/usr/share/gap/lib/ctblmono.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 | #############################################################################
##
#W ctblmono.gi GAP library Thomas Breuer
#W & Erzsébet Horváth
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the functions dealing with monomiality questions for
## solvable groups.
##
## 1. Character Degrees and Derived Length
## 2. Primitivity of Characters
## 3. Testing Monomiality
## 4. Minimal Nonmonomial Groups
##
#############################################################################
##
## 1. Character Degrees and Derived Length
##
#############################################################################
##
#M Alpha( <G> ) . . . . . . . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( Alpha,
"for a group",
[ IsGroup ],
function( G )
local irr, # irreducible characters of `G'
degrees, # set of degrees of `irr'
chars, # at position <i> all in `irr' of degree `degrees[<i>]'
chi, # one character
alpha, # result list
max, # maximal derived length found up to now
kernels, # at position <i> the kernels of all in `chars[<i>]'
minimal, # list of minimal kernels
relevant, # minimal kernels of one degree
k, # one kernel
ker,
dl; # list of derived lengths
Info( InfoMonomial, 1, "Alpha called for group ", G );
# Compute the irreducible characters and the set of their degrees;
# we need all irreducibles so it is reasonable to compute the table.
irr:= List( Irr( G ), ValuesOfClassFunction );
degrees:= Set( List( irr, x -> x[1] ) );
RemoveSet( degrees, 1 );
# Distribute characters to degrees.
chars:= List( degrees, x -> [] );
for chi in irr do
if chi[1] > 1 then
Add( chars[ Position( degrees, chi[1], 0 ) ], chi );
fi;
od;
# Initialize
alpha:= [ 1 ];
max:= 1;
# Compute kernels (as position lists)
kernels:= List( chars, x -> Set( List( x, ClassPositionsOfKernel ) ) );
# list of all minimal elements found up to now
minimal:= [];
Info( InfoMonomial, 1,
"Alpha: There are ", Length( degrees )+1, " different degrees." );
for ker in kernels do
# We may remove kernels that contain a (minimal) kernel
# of a character of smaller or equal degree.
# Make sure to consider minimal elements of the actual degree first.
Sort( ker, function(x,y) return Length(x) < Length(y); end );
relevant:= [];
for k in ker do
if ForAll( minimal, x -> not IsSubsetSet( k, x ) ) then
# new minimal element found
Add( relevant, k );
Add( minimal, k );
fi;
od;
# Give the trivial kernel a chance to be found first when we
# consider the next larger degree.
Sort( minimal, function(x,y) return Length(x) < Length(y); end );
# Compute the derived lengths
for k in relevant do
dl:= DerivedLength( FactorGroupNormalSubgroupClasses(
OrdinaryCharacterTable( G ), k ) );
if dl > max then
max:= dl;
fi;
od;
Add( alpha, max );
od;
Info( InfoMonomial, 1, "Alpha returns ", alpha );
return alpha;
end );
#############################################################################
##
#M Delta( <G> ) . . . . . . . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( Delta,
"for a group",
[ IsGroup ],
function( G )
local delta, # result list
alpha, # `Alpha( <G> )'
r; # loop variable
delta:= [ 1 ];
alpha:= Alpha( G );
for r in [ 2 .. Length( alpha ) ] do
delta[r]:= alpha[r] - alpha[r-1];
od;
return delta;
end );
#############################################################################
##
#M IsBergerCondition( <chi> ) . . . . . . . . . . . . . . . for a character
##
InstallOtherMethod( IsBergerCondition,
"for a class function",
[ IsClassFunction ],
function( chi )
local tbl, # character table of <chi>
values, # values of `chi'
ker, # intersection of kernels of smaller degree
deg, # degree of <chi>
psi, # one irreducible character of $G$
kerchi, # kernel of <chi> (as group)
isberger; # result
Info( InfoMonomial, 1,
"IsBergerCondition called for character ",
CharacterString( chi, "chi" ) );
values:= ValuesOfClassFunction( chi );
deg:= values[1];
tbl:= UnderlyingCharacterTable( chi );
if 1 < deg then
# We need all characters of smaller degree,
# so it is reasonable to compute the character table of the group
ker:= [ 1 .. Length( values ) ];
for psi in Irr( UnderlyingCharacterTable( chi ) ) do
if DegreeOfCharacter( psi ) < deg then
IntersectSet( ker, ClassPositionsOfKernel( psi ) );
fi;
od;
