonomial, 1,
            "TestMonomialQuick returns with `",
            IsMonomialCharacter( chi ), "'" );
      return rec( isMonomial := IsMonomialCharacter( chi ),
                  comment    := "was already stored" );

    elif DegreeOfCharacter( chi ) = 1 then

      # Linear characters are monomial.
      Info( InfoMonomial, 1,
            "TestMonomialQuick returns with `true'" );
      return rec( isMonomial := true,
                  comment    := "linear character" );

    elif TestMonomialQuick( UnderlyingGroup( chi ) ).isMonomial = true then
#T ?

      # The whole group is known to be monomial.
      Info( InfoMonomial, 1,
            "TestMonomialQuick returns with `true'" );
      return rec( isMonomial := true,
                  comment    := "whole group is monomial" );

    fi;

    G   := UnderlyingGroup( chi );
    chi := ValuesOfClassFunction( chi );

    # Replace `G' by the factor group modulo the kernel.
    ker:= ClassPositionsOfKernel( chi );
    if 1 < Length( ker ) then
      t:= CharacterTable( G );
      factsize:= Size( G ) / Sum( SizesConjugacyClasses( t ){ ker }, 0 );
    else
      factsize:= Size( G );
    fi;

    # Inspect the codegree.
    codegree := factsize / chi[1];

    if IsPrimePowerInt( codegree ) then

      # If the codegree is a prime power then the character is monomial,
      # by a result of Chillag, Mann, and Manz.
      # Here is a short proof due to M. I. Isaacs
      # (communicated by E. Horváth).
      #
      # Let $G$ be a finite group, $\chi\in Irr(G)$ with codegree $p^a$
      # for a prime $p$, and $P\in Syl_p(G)$.
      # Then there exists an irreducible character $\psi$ of $P$
      # with $\psi^G = \chi$.
      #
      # {\it Proof:}
      # Let $b$ be an integer such that $\chi(1) = [G : P] p^b$,
      # and consider $\chi_P = \sum_{\psi\in Irr(P)} a_{\psi} \psi$.
      # There exists $\psi$ with $a_{\psi} \not= 0$ and $\psi(1) \leq p^b$,
      # as otherwise $\chi(1)$ would be divisible by a larger power of $p$.
      # On the other hand, $\chi$ must be a constituent of $\psi^G$ and thus
      # $p^b \leq \psi(1)$.
      # So there is equality, and thus $\psi^G = \chi$.
      Info( InfoMonomial, 1,
            "TestMonomialQuick returns with `true'" );
      return rec( isMonomial := true,
                  comment    := "codegree is prime power" );
    fi;

    # If $G$ is solvable and $\pi$ is the set of primes dividing the codegree
    # then the character is induced from a $\pi$ Hall subgroup.
    # This follows from Theorem~(2D) in~\cite{Fon62}.
    if IsSolvableGroup( G ) then

      pi   := Set( FactorsInt( codegree ) );
      hall := Product( Filtered( FactorsInt( factsize ), x -> x in pi ), 1 );

      if factsize / hall = chi[1] then

        # The character is induced from a {\em linear} character
        # of the $\pi$ Hall group.
        Info( InfoMonomial, 1,
              "TestMonomialQuick returns with `true'" );
        return rec( isMonomial := true,
                    comment    := "degree is index of Hall subgroup" );

      elif IsMonomialNumber( hall ) then

        # The {\em order} of this Hall subgroup is monomial.
        Info( InfoMonomial, 1,
              "TestMonomialQuick returns with `true'" );
        return rec( isMonomial := true,
                    comment    := "induced from monomial Hall subgroup" );

      fi;

    fi;

    # Inspect the factor group modulo the kernel.
    if 1 < Length( ker ) then

      if   IsSolvableGroup( G ) and IsMonomialNumber( factsize ) then

        # The order of the kernel factor group is monomial.
        # (For faithful characters this check has been done already.)
        Info( InfoMonomial, 1,
              "TestMonomialQuick returns with `true'" );
        return rec( isMonomial := true,
                    comment    := "size of kernel factor is monomial" );

      elif IsSubsetSet( ker, ClassPositionsOfSupersolvableResiduum(t) ) then

        # The factor group modulo the kernel is supersolvable.
        Info( InfoMonomial, 1,
              "TestMonomialQuick returns with `true'" );
        return rec( isMonomial:= true,
                    comment:= "kernel factor group is supersolvable" );
#T Is there more one can do without computing the factor group?

      fi;

      grouptest:= TestMonomialQuick( FactorGroupNormalSubgroupClasses(
                      OrdinaryCharacterTable( G ), ker ) );
#T This can help ??
      if grouptest.isMonomial = true then

        Info( InfoMonomial, 1,
              "#I  TestMonomialQuick returns with `true'" );
        return rec( isMonomial := true,
                    comment    := "kernel factor group is monomial" );

      fi;

    fi;

    # No more cheap tests are available.
    Info( InfoMonomial, 1,
          "TestMonomialQuick returns with `?'" );
    return rec( isMonomial := "?",
                comment    := "no decision by cheap tests" );
    end );


##############################################################################
##
#M  TestMonomialQuick( <G> )  . . . . . . . . . . . . . . . . . .  for a group
##
##  The following criteria are used for a group <G>.
##
##  o Nonsolvable groups are not monomial.
##  o If the group order is monomial then <G> is monomial.
##    (Note that monomiality of group orders is defined for solvable
##     groups only, so solvability has to be checked first.)
##  o Nilpotent groups are monomial.
##  o Abelian by supersolvable groups are monomial.
##  o Sylow abelian by supersolvable groups are monomial.
##    (Compute the Sylow subgroups of the supersolvable residuum,
##     and check whether they are abelian.)
##
InstallOtherMethod( TestMonomialQuick,
    "for a group",
    [ IsGroup ],
    function( G )

#T if the table is known then call TestMonomialQuick( G.charTable ) !
#T (and implement this function ...)

    local test,       # the result record
          ssr;        # supersolvable residuum of `G'

    Info( InfoMonomial, 1,
          "TestMonomialQuick called for group ",
          GroupString( G, "G" ) );

    # If the group knows about being monomial return this.
    if   HasIsMonomialGroup( G ) then

      test:= rec( isMonomial := IsMonomialGroup( G ),
                  comment    := "was already stored" );

    elif not IsSolvableGroup( G ) then

      # Monomial groups are solvable.
      test:= rec( isMonomial := false,
                  comment    := "non-solvable group" );

    elif IsMonomialNumber( Size( G ) ) then

      # Every solvable group of this order is monomial.
      test:= rec( isMonomial := true,
                  comment    := "group order is monomial" );

    elif IsNilpotentGroup( G ) then

      # Nilpotent groups are monomial.
      test:= rec( isMonomial := true,
                  comment    := "nilpotent group" );

    else

      ssr:= SupersolvableResiduum( G );

      if IsTrivial( ssr ) then

        # Supersolvable groups are monomial.
        test:= rec( isMonomial := true,
                    comment    := "supersolvable group" );

      elif IsAbelian( ssr ) then

        # Abelian by supersolvable groups are monomial.
        test:= rec( isMonomial := true,
                    comment    := "abelian by supersolvable group" );

      elif ForAll( Set( FactorsInt( Size( ssr ) ) ),
                   x -> IsAbelian( SylowSubgroup( ssr, x ) ) ) then

        # Sylow abelian by supersolvable groups are monomial.
        test:= rec( isMonomial := true,
                    comment    := "Sylow abelian by supersolvable group" );

      else

        # No more cheap tests are available.
        test:= rec( isMonomial := "?",
                    comment    := "no decision by cheap tests" );

      fi;

    fi;

    Info( InfoMonomial, 1,
          "TestMonomialQuick returns with `", test.isMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  TestMonomial( <chi> ) . . . . . . . . . . . . . . . . . . for a character
#M  TestMonomial( <chi>, <uselattice> ) . . .  for a character, and a Boolean
##
##  Called with a character <chi> as argument, `TestMonomialQuick( <chi> )'
##  is inspected first.  If this did not decide the question, we test all
##  those normal subgroups of $G$ to that <chi> restricts nonhomogeneously
##  whether the interesting character of the inertia subgroup is monomial.
##  (If <chi> is quasiprimitive then it is nonmonomial.)
##
BindGlobal( "TestMonomialFromLattice", function( chi )
    local G, H, source;

    G:= UnderlyingGroup( chi );

    # Loop over representatives of the conjugacy classes of subgroups.
    for H in List( ConjugacyClassesSubgroups( G ), Representative ) do
      if Index( G, H ) = chi[1] then
        source:= First( LinearCharacters( H ), lambda -> lambda^G = chi );
        if source <> fail then
          return source;
        fi;
      fi;
    od;

    # Return the negative result.
    return fail;
end );

InstallMethod( TestMonomial,
    "for a character",
    [ IsClassFunction ],
    chi -> TestMonomial( chi, false ) );

InstallMethod( TestMonomial,
    "for a character, and a Boolean",
    [ IsClassFunction, IsBool ],
    function( chi, uselattice )
    local G,         # group of `chi'
          test,      # result record
          t,         # character table of `G'
          nsg,       # list of normal subgroups of `G'
          ker,       # kernel of `chi'
          isqp,      # is `chi' quasiprimitive
          i,         # loop over normal subgroups
          testhom,   # does `chi' restrict homogeneously
          theta,     # constituent of the restriction
          found,     # monomial character found
          found2,    # monomial character found
          T,         # inertia group of `theta'
          fus,       # fusion of conjugacy classes `T' in `G'
          deg,       # degree of `theta'
          rest,      # restriction of `chi' to `T'
          j,         # loop over irreducibles of `T'
          psi,       # character of `T'
          testmon,   # test for monomiality
          orbits,    # orbits of irreducibles of `T'
          poss;      # list of possibly nonmonomial characters

    Info( InfoMonomial, 1, "TestMonomial called" );

    # Start wirth elementary tests for monomiality.
    test:= TestMonomialQuick( chi );

    if test.isMonomial = "?" then

      G:= UnderlyingGroup( chi );

      if not IsSolvableGroup( G ) then

        # Use the subgroup lattice or give up.
        if uselattice or Size( G ) <= TestMonomialUseLattice then

          test:= TestMonomialFromLattice( chi );
          if test = fail then
            test:= rec( isMonomial := false,
                        comment    := "lattice checked" );
          else
            test:= rec( isMonomial := true,
                        comment    := "induced from \'character\'",
                        character  := test );
          fi;

        else

          # We do not know whether <chi> is monomial.
          Info( InfoMonomial, 1,
                "TestMonomial: nonsolvable group" );
          test:= rec( isMonomial:= "?",
                      comment:= "no criterion for nonsolvable group" );

        fi;

      else

        # Loop over all normal subgroups of `G' to that <chi> restricts
        # nonhomogeneously.
        # (If there are no such normal subgroups then <chi> is
        # quasiprimitive hence not monomial.)
        t:= CharacterTable( G );
        ker:= ClassPositionsOfKernel( ValuesOfClassFunction( chi ) );
        nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),
                        x -> IsSubsetSet( x, ker ) );
        isqp:= true;

        i:= 1;
        found:= false;

        while not found and i <= Length( nsg ) do

          testhom:= TestHomogeneous( chi, nsg[i] );
          if not testhom.isHomogeneous then

            isqp:= false;

            # Take a constituent `theta' in a nonhomogeneous restriction.
            theta:= testhom.character;

            # We have $<chi>_N = e \sum_{i=1}^t \theta_i$.
            # <chi> is induced from an irreducible character of
            # $'T' = I_G(\theta_1)$ that restricts to $e \theta_1$,
            # so we have proved monomiality if $e = \theta(1) = 1$.
            if     testhom.multiplicity = 1
               and DegreeOfCharacter( theta ) = 1 then

              found:= true;
              test:= rec( isMonomial := true,
                          comment    := "induced from \'character\'",
                          character  := theta );

            else

              # Compute the inertia group `T'.
              T:= InertiaSubgroup( G, theta );
              if TestMonomialQuick( T ).isMonomial = true then

                # `chi' is induced from `T', and `T' is monomial.
                found:= true;
                test:= rec( isMonomial := true,
                            comment    := "induced from monomial subgroup",
                            subgroup   := T );

              else

                # Check whether a character of `T' from that <chi>
                # is induced can be proved to be monomial.

                # First get all characters `psi' of `T'
                # from that <chi> is induced.
                t:= Irr( T );
                fus:= FusionConjugacyClasses( OrdinaryCharacterTable( T ),
                                              OrdinaryCharacterTable( G ) );
                deg:= DegreeOfCharacter( chi ) / Index( G, T );
                rest:= ValuesOfClassFunction( chi ){ fus };
                j:= 1;
                found2:= false;
                while not found2 and j <= Length(t) do
                  if     DegreeOfCharacter( t[j] ) = deg
                     and ScalarProduct( CharacterTable( T ),
                                        ValuesOfClassFunction( t[j] ),
                                        rest ) <> 0 then
                    psi:= t[j];
                    testmon:= TestMonomial( psi );
                    if testmon.isMonomial = true then
                      found:= true;
                      found2:= true;
                      test:= testmon;
                    fi;
                  fi;
                  j:= j+1;
                od;

              fi;

            fi;

          fi;

          i:= i+1;

        od;

        if isqp then

          # <chi> is quasiprimitive, for a solvable group this implies
          # primitivity,
          # for a nonlinear character this proves nonmonomiality.
          test:= rec( isMonomial := false,
                      comment    := "quasiprimitive character" );

        elif not found then

          # We have tried all suitable normal subgroups and always got
          # back that the character of the inertia subgroup was
          # (possibly) nonmonomial.
          if uselattice or Size( G ) <= TestMonomialUseLattice then