# Check whether the derived group of this normal subgroup
# lies in the kernel of `chi'.
kerchi:= ClassPositionsOfKernel( values );
if IsSubsetSet( kerchi, ker ) then
# no need to compute subgroups
isberger:= true;
else
isberger:= IsSubset( KernelOfCharacter( chi ),
DerivedSubgroup( NormalSubgroupClasses( tbl, ker ) ) );
fi;
else
isberger:= true;
fi;
Info( InfoMonomial, 1, "IsBergerCondition returns ", isberger );
return isberger;
end );
#############################################################################
##
#M IsBergerCondition( <G> ) . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( IsBergerCondition,
"for a group",
[ IsGroup ],
function( G )
local tbl, # character table of `G'
psi, # one irreducible character of `G'
isberger, # result
degrees, # different character degrees of `G'
kernels, #
pos, #
i, # loop variable
leftinters, #
left, #
right; #
Info( InfoMonomial, 1, "IsBergerCondition called for group ", G );
tbl:= OrdinaryCharacterTable( G );
if Size( G ) mod 2 = 1 then
isberger:= true;
else
# Compute the intersections of kernels of characters of same degree
degrees:= [];
kernels:= [];
for psi in List( Irr( G ), ValuesOfClassFunction ) do
pos:= Position( degrees, psi[1], 0 );
if pos = fail then
Add( degrees, psi[1] );
Add( kernels, ShallowCopy( ClassPositionsOfKernel( psi ) ) );
else
IntersectSet( kernels[ pos ], ClassPositionsOfKernel( psi ) );
fi;
od;
SortParallel( degrees, kernels );
# Let $1 = f_1 \leq f_2 \leq\ldots \leq f_n$ the distinct
# irreducible degrees of `G'.
# We must have for all $1 \leq i \leq n-1$ that
# $$
# ( \bigcap_{\psi(1) \leq f_i} \ker(\psi) )^{\prime} \leq
# \bigcap_{\chi(1) = f_{i+1}} \ker(\chi)
# $$
i:= 1;
isberger:= true;
leftinters:= kernels[1];
while i < Length( degrees ) and isberger do
# `leftinters' becomes $\bigcap_{\psi(1) \leq f_i} \ker(\psi)$.
IntersectSet( leftinters, kernels[i] );
if not IsSubsetSet( kernels[i+1], leftinters ) then
# we have to compute the groups
left:= DerivedSubgroup( NormalSubgroupClasses( tbl, leftinters ) );
right:= NormalSubgroupClasses( tbl, kernels[i+1] );
if not IsSubset( right, left ) then
isberger:= false;
Info( InfoMonomial, 1,
"IsBergerCondition: violated for character of degree ",
degrees[i+1] );
fi;
fi;
i:= i+1;
od;
fi;
Info( InfoMonomial, 1, "IsBergerCondition returns ", isberger );
return isberger;
end );
#############################################################################
##
## 2. Primitivity of Characters
##
#############################################################################
##
#F TestHomogeneous( <chi>, <N> )
##
InstallGlobalFunction( TestHomogeneous, function( chi, N )
local t, # character table of `G'
classes, # class lengths of `t'
values, # values of <chi>
cl, # classes of `G' that form <N>
norm, # norm of the restriction of <chi> to <N>
tn, # table of <N>
fus, # fusion of conjugacy classes <N> in $G$
rest, # restriction of <chi> to <N>
i, # loop over characters of <N>
scpr; # one scalar product in <N>
values:= ValuesOfClassFunction( chi );
if IsList( N ) then
cl:= N;
else
cl:= ClassPositionsOfNormalSubgroup( UnderlyingCharacterTable( chi ),
N );
fi;
t:= UnderlyingCharacterTable( chi );
classes:= SizesConjugacyClasses( t );
norm:= Sum( cl, c -> classes[c] * values[c]
* GaloisCyc( values[c], -1 ), 0 );
if norm = Sum( classes{ cl }, 0 ) then
# The restriction is irreducible.
return rec( isHomogeneous := true,
comment := "restricts irreducibly" );
else
# `chi' restricts reducibly.
# Compute the table of `N' if necessary,
# and check the constituents of the restriction
N:= NormalSubgroupClasses( t, cl );
tn:= CharacterTable( N );
fus:= FusionConjugacyClasses( tn, t );
rest:= values{ fus };
for i in Irr( tn ) do
scpr:= ScalarProduct( tn, ValuesOfClassFunction( i ), rest );
if scpr <> 0 then
# Return info about the constituent.
return rec( isHomogeneous := ( scpr * DegreeOfCharacter( i )
= values[1] ),
comment := "restriction checked",
character := i,
multiplicity := scpr );
fi;
od;
fi;
end );
#############################################################################
##
#M TestQuasiPrimitive( <chi> ) . . . . . . . . . . . . . . . for a character
##
InstallMethod( TestQuasiPrimitive,
"for a character",
[ IsCharacter ],
function( chi )
local values, # list of character values
t, # character table of `chi'
nsg, # list of normal subgroups of `t'
cen, # centre of `chi'
allhomog, # are all restrictions up to now homogeneous?
j, # loop over normal subgroups
testhom, # test of homogeneous restriction
test; # result record
Info( InfoMonomial, 1,
"TestQuasiPrimitive called for character ",
CharacterString( chi, "chi" ) );
values:= ValuesOfClassFunction( chi );
# Linear characters are primitive.
if values[1] = 1 then
test:= rec( isQuasiPrimitive := true,
comment := "linear character" );
else
t:= UnderlyingCharacterTable( chi );
# Compute the normal subgroups of `G' containing the centre of `chi'.
# Note that `chi' restricts homogeneously to all normal subgroups
# of `G' if (and only if) it restricts homogeneously to all those
# normal subgroups containing the centre of `chi'.
# {\em Proof:}
# Let $N \unlhd G$ such that $Z(\chi) \not\leq N$.
# We have to show that $\chi$ restricts homogeneously to $N$.
# By our assumption $\chi_{N Z(\chi)}$ is homogeneous,
# take $\vartheta$ the irreducible constituent.
# Let $D$ a representation affording $\vartheta$ such that
# the restriction to $N$ consists of block diagonal matrices
# corresponding to the irreducible constituents.
# $D( Z(\chi) )$ consists of scalar matrices,
# thus $D( n^x ) = D( n )$ for $n\in N$, $x\in Z(\chi)$,
# i.e., $Z(\chi)$ acts trivially on the irreducible constituents
# of $\vartheta_N$,
# i.e., every constituent of $\vartheta_N$ is invariant in $N Z(\chi)$,
# i.e., $\vartheta$ (and thus $\chi$) restricts homogeneously to $N$.
cen:= ClassPositionsOfCentre( values );
nsg:= ClassPositionsOfNormalSubgroups( t );
nsg:= Filtered( nsg, x -> IsSubsetSet( x, cen ) );
allhomog:= true;
j:= 1;
while allhomog and j <= Length( nsg ) do
testhom:= TestHomogeneous( chi, nsg[j] );
if not testhom.isHomogeneous then
# nonhomogeneous restriction found
allhomog:= false;
test:= rec( isQuasiPrimitive := false,
comment := testhom.comment,
character := testhom.character );
fi;
j:= j+1;
od;
if allhomog then
test:= rec( isQuasiPrimitive := true,
comment := "all restrictions checked" );
fi;
fi;
Info( InfoMonomial, 1,
"TestQuasiPrimitive returns `", test.isQuasiPrimitive, "'" );
return test;
end );
#############################################################################
##
#M IsQuasiPrimitive( <chi> ) . . . . . . . . . . . . . . . . for a character
##
InstallMethod( IsQuasiPrimitive,
"for a character",
[ IsCharacter ],
chi -> TestQuasiPrimitive( chi ).isQuasiPrimitive );
#############################################################################
##
#M IsPrimitiveCharacter( <chi> ) . . . . . . . . . . . . . . for a character
##
InstallMethod( IsPrimitiveCharacter,
"for a class function",
[ IsClassFunction ],
function( chi )
if not IsSolvableGroup( UnderlyingGroup( chi ) ) then
TryNextMethod();
fi;
return IsCharacter( chi ) and TestQuasiPrimitive( chi ).isQuasiPrimitive;
end );
#############################################################################
##
#M IsPrimitive( <chi> ) . . . . . . . . . . . . . . . . . . for a character
##
InstallOtherMethod( IsPrimitive,
"for a character",
[ IsClassFunction ],
IsPrimitiveCharacter );
#T really install this?