            # Use explicit computations with the subgroup lattice,
            test:= TestMonomialFromLattice( chi );
            if test = fail then
              test:= rec( isMonomial := false,
                          comment    := "lattice checked" );
            else
              test:= rec( isMonomial := true,
                          comment    := "induced from \'character\'",
                          character  := test );
            fi;

          else

            # We cannot decide whether <chi> is monomial.
            test:= rec( isMonomial:= "?",
                     comment:= "all inertia subgroups checked, no result" );

          fi;

        fi;

      fi;

    fi;

    # Return the result.
    Info( InfoMonomial, 1,
          "TestMonomial returns with `", test.isMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  TestMonomial( <G> ) . . . . . . . . . . . . . . . . . . . . . for a group
#M  TestMonomial( <G>, <uselattice> ) . . . . . .  for a group, and a Boolean
##
##  Called with a group <G> the program checks whether all representatives
##  of character orbits are monomial.
##
#T used e.g. by `Irr' for supersolvable groups, function `IrrConlon'!
##
InstallOtherMethod( TestMonomial,
    "for a group",
    [ IsGroup ],
    G -> TestMonomial( G, false ) );

InstallOtherMethod( TestMonomial,
    "for a group, and a Boolean",
    [ IsGroup, IsBool ],
    function( G, uselattice )

    local test,      # result record
          found,     # monomial character found
          testmon,   # test for monomiality
          j,         # loop over irreducibles of `T'
          psi,       # character of `T'
          orbits,    # orbits of irreducibles of `T'
          poss;      # list of possibly nonmonomial characters

    Info( InfoMonomial, 1, "TestMonomial called for a group" );

    # elementary test for monomiality
    test:= TestMonomialQuick( G );

    if test.isMonomial = "?" then

      if Size( G ) mod 2 = 0 and ForAny( Delta( G ), x -> 1 < x ) then

        # For even order groups it is checked whether
        # the list `Delta( G )' contains an entry that is bigger
        # than one. (For monomial groups and for odd order groups
        # this is always less than one,
        # according to Taketa's Theorem and Berger's result).
        test:= rec( isMonomial := false,
                    comment    := "list Delta( G ) contains entry > 1" );

      else

        orbits:= OrbitRepresentativesCharacters( Irr( G ) );
        found:= false;
        j:= 2;
        poss:= [];
        while ( not found ) and j <= Length( orbits ) do
          psi:= orbits[j];
          testmon:= TestMonomial( psi, uselattice ).isMonomial;
          if testmon = false then
            found:= true;
          elif testmon = "?" then
            Add( poss, psi );
          fi;
          j:= j+1;
        od;

        if found then

          # A nonmonomial character was found.
          test:= rec( isMonomial := false,
                      comment    := "nonmonomial character found",
                      character  := psi );

        elif IsEmpty( poss ) then

          # All checks answered `true'.
          test:= rec( isMonomial := true,
                      comment    := "all characters checked" );

        else

          # We give up.
          test:= rec( isMonomial := "?",
                      comment    := "(possibly) nonmon. characters found",
                      characters := poss );

        fi;

      fi;

    fi;

    # Return the result.
    Info( InfoMonomial, 1,
          "TestMonomial returns with `", test.isMonomial, "'" );
    return test;
    end );


#############################################################################
##
#M  IsMonomialGroup( <G> ) . . . . . . . . . . . . . . . . . . .  for a group
##
InstallMethod( IsMonomialGroup,
    "for a group",
    [ IsGroup ],
    G -> TestMonomial( G, true ).isMonomial );


#############################################################################
##
#M  IsMonomialCharacter( <chi> )  . . . . . . . . . . . . . . for a character
##
InstallMethod( IsMonomialCharacter,
    "for a character",
    [ IsClassFunction ],
    chi -> TestMonomial( chi, true ).isMonomial );


#############################################################################
##
#A  TestRelativelySM( <G> )
#A  TestRelativelySM( <chi> )
#F  TestRelativelySM( <G>, <N> )
#F  TestRelativelySM( <chi>, <N> )
##
##  The algorithm for a character <chi> and a normal subgroup <N>
##  proceeds as follows.
##  If <N> is abelian or has nilpotent factor then <chi> is relatively SM
##  with respect to <N>.
##  Otherwise we check whether <chi> restricts irreducibly to <N>; in this
##  case we also get a positive answer.
##  Otherwise a subnormal subgroup from that <chi> is induced must be
##  contained in a maximal normal subgroup of <N>.  So we get all maximal
##  normal subgroups containing <N> from that <chi> can be induced, take a
##  character that induces to <chi>, and check recursively whether it is
##  relatively subnormally monomial with respect to <N>.
##
##  For a group $G$ we consider only representatives of character orbits.
##
BindGlobal( "TestRelativelySMFun", function( arg )

    local test,      # result record
          G,         # argument, group
          chi,       # argument, character of `G'
          N,         # argument, normal subgroup of `G'
          n,         # classes in `N'
          t,         # character table of `G'
          nsg,       # list of normal subgroups of `G'
          newnsg,    # filtered list of normal subgroups
          orbits,    # orbits on `t.irreducibles'
          found,     # not relatively SM character found?
          i,         # loop over `nsg'
          j,         # loop over characters
          fus,       # fusion of conjugacy classes `N' in `G'
          norm,      # norm of restriction of `chi' to `N'
          isrelSM,   # is the constituent relatively SM?
          check,     #
          induced,   # is a subnormal subgroup found from where
                     # the actual character can be induced?
          k;         # loop over `newnsg'

    # step 1:
    # Check the arguments.
    if     Length( arg ) < 1 or 2 < Length( arg )
        or not ( IsGroup( arg[1] ) or IsCharacter( arg[1] ) ) then
      Error( "first argument must be a group or a character" );
    elif HasTestRelativelySM( arg[1] ) then
      return TestRelativelySM( arg[1] );
    fi;

    if IsGroup( arg[1] ) then
      G:= arg[1];
      Info( InfoMonomial, 1,
            "TestRelativelySM called with group ", GroupString( G, "G" ) );
    elif IsCharacter( arg[1] ) then
      G:= UnderlyingGroup( arg[1] );
      chi:= ValuesOfClassFunction( arg[1] );
      Info( InfoMonomial, 1,
            "TestRelativelySM called with character ",
            CharacterString( arg[1], "chi" ) );
    fi;

    # step 2:
    # Get the interesting normal subgroups.

    # We want to consider normal subgroups and factor groups.
    # If this test  yields a solution we can avoid to compute
    # the character table of `G'.
    # But if the character table of `G' is already known we use it
    # and store the factor groups.

    if   Length( arg ) = 1 then

      # If a normal subgroup <N> is abelian or has nilpotent factor group
      # then <G> is relatively SM w.r. to <N>, so consider only the other
      # normal subgroups.

      if HasOrdinaryCharacterTable( G ) then

        nsg:= ClassPositionsOfNormalSubgroups( CharacterTable( G ) );
        newnsg:= [];
        for n in nsg do
          if not CharacterTable_IsNilpotentFactor( CharacterTable( G ),
                     n ) then
            N:= NormalSubgroupClasses( CharacterTable( G ), n );
#T geht das?
#T        if IsSubset( n, centre ) and
            if not IsAbelian( N ) then
              Add( newnsg, N );
            fi;
          fi;
        od;
        nsg:= newnsg;

      else

        nsg:= NormalSubgroups( G );
        nsg:= Filtered( nsg, x -> not IsAbelian( x ) and
                                  not IsNilpotentGroup( G / x ) );

      fi;

    elif Length( arg ) = 2 then

      nsg:= [];

      if IsList( arg[2] ) then

        if not CharacterTable_IsNilpotentFactor( CharacterTable( G ),
                   arg[2] ) then
          N:= NormalSubgroupClasses( CharacterTable( G ), arg[2] );
          if not IsAbelian( N ) then
            nsg[1]:= N;
          fi;
        fi;

      elif IsGroup( arg[2] ) then

        N:= arg[2];
        if not IsAbelian( N ) and not IsNilpotentGroup( G / N ) then
          nsg[1]:= N;
        fi;

      else
        Error( "second argument must be normal subgroup or classes list" );
      fi;

    fi;

    # step 3:
    # Test whether all characters are relatively SM for all interesting
    # normal subgroups.

    if IsEmpty( nsg ) then

      test:= rec( isRelativelySM := true,
                  comment        :=
          "normal subgroups are abelian or have nilpotent factor group" );

    else

      t:= CharacterTable( G );
      if IsGroup( arg[1] ) then

        # Compute representatives of orbits of characters.
        orbits:= OrbitRepresentativesCharacters( Irr( t ) );
        orbits:= orbits{ [ 2 .. Length( orbits ) ] };

      else
        orbits:= [ chi ];
      fi;

      # Loop over all normal subgroups in `nsg' and all
      # irreducible characters in `orbits' until a not rel. SM
      # character is found.
      found:= false;
      i:= 1;
      while ( not found ) and i <= Length( nsg ) do

        N:= nsg[i];
        j:= 1;
        while ( not found ) and j <= Length( orbits ) do

#T use the kernel or centre here!!
#T if N does not contain the centre of chi then we need not test?
#T Isn't it sufficient to consider the factor modulo
#T the product of `N' and kernel of `chi'?
          chi:= orbits[j];

          # Is the restriction of `chi' to `N' irreducible?
          # This means we can choose $H = G$.
          n:= ClassPositionsOfNormalSubgroup( OrdinaryCharacterTable( G ),
                                              N );
          fus:= FusionConjugacyClasses( OrdinaryCharacterTable( N ),
                                        OrdinaryCharacterTable( G ) );
          norm:= Sum( n,
              c -> SizesConjugacyClasses( CharacterTable( G ) )[c] * chi[c]
                   * GaloisCyc( chi[c], -1 ), 0 );

          if norm = Size( N ) then

            test:= rec( isRelativelySM := true,
                        comment        := "irreducible restriction",
                        character      := Character( G, chi ) );

          else

            # If there is a subnormal subgroup $H$ from where <chi> is
            # induced then $H$ is contained in a maximal normal subgroup
            # of $G$ that contains <N>.

            # So compute all maximal subgroups ...
            newnsg:= ClassPositionsOfMaximalNormalSubgroups(
                         CharacterTable( G ) );

            # ... containing <N> ...
            newnsg:= Filtered( newnsg, x -> IsSubsetSet( x, n ) );

            # ... from where <chi> possibly can be induced.
            newnsg:= List( newnsg,
                           x -> TestInducedFromNormalSubgroup(
                                 Character( G, chi ),
                                 NormalSubgroupClasses( CharacterTable( G ),
                                                        x ) ) );

            induced:= false;
            k:= 1;
            while not induced and k <= Length( newnsg ) do

              check:= newnsg[k];
              if check.isInduced then

                # check whether the constituent is relatively SM w.r. to <N>
                isrelSM:= TestRelativelySM( check.character, N );
                if isrelSM.isRelativelySM then
                  induced:= true;
                fi;

              fi;
              k:= k+1;

            od;

            if induced then
              test:= rec( isRelativelySM := true,
                          comment := "suitable character found"
                         );
              if IsBound( isrelSM.character ) then
                test.character:= isrelSM.character;
              fi;
            else
              test:= rec( isRelativelySM := false,
                          comment := "all possibilities checked" );
            fi;

          fi;

          if not test.isRelativelySM then

            found:= true;
            test.character:= chi;
            test.normalSubgroup:= N;

          fi;

          j:= j+1;

        od;

        i:= i+1;

      od;

      if not found then

        # All characters are rel. SM w.r. to all normal subgroups.
        test:= rec( isRelativelySM := true,
                    comment        := "all possibilities checked" );
      fi;

    fi;

    Info( InfoMonomial, 1, "TestRelativelySM returns with `", test, "'" );
    return test;
end );

InstallMethod( TestRelativelySM,
    "for a character",
    [ IsClassFunction ],
    TestRelativelySMFun );

InstallOtherMethod( TestRelativelySM,
    "for a group",
    [ IsGroup ],
    TestRelativelySMFun );

InstallOtherMethod( TestRelativelySM,
    "for a character, and an object",
    [ IsClassFunction, IsObject ],
    TestRelativelySMFun );