#############################################################################
##
#F TestInducedFromNormalSubgroup( <chi>[, <N>] )
##
InstallGlobalFunction( TestInducedFromNormalSubgroup, function( arg )
local sizeN, # size of <N>
sizefactor, # size of $G / <N>$
values, # values list of `chi'
m, # list of all maximal normal subgroups of $G$
test, # intermediate result
tn, # character table of <N>
irr, # irreducibles of `tn'
i, # loop variable
scpr, # one scalar product in <N>
N, # optional second argument
cl, # classes corresponding to `N'
chi; # first argument
# check the arguments
if Length( arg ) < 1 or Length( arg ) > 2
or not IsCharacter( arg[1] ) then
Error( "usage: TestInducedFromNormalSubgroup( <chi>[, <N>] )" );
fi;
chi:= arg[1];
Info( InfoMonomial, 1,
"TestInducedFromNormalSubgroup called with character ",
CharacterString( chi, "chi" ) );
if Length( arg ) = 1 then
# `TestInducedFromNormalSubgroup( <chi> )'
if DegreeOfCharacter( chi ) = 1 then
return rec( isInduced:= false,
comment := "linear character" );
else
# Get all maximal normal subgroups.
m:= ClassPositionsOfMaximalNormalSubgroups(
UnderlyingCharacterTable( chi ) );
for N in m do
test:= TestInducedFromNormalSubgroup( chi, N );
if test.isInduced then
return test;
fi;
od;
return rec( isInduced := false,
comment := "all maximal normal subgroups checked" );
fi;
else
# `TestInducedFromNormalSubgroup( <chi>, <N> )'
N:= arg[2];
# 1. If the degree of <chi> is not divisible by the index of <N> in $G$
# then <chi> cannot be induced from <N>.
# 2. If <chi> does not vanish outside <N> it cannot be induced from
# <N>.
# 3. Provided that <chi> vanishes outside <N>,
# <chi> is induced from <N> if and only if the restriction of <chi>
# to <N> has an irreducible constituent with multiplicity 1.
#
# Since the scalar product of the restriction with itself has value
# $G \: N$, multiplicity 1 means that there are $G \: N$ conjugates
# of this constituent, so <chi> is induced from each of them.
#
# This gives another necessary condition that is easy to check.
# Namely, <N> must have more than $G \: <N>$ conjugacy classes if
# <chi> is induced from <N>.
if IsList( N ) then
sizeN:= Sum( SizesConjugacyClasses(
UnderlyingCharacterTable( chi ) ){ N }, 0 );
elif IsGroup( N ) then
sizeN:= Size( N );
else
Error( "<N> must be a group or a list" );
fi;
sizefactor:= Size( UnderlyingCharacterTable( chi ) ) / sizeN;
if DegreeOfCharacter( chi ) mod sizefactor <> 0 then
return rec( isInduced := false,
comment := "degree not divisible by index" );
elif sizeN <= sizefactor then
return rec( isInduced := false,
comment := "<N> has too few conjugacy classes" );
fi;
values:= ValuesOfClassFunction( chi );
if IsList( N ) then
# Check whether the character vanishes outside <N>.
for i in [ 2 .. Length( values ) ] do
if not i in N and values[i] <> 0 then
return rec( isInduced := false,
comment := "<chi> does not vanish outside <N>" );
fi;
od;
cl:= N;
N:= NormalSubgroupClasses( UnderlyingCharacterTable( chi ), N );
else
# Check whether <N> has less conjugacy classes than its index is.
if Length( ConjugacyClasses( N ) ) <= sizefactor then
return rec( isInduced := false,
comment := "<N> has too few conjugacy classes" );
fi;
cl:= ClassPositionsOfNormalSubgroup( UnderlyingCharacterTable( chi ),
N );