InstallOtherMethod( TestRelativelySM,
    "for a group, and an object",
    [ IsGroup, IsObject ],
    TestRelativelySMFun );


#############################################################################
##
#M  IsRelativelySM( <chi> )
#M  IsRelativelySM( <G> )
##
InstallMethod( IsRelativelySM,
    "for a character",
    [ IsClassFunction ],
    chi -> TestRelativelySM( chi ).isRelativelySM );

InstallOtherMethod( IsRelativelySM,
    "for a group",
    [ IsGroup ],
    G -> TestRelativelySM( G ).isRelativelySM );


#############################################################################
##
##  4. Minimal Nonmonomial Groups
##


#############################################################################
##
#M  IsMinimalNonmonomial( <G> ) . . . . . . . . . . .  for a (solvable) group
##
##  We use the classification by van der Waall.
##
InstallMethod( IsMinimalNonmonomial,
    "for a (solvable) group",
    [ IsGroup ],
    function( K )

    local F,          # Fitting subgroup
          factsize,   # index of `F' in `K'
          facts,      # prime factorization of the order of `F'
          p,          # prime dividing the order of `F'
          m,          # `F' is of order $p ^ m $
          syl,        # Sylow subgroup
          sylgen,     # one generator of `syl'
          gens,       # generators list
          C,          # centre of `K' in dihedral case
          fc,         # element in $F C$
          q;          # half of `factsize' in dihedral case

    # Check whether `K' is solvable.
    if not IsSolvableGroup( K ) then
      TryNextMethod();
    fi;

    # Compute the Fitting factor of the group.
    F:= FittingSubgroup( K );
    factsize:= Index( K, F );

    # The Fitting subgroup of a minimal nomonomial group is a $p$-group.
    facts:= FactorsInt( Size( F ) );
    p:= Set( facts );
    if 1 < Length( p ) then
      return false;
    fi;
    p:= p[1];
    m:= Length( facts );

    # Check for the five possible structures.
    if   factsize = 4 then

      # If $K$ is minimal nonmonomial then
      # $K / F(K)$ is cyclic of order 4,
      # $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
      # where $p \equiv -1 \pmod{4}$.

      if     IsPrimeInt( p )
         and p >= 3
         and ( p + 1 ) mod 4 = 0
         and m = 3
         and Centre( F ) = FrattiniSubgroup( F )
         and Size( Centre( F ) ) = p then

        # Check that the factor is cyclic and acts irreducibly.
        # For that, it is sufficient that the square acts
        # nontrivially.

        syl:= SylowSubgroup( K, 2 );
        if     IsCyclic( syl )
           and ForAny( GeneratorsOfGroup( syl ),
                       x ->     Order( x ) = 4
                            and ForAny( GeneratorsOfGroup( F ),
                                    y -> not IsOne( Comm( y, x^2 ) ) ) ) then
          SetIsMonomialGroup( K, false );
          return true;
        fi;

      fi;

    elif factsize = 8 then

      # If $K$ is minimal nonmonomial then
      # $K / F(K)$ is quaternion of order 8,
      # $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
      # where $p \equiv 1 \pmod{4}$.

      if    IsPrimeInt( p )
         and p >= 5
         and ( p - 1 ) mod 4 = 0
         and m = 3
         and Centre( F ) = FrattiniSubgroup( F )
         and Size( Centre( F ) ) = p then

        # Check whether $K/F(K)$ is quaternion of order 8,
        # (i.e., is nonabelian with two *generators* of order 4 that do
        # not generate the same subgroup)
        # and that it acts irreducibly on $F$
        # For that, it is sufficient to show that the central involution
        # acts nontrivially.

        syl:= SylowSubgroup( K, 2 );
        gens:= Filtered( GeneratorsOfGroup( syl ), x -> Order( x ) = 4 );
        if     not IsAbelian( syl )
           and ForAny( gens,
                       x ->     x <> gens[1]
                            and x <> gens[1]^(-1)
                            and ForAny( GeneratorsOfGroup( F ),
                                    y -> not IsOne( Comm( y, x^2 ) ) ) ) then
          SetIsMonomialGroup( K, false );
          return true;
        fi;

      fi;

    elif factsize <> 2 and IsPrimeInt( factsize ) then

      # If $K$ is minimal nonmonomial then
      # $K / F(K)$ has order an odd prime $q$.
      # $F(K)$ is extraspecial of order $p^{2m+1}$ and of exponent $p$
      # where $2m$ is the order of $p$ modulo $q$.

      if    OrderMod( p, factsize ) = m-1
         and m mod 2 = 1
         and Centre( F ) = FrattiniSubgroup( F )
         and Size( Centre( F ) ) = p then

        # Furthermore, $F / Z(F)$ is a chief factor.
        # It is sufficient to show that the Fitting factor acts
        # trivially on $Z(F)$, and that there is no nontrivial
        # fixed point under the action on $F / Z(F)$.
        # These conditions are sufficient for our test.

        syl:= SylowSubgroup( K, factsize );
        sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );
        if     IsCentral( Centre( F ), syl )
           and ForAny( GeneratorsOfGroup( F ),
                       x ->     not x in Centre( F )
                            and not IsOne( Comm( x, sylgen ) ) )
          then
          SetIsMonomialGroup( K, false );
          return true;
        fi;

      fi;

    elif factsize mod 2 = 0 and IsPrimeInt( factsize / 2 ) then

      # If $K$ is minimal nonmonomial then
      # $K / F(K)$ is dihedral of order $2 q$ where $q$ is an odd prime.
      # Let $m$ denote the order of 2 mod $q$.
      # $F(K)$ is a central product of an extraspecial group $F$ of order
      # $2^{2m+1}$ (that is purely dihedral) with a cyclic group $C$
      # of order $2^{s+1}$.
      # We have $C = Z(K)$ and $F(K) = C_K( F/Z(F) )$.

      q:= factsize / 2;
      m:= OrderMod( 2, q );

      if m mod 2 = 1 then

        # Compute a Sylow $q$ subgroup $Q$, with generator $r$.
        syl:= SylowSubgroup( K, q );
        sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );

        # Show that the Fitting factor is dihedral.
        if not IsConjugate( K, sylgen, sylgen^-1 ) then
          return false;
        fi;

        # The centralizer of $Q$ is $Q \times C$.
        # Take an element $fc$ in $F(K) \setminus C$ with $f\in F$,
        # $c\in C$ (exists, since otherwise $Q$ would centralize $F(K)$),
        # and consider $[r,fc] = [r,f] \in F$.  This commutator cannot lie
        # in $Z = F \cap C$ since this would imply that $r^2$ fixes $f$,
        # because of odd order this means $r$ fixes $f$, a contradiction.
        # Thus we find $F$ as the normal closure of $[r,f]$,
        # of order $2^{2m+1}$.
        C:= SylowSubgroup( Centralizer( K, syl ), 2 );
        fc:= First( GeneratorsOfGroup( F ), x -> not x in C );
        F:= NormalClosure( K, Subgroup( K, [ Comm( sylgen, fc ) ] ) );

        if    Size( F ) <> 2^(2*m+1)
           or IsAbelian( F )
           or not IsCentral( K, C )
           or not IsCyclic( C )
           or Size( Intersection( F, C ) ) <> 2         then
          return false;
        fi;

        # Now $Q$ acts nontrivially on $F$, and because every nontrivial
        # irreducible 2-modular representation of $D_{2q}$ has degree
        # $2m$ we have necessarily $F / Z$ an irreducible module, thus
        # $F$ must be extraspecial.