# Check whether the character vanishes outside <N>.
for i in [ 2 .. Length( values ) ] do
if not i in cl and values[i] <> 0 then
return rec( isInduced := false,
comment := "<chi> does not vanish outside <N>" );
fi;
od;
fi;
# Compute the restriction to <N>.
chi:= values{ FusionConjugacyClasses( OrdinaryCharacterTable( N ),
UnderlyingCharacterTable( chi ) ) };
# Check possible constituents.
tn:= CharacterTable( N );
irr:= Irr( N );
for i in [ 1 .. NrConjugacyClasses( tn ) - sizefactor + 1 ] do
scpr:= ScalarProduct( tn, ValuesOfClassFunction( irr[i] ), chi );
if 1 < scpr then
return rec( isInduced := false,
comment := Concatenation(
"constituent with multiplicity ",
String( scpr ) ) );
elif scpr = 1 then
return rec( isInduced := true,
comment := "induced from component \'.character\'",
character := irr[i] );
fi;
od;
return rec( isInduced := false,
comment := "all irreducibles of <N> checked" );
fi;
end );
#############################################################################
##
#M IsInducedFromNormalSubgroup( <chi> ) . . . . . . . . . . for a character
##
InstallMethod( IsInducedFromNormalSubgroup,
"for a character",
[ IsCharacter ],
chi -> TestInducedFromNormalSubgroup( chi ).isInduced );
#############################################################################
##
## 3. Testing Monomiality
##
#############################################################################
##
#M TestSubnormallyMonomial( <G> ) . . . . . . . . . . . . . . . for a group
##
InstallMethod( TestSubnormallyMonomial,
"for a group",
[ IsGroup ],
function( G )
local test, # result record
orbits, # orbits of characters
chi, # loop over `orbits'
found, # decision is found
i; # loop variable
Info( InfoMonomial, 1,
"TestSubnormallyMonomial called for group ",
GroupString( G, "G" ) );
if IsNilpotentGroup( G ) then
# Nilpotent groups are subnormally monomial.
test:= rec( isSubnormallyMonomial:= true,
comment := "nilpotent group" );
else
# Check SM character by character,
# one representative of each orbit under Galois conjugacy
# and multiplication with linear characters only.
orbits:= OrbitRepresentativesCharacters( Irr( G ) );
# For each representative check whether it is SM.
# (omit linear characters, i.e., first position)
found:= false;
i:= 2;
while ( not found ) and i <= Length( orbits ) do
chi:= orbits[i];
if not TestSubnormallyMonomial( chi ).isSubnormallyMonomial then
found:= true;
test:= rec( isSubnormallyMonomial := false,
character := chi,
comment := "found non-SM character" );
fi;
i:= i+1;
od;
if not found then
test:= rec( isSubnormallyMonomial := true,
comment := "all irreducibles checked" );
fi;
fi;
# Return the result.
Info( InfoMonomial, 1,
"TestSubnormallyMonomial returns with `",
test.isSubnormallyMonomial, "'" );
return test;
end );
#############################################################################
##
#M TestSubnormallyMonomial( <chi> ) . . . . . . . . . . . . for a character
##
InstallOtherMethod( TestSubnormallyMonomial,
"for a character",
[ IsClassFunction ],
function( chi )
local test, # result record
testsm; # local function for recursive check
Info( InfoMonomial, 1,
"TestSubnormallyMonomial called for character ",
CharacterString( chi, "chi" ) );
if DegreeOfCharacter( chi ) = 1 then
# Linear characters are subnormally monomial.
test:= rec( isSubnormallyMonomial := true,
comment := "linear character",
character := chi );
elif HasIsSubnormallyMonomial( UnderlyingGroup( chi ) )
and IsSubnormallyMonomial( UnderlyingGroup( chi ) ) then
# If the group knows that it is subnormally monomial return this.
test:= rec( isSubnormallyMonomial := true,
comment := "subnormally monomial group",
character := chi );
elif IsNilpotentGroup( UnderlyingGroup( chi ) ) then
# Nilpotent groups are subnormally monomial.
test:= rec( isSubnormallyMonomial := true,
comment := "nilpotent group",
character := chi );
else
# We have to check recursively.
# Given a character `chi' of the group $N$, and two classes lists
# `forbidden' and `allowed' that describe all maximal normal
# subgroups of $N$, where `forbidden' denotes all those normal
# subgroups through that `chi' cannot be subnormally induced,
# return either a linear character of a subnormal subgroup of $N$
# from that `chi' is induced, or `false' if no such character exists.
# If we reach a nilpotent group then we return a character of this
# group, so the character is not necessarily linear.
testsm:= function( chi, forbidden, allowed )
local N, # group of `chi'
mns, # max. normal subgroups
forbid, #
n, # one maximal normal subgroup
cl,
len,
nt,
fus,
rest,
deg,
const,
nallowed,
nforbid,
gp,
fusgp,
test;
forbid:= ShallowCopy( forbidden );
N:= UnderlyingGroup( chi );
chi:= ValuesOfClassFunction( chi );
len:= Length( chi );
# Loop over `allowed'.
for cl in allowed do
if ForAll( [ 1 .. len ], x -> chi[x] = 0 or x in cl ) then
# `chi' vanishes outside `n', so is induced from `n'.
n:= NormalSubgroupClasses( OrdinaryCharacterTable( N ), cl );
nt:= CharacterTable( n );
# Compute a constituent of the restriction of `chi' to `n'.
fus:= FusionConjugacyClasses( nt, OrdinaryCharacterTable( N ) );
rest:= chi{ fus };
deg:= chi[1] * Size( n ) / Size( N );
const:= First( Irr( n ),
x -> DegreeOfCharacter( x ) = deg
and ScalarProduct( nt, ValuesOfClassFunction( x ),
rest ) <> 0 );
# Check termination.
if deg = 1 or IsNilpotentGroup( n ) then
return const;
elif Length( allowed ) = 0 then
return false;
fi;
# Compute allowed and forbidden maximal normal subgroups of `n'.
mns:= ClassPositionsOfMaximalNormalSubgroups( nt );
nallowed:= [];
nforbid:= [];
for gp in mns do
# A group is forbidden if it is the intersection of a group
# in `forbid' with `n'.
fusgp:= Set( fus{ gp } );
if ForAny( forbid, x -> IsSubsetSet( x, fusgp ) ) then
Add( nforbid, gp );
else
Add( nallowed, gp );
fi;
od;
# Check whether `const' is subnormally induced from `n'.
test:= testsm( const, nforbid, nallowed );
if test <> false then
return test;
fi;
fi;
# Add `n' to the forbidden subgroups.
Add( forbid, cl );
od;
# All allowed normal subgroups have been checked.
return false;
end;
# Run the recursive search.
# Here all maximal normal subgroups are allowed.
test:= testsm( chi, [], ClassPositionsOfMaximalNormalSubgroups(
UnderlyingCharacterTable( chi ) ) );
# Prepare the output.
if test = false then
test:= rec( isSubnormallyMonomial := false,
comment := "all subnormal subgroups checked" );
elif DegreeOfCharacter( test ) = 1 then
test:= rec( isSubnormallyMonomial := true,
comment := "reduced to linear character",
character := test );
else
test:= rec( isSubnormallyMonomial := true,
comment := "reduced to nilpotent subgroup",
character := test );
fi;
fi;
Info( InfoMonomial, 1,
"TestSubnormallyMonomial returns with `",
test.isSubnormallyMonomial, "'" );
return test;
end );
#############################################################################
##
#M IsSubnormallyMonomial( <G> ) . . . . . . . . . . . . . . . . for a group
#M IsSubnormallyMonomial( <chi> ) . . . . . . . . . . . . . for a character
##
InstallMethod( IsSubnormallyMonomial,
"for a group",
[ IsGroup ],
G -> TestSubnormallyMonomial( G ).isSubnormallyMonomial );
InstallOtherMethod( IsSubnormallyMonomial,
"for a character",
[ IsClassFunction ],
chi -> TestSubnormallyMonomial( chi ).isSubnormallyMonomial );
#############################################################################
##
#M IsMonomialNumber( <n> ) . . . . . . . . . . . . . for a positive integer
##
InstallMethod( IsMonomialNumber,
"for a positive integer",
[ IsPosInt ],
function( n )
local factors, # list of prime factors of `n'
collect, # list of (prime divisor, exponent) pairs
nu2, # $\nu_2(n)$
pair, # loop over `collect'
pair2, # loop over `collect'
ord; # multiplicative order
factors := FactorsInt( n );
collect := Collected( factors );