        SetIsMonomialGroup( K, false );
        return true;

      fi;

    elif factsize mod 4 = 0 and IsPrimeInt( factsize / 4 ) then

      # $K / F(K)$ is a central extension of the dihedral group of order
      # $2 t$ where $t$ is an odd prime, such that all involutions lift to
      # elements of order 4.  $F(K)$ is an extraspecial $p$-group
      # for an odd prime $p$ with $p \equiv 1 \pmod{4}$.
      # Let $m$ denote the order of $p$ mod $t$, then $F(K)$ is of order
      # $p^{2m+1}$, and $m$ is odd.

      if    m mod 2 <> 0
         and ( p - 1 ) mod 4 = 0
         and OrderMod( p, factsize / 4 ) = ( m-1 ) / 2
         and Centre( F ) = FrattiniSubgroup( F )
         and Size( Centre( F ) ) = p then

        # Check whether the factor has the required isomorphism type,
        # i.e., whether it is of order $4t$ where $t$ is an odd prime,
        # and each element of order 4 inverts a generator of the
        # Sylow $t$ subgroup (then the presentation is satisfied).

        # Check whether the action of the factor on $F$ is irreducible.
        # Since every faithful representation is of the required
        # dimension we must only check that the central involution and
        # the generator of the Sylow $t$ subgroup both act nontrivially.

        syl:=  SylowSubgroup( K, factsize / 4 );
        sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );
        gens:= Filtered( GeneratorsOfGroup( SylowSubgroup( K, 2 ) ),
                         x -> Order( x ) = 4 );

        if     not IsEmpty( gens )
           and sylgen * gens[1] * sylgen = gens[1]
           and ForAny( GeneratorsOfGroup( F ),
                       x -> not IsOne( Comm( gens[1], x ) ) )
           and ForAny( GeneratorsOfGroup( F ),
                       x -> not IsOne( Comm( sylgen, x ) ) ) then

          SetIsMonomialGroup( K, false );
          return true;

        fi;

      fi;

    fi;

    # None of the structure conditions is satisfied.
    return false;
end );


#############################################################################
##
#F  MinimalNonmonomialGroup( <p>, <factsize> )
##
InstallGlobalFunction( MinimalNonmonomialGroup, function( p, factsize )

    local K,          # free group
          Kgens,      # free generators of `K'
          rels,       # relators of `K'
          name,       # name of `K'
          t,          # number with suitable multiplicative order
          form,       # matrix of the commutator form
          x,          # indeterminate
          val,        # one entry in `form'
          i,          # loop
          j,          # loop
          v,          # coefficient vector
          rhs,        # right hand side of a relator when viewed as relation
          q,          # another name for `factsize'
          2m,         # exponent of size of Frattini factor of group $F$
          m,          # half of `2m'
          facts,      # factors of cylotomic polynomial
          coeff,      # coefficients vector of one factor in `facts'
          inv,        # inverse of first in `coeff'
          f,          # `GF(2)'
          s,          # exponent of centre (minus 1) in dihedral case
          W,          # part of matrix of an order 2 automorphism
          Winv,       # part of matrix of an order 2 automorphism
          Atr;        # transposed of $A$

    if   factsize = 4 then

      # $K / F(K)$ is cyclic of order 4,
      # $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
      # where $p \equiv -1 \pmod{4}$.

      if not IsPrimeInt( p ) or p < 3 or ( p + 1 ) mod 4 <> 0 then
        Info( InfoMonomial, 1, "<p> must be a prime congruent 1 mod 4" );
        return fail;
      fi;

      K:= FreeGroup(IsSyllableWordsFamily, 5 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( String(p), "^(1+2):4" );
      rels:= [
                # the relators of the cyclic group
                Kgens[1]^2 / Kgens[2], Kgens[2]^2,

                # the relators of the extraspecial group
                Kgens[3]^p, Kgens[4]^p, Kgens[5]^p,
                Kgens[4]^Kgens[3] / ( Kgens[4] * Kgens[5]^-1 ),

                # the action of the cyclic group
                Kgens[3]^Kgens[1] / Kgens[4],
                Kgens[4]^Kgens[1] / Kgens[3]^-1,
                Kgens[3]^Kgens[2] / Kgens[3]^-1,
                Kgens[4]^Kgens[2] / Kgens[4]^-1    ];

    elif factsize = 8 then

      # $K / F(K)$ is quaternion of order 8,
      # $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
      # where $p \equiv 1 \pmod{4}$.

      if not IsPrimeInt( p ) or p < 5 or ( p - 1 ) mod 4 <> 0 then
        Info( InfoMonomial, 1, "<p> must be a prime congruent 1 mod 4" );
        return fail;
      fi;

      # Choose $t$ with $t^2 \equiv -1 \pmod{p}$.
      t:= PrimitiveRootMod( p ) ^ ( (p-1)/4 );

      K:= FreeGroup(IsSyllableWordsFamily, 6 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( String(p), "^(1+2):Q8" );
      rels:= [
               # the relators of the quaternion group
               Kgens[1]^2 / Kgens[3], Kgens[2]^2 / Kgens[3], Kgens[3]^2,
               (Kgens[2]^Kgens[1] ) / ( Kgens[2]^-1 ),

               # the relators of the extraspecial group
               Kgens[4]^p, Kgens[5]^p, Kgens[6]^p,
               Kgens[5]^Kgens[4] / ( Kgens[5]*Kgens[6]^-1 ),