# Get $\nu_2(n)$.
if 2 in factors then
nu2:= collect[1][2];
else
nu2:= 0;
fi;
# Check for minimal nonmonomial groups of type 1.
if nu2 >= 2 then
for pair in collect do
if pair[1] mod 4 = 3 and pair[2] >= 3 then
return false;
fi;
od;
fi;
# Check for minimal nonmonomial groups of type 2.
if nu2 >= 3 then
for pair in collect do
if pair[1] mod 4 = 1 and pair[2] >= 3 then
return false;
fi;
od;
fi;
# Check for minimal nonmonomial groups of type 3.
for pair in collect do
for pair2 in collect do
if pair[1] <> pair2[1] and pair2[1] <> 2 then
ord:= OrderMod( pair[1], pair2[1] );
if ord mod 2 = 0 and ord < pair[2] then
return false;
fi;
fi;
od;
od;
# Check for minimal nonmonomial groups of type 4.
if nu2 >= 4 then
for pair in collect do
if pair[1] <> 2 and nu2 >= 2* OrderMod( 2, pair[1] ) + 2 then
return false;
fi;
od;
fi;
# Check for minimal nonmonomial groups of type 5.
if nu2 >= 2 then
for pair in collect do
if pair[1] mod 4 = 1 and pair[2] >= 3 then
for pair2 in collect do
if pair2[1] <> 2 then
ord:= OrderMod( pair[1], pair2[1] );
if ord mod 2 = 1 and 2 * ord < pair[2] then
return false;
fi;
fi;
od;
fi;
od;
fi;
# None of the five cases can occur.
return true;
end );
#############################################################################
##
#M TestMonomialQuick( <chi> ) . . . . . . . . . . . . . . . for a character
##
InstallMethod( TestMonomialQuick,
"for a character",
[ IsClassFunction ],
function( chi )
local G, # group of `chi'
factsize, # size of the kernel factor of `chi'
codegree, # codegree of `chi'
pi, # prime divisors of a Hall subgroup
hall, # size of `pi' Hall subgroup of kernel factor
ker, # kernel of `chi'
t, # character table of `G'
grouptest; # result of the call to `G / ker'
Info( InfoMonomial, 1,
"TestMonomialQuick called for character ",
CharacterString( chi, "chi" ) );
if HasIsMonomialCharacter( chi ) then
# The character knows about being monomial.
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `",
IsMonomialCharacter( chi ), "'" );
return rec( isMonomial := IsMonomialCharacter( chi ),
comment := "was already stored" );
elif DegreeOfCharacter( chi ) = 1 then
# Linear characters are monomial.
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `true'" );
return rec( isMonomial := true,
comment := "linear character" );
elif TestMonomialQuick( UnderlyingGroup( chi ) ).isMonomial = true then
#T ?
# The whole group is known to be monomial.
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `true'" );
return rec( isMonomial := true,
comment := "whole group is monomial" );
fi;
G := UnderlyingGroup( chi );
chi := ValuesOfClassFunction( chi );
# Replace `G' by the factor group modulo the kernel.
ker:= ClassPositionsOfKernel( chi );
if 1 < Length( ker ) then
t:= CharacterTable( G );
factsize:= Size( G ) / Sum( SizesConjugacyClasses( t ){ ker }, 0 );
else
factsize:= Size( G );
fi;
# Inspect the codegree.
codegree := factsize / chi[1];
if IsPrimePowerInt( codegree ) then
# If the codegree is a prime power then the character is monomial,
# by a result of Chillag, Mann, and Manz.
# Here is a short proof due to M. I. Isaacs
# (communicated by E. Horváth).
#
# Let $G$ be a finite group, $\chi\in Irr(G)$ with codegree $p^a$
# for a prime $p$, and $P\in Syl_p(G)$.
# Then there exists an irreducible character $\psi$ of $P$
# with