               # the action of the quaternion group
               Kgens[4]^Kgens[1] / Kgens[4]^t,
               Kgens[5]^Kgens[1] / Kgens[5]^( (1/t) mod p ),
               Kgens[4]^Kgens[2] / Kgens[5],
               Kgens[5]^Kgens[2] / Kgens[4]^-1,
               Kgens[4]^Kgens[3] / Kgens[4]^-1,
               Kgens[5]^Kgens[3] / Kgens[5]^-1  ];

    elif factsize <> 2 and IsPrimeInt( factsize ) then

      # $K / F(K)$ has order an odd prime $q$.
      # $F(K)$ is extraspecial of order $p^{2m+1}$ and of exponent $p$
      # where $2m$ is the order of $p$ modulo $q$,

      q:= factsize;
      2m:= OrderMod( p, q );

      if 2m = 0 or 2m mod 2 <> 0 then
        Info( InfoMonomial, 1,
              "order of <p> mod <factsize> must be nonzero and even" );
        return fail;
      fi;

      m:= 2m / 2;

      # The `q'-th cyclotomic polynomial splits over the field with
      # `p' elements into factors of degree `2*m'.
      facts:= Factors( CyclotomicPolynomial( GF(p), q ) );

      # Take the coefficients i$a_1, a_2, \ldots, a_{2m}, 1$ of a factor.
      coeff:= IntVecFFE(
          - CoefficientsOfLaurentPolynomial( facts[1] )[1] );

      # Compute the vector $\epsilon$.
      v:= [];
      v[ 2m-1 ]:= 1;
      for i in [ m .. 2m-2 ] do
        v[i]:= 0;
      od;
      for j in [ m-1, m-2 .. 1 ] do
        v[j]:= coeff[ j+2 ] - coeff[j];
        for i in [ 1 .. m-j-1 ] do
          v[j]:= v[j] + v[ m-i ] * coeff[ m+i+j+1 ];
        od;
        v[j]:= v[j] mod p;
      od;

      # Write down the presentation,
      K:= FreeGroup(IsSyllableWordsFamily, 2m+2 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( String(p), "^(1+", String( 2m ), "):",
                            String(q) );

      # power relators \ldots
      rels:= [ Kgens[1]^q ];
      if p = 2 then
        for j in [ 2 .. 2m+1 ] do
          Add( rels, Kgens[j]^p / Kgens[2m+2] );
        od;
        Add( rels, Kgens[ 2m+2 ]^p );
      else
        for j in [ 2 .. 2m+2 ] do
          Add( rels, Kgens[j]^p );
        od;
      fi;

      # \ldots action of the automorphism, \ldots
      for j in [ 2 .. 2m ] do
        Add( rels, Kgens[j]^Kgens[1] / Kgens[j+1] );
      od;
      rhs:= One( K );
      for j in [ 1 .. 2m ] do
        rhs:= rhs * Kgens[j+1]^Int( coeff[j] );
      od;

      Add( rels, Kgens[2m+1]^Kgens[1] / rhs );

      # \ldots and commutator relators.
      for i in [ 3 .. 2m+1 ] do
        for j in [ 2 .. i-1 ] do
          Add( rels, Kgens[i]^Kgens[j]
                     / ( Kgens[i] * Kgens[2m+2]^v[ 2m+j-i ] ) );
        od;
      od;

    elif factsize mod 2 = 0 and IsPrimeInt( factsize / 2 ) then

      # $K / F(K)$ is dihedral of order $2 q$ where $q$ is an odd prime.
      # Let $m$ denote the order of 2 mod $q$ (which is odd).
      # $F(K)$ is a central product of an extraspecial group $F$ of order
      # $2^{2m+1}$ (that is purely dihedral) with a cyclic group $C$
      # of order $2^{s+1}$.  Note that in this case the second argument
      # is $s+1$.
      # We have $C = Z(K)$ and $F(K) = C_K( F/Z(F) )$.

      s:= p-1;
      q:= factsize / 2;
      m:= OrderMod( 2, q );

      if m mod 2 = 0 then
        Info( InfoMonomial, 1, "order of 2 mod <factsize>/2 must be odd" );
        return fail;
      fi;

      # The first generator is $t$, the second is $r$,
      # generators 3 to $3+s-1$ are the powers of $t$ that are
      # not contained in $Z(K)$.
      K:= FreeGroup(IsSyllableWordsFamily, 2*m + s + 3 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( "2^(1+", String( 2*m ), ")" );
      if 0 < s then
        name:= Concatenation( "(", name, "Y", String( 2^(s+1) ), ")" );
      fi;
      name:= Concatenation( name, ":D", String( factsize ) );

      rels:= [];

      # $t^2$ is a generator of $Z(K)$.
      if s = 0 then

        # $t$ squares to $z$ or the identity, since for $s = 0$ we have
        # $Z(K) = \langle z \rangle$.
        # Here we choose the identity in order to get Dade\'s example.
        rels[1]:= Kgens[1]^2 / One( K );

      else

        # Describe the cyclic group spanned by $t^2$.
        rels[1]:= Kgens[1]^2 / Kgens[2];
        for i in [ 2 .. s ] do
          rels[i]:= Kgens[i]^2 / Kgens[i+1];
        od;
        rels[ s+1 ]:= Kgens[ s+1 ]^2 / Kgens[ 2*m+s+3 ];

      fi;

      # The $(s+2)$-nd generator is $r$, that of order $q$.
      rels[ s+2 ]:= Kgens[ s+2 ]^q;

      # $t$ inverts $r$.
      rels[ s+3 ]:= Kgens[ s+2 ] ^ Kgens[1] / Kgens[ s+2 ]^-1;

      # The remaining $2m+1$ generators form the extraspecial group $F$.
      for i in [ s+3 .. 2*m+s+3 ] do
        rels[ i+1 ]:= Kgens[ i ]^2;
      od;
      for i in [ 1 .. m ] do
        Add( rels, Kgens[ s+2+m+i ]^Kgens[ s+2+i ]
                   / ( Kgens[ s+2+m+i ] / Kgens[ 2*m+s+3 ] ) );
      od;

      # Describe the actions of $t$ and $r$ on $F$.
      # First we construct the matrices of the linear actions on the
      # Frattini factor of $F$.  (Note that because of even characteristic
      # the sign plays no role here.)
      f:= GF(2);
      facts:= Factors( CyclotomicPolynomial( f, q ) );
      coeff:= CoefficientsOfLaurentPolynomial( facts[1] )[1];

      Atr:= NullMat( m, m, f );
      for i in [ 1 .. m-1 ] do
        Atr[i+1][i]:= One( f );
      od;
      for i in [ 1 .. m ] do
        Atr[i][m]:= coeff[i];
      od;

      v:= Zero( f );
      v:= List( Atr, x -> v );
      v[1]:= One( f );
      W:= [ v ];
      for i in [ 2 .. m ] do
        v:= v * Atr;
        W[i]:= v;
      od;

      Winv:= W^-1;

      W     := List( W   , IntVecFFE );
      Winv  := List( Winv, IntVecFFE );
      coeff := IntVecFFE( coeff );

      # The action of $t$ is described by `W' and its inverse.
      for i in [ s+3 .. s+m+2 ] do
        rhs:= One( K );
        for j in [ 1 .. m ] do
          rhs:= rhs * Kgens[ s+2+m+j ]^W[i-s-2][j];
        od;
        Add( rels, Kgens[i] ^ Kgens[1] / rhs );
      od;
      for i in [ s+m+3 .. s+2*m+2 ] do
        rhs:= One( K );
        for j in [ 1 .. m ] do
          rhs:= rhs * Kgens[ s+2+j ]^Winv[i-s-m-2][j];
        od;
        Add( rels, Kgens[i] ^ Kgens[1] / rhs );
      od;

      # The action of $r$ is described by $A$ and its transposed inverse.
      # (first half)
      for i in [ s+3 .. s+m+1 ] do
        Add( rels, Kgens[i] ^ Kgens[s+2] / Kgens[i+1] );
      od;
      rhs:= One( K );
      for j in [ 1 .. m ] do
        rhs:= rhs * Kgens[ s+2+j ]^coeff[j];
      od;
      Add( rels, Kgens[ s+m+2 ] ^ Kgens[s+2] / rhs );

      # (second half)
      for i in [ s+m+3 .. s+2*m+1 ] do
        Add( rels, Kgens[i] ^ Kgens[s+2]
                   / ( Kgens[s+m+3]^coeff[i-s-m-1] * Kgens[i+1] ) );
      od;
      Add( rels, Kgens[ s+2*m+2 ] ^ Kgens[s+2] / Kgens[s+m+3] );

    elif factsize mod 4 = 0 and IsPrimeInt( factsize / 4 ) then

      # $K / F(K)$ is a central extension of the dihedral group of order
      # $2 t$ where $t$ is an odd prime, such that all involutions lift to
      # elements of order 4.  $F(K)$ is an extraspecial $p$-group
      # for an odd prime $p$ with $p \equiv 1 \pmod{4}$.
      # Let $m$ denote the order of $p$ mod $t$, then $F(K)$ is of order
      # $p^{2m+1}$, and $m$ is odd.

      t:= factsize / 4;
      m:= OrderMod( p, t );

      if m mod 2 = 0 or ( p - 1 ) mod 4 <> 0 then
        Info( InfoMonomial, 1,
              "order of <p> mod <t> must be odd, <p> congr. 1 mod 4" );
        return fail;
      fi;

      facts:= Factors( CyclotomicPolynomial( GF(p), t ) );
      coeff:= CoefficientsOfLaurentPolynomial( facts[1] )[1];
      inv:= Int( coeff[1]^-1 );
      coeff:= IntVecFFE( coeff );

      # The symplectic form (that will be used to define the
      # commutator form) is derived from the standard symplectic form
      # for the 2-dimensional vector space over $GF(p^{2m})$ by first
      # blowing up to the $2m$ dimensional vector space over $GF(p)$,
      # and then projecting onto $GF(p)$ (that is, the first component).

      # (We need only the lower triangle of the matrix of the form,
      # and this is nonzero only in the lower left square.)

      form:= [];
      for i in [ 1 .. m ] do
        form[i]:= [];
        for j in [ 1 .. m-i+1 ] do
          form[i][j]:= 0;
        od;
      od;
      form[1][1]:= -1;
      x:= Indeterminate( GF(p) );
      for i in [ 2 .. m ] do
        val:= CoefficientsOfLaurentPolynomial(
                  x^(i+m-2) mod facts[1] );
        val:= - Int( ShiftedCoeffs( val[1], val[2] )[1] );
        for j in [ i .. m ] do
          form[ m+i-j ][j]:= val;
        od;
      od;

      # Write down the presentation.
      K:= FreeGroup(IsSyllableWordsFamily, 2*m + 4 );
      Kgens:= GeneratorsOfGroup( K );
      name:= Concatenation( String(p), "^(1+", String( 2*m), "):2.D",
                            String( factsize/2 ) );

      # power relations,
      rels:= [ Kgens[1]^2 / Kgens[3], Kgens[2]^t / Kgens[3], Kgens[3]^2 ];
      for i in [ 4 .. 2*m+4 ] do
        Add( rels, Kgens[i]^p );
      od;

      # action of the Frattini factor,
      # first the order 4 element
      for i in [ 4 .. m+3 ] do
        Add( rels, Kgens[i]^Kgens[1] / Kgens[ i+m ]^-1 );
        Add( rels, Kgens[ i+m ]^Kgens[1] / Kgens[i] );
      od;
      Add( rels, Kgens[2] ^ Kgens[1] / Kgens[2]^-1 );

      # (The element of order $2t$ ...)
      for i in [ 4 .. m+2 ] do
        Add( rels, Kgens[i]^Kgens[2] / Kgens[i+1]^-1 );
      od;
      rhs:= One( K );
      for i in [ 1 .. m ] do
        rhs:= rhs * Kgens[ i+3 ]^coeff[i];
      od;
      Add( rels, Kgens[ m+3 ]^Kgens[2] / rhs );

      rhs:= One( K );
      for i in [ 1 .. m ] do
        rhs:= rhs * Kgens[ m+i+3 ]^( coeff[i+1] * inv );
      od;
      Add( rels, Kgens[ m+4 ]^Kgens[2] / rhs );

      for i in [ 5 .. m+3 ] do
        Add( rels, Kgens[ m+i ]^Kgens[2] / Kgens[ m+i-1 ]^-1 );
      od;

      # (The central involution of the Fitting factor inverts.)
      for i in [ 4 .. m+3 ] do
        Add( rels, Kgens[i]^Kgens[3] / Kgens[i]^-1 );
        Add( rels, Kgens[ i+m ]^Kgens[3] / Kgens[ i+m ]^-1 );
      od;

      # The extraspecial group is defined by the commutator form
      # constructed above.
      for i in [ m+1 .. 2*m ] do
        for j in [ 1 .. m ] do
          Add( rels, Kgens[i+3]^Kgens[j+3]
                     / ( Kgens[i+3] * Kgens[ 2*m + 4 ]^form[i-m][j] ) );
        od;
      od;

    else
      return fail;
    fi;

    K:= PolycyclicFactorGroup( K, rels );
    ConvertToStringRep( name );
    SetName( K, name );
    return K;
end );


#############################################################################
##
#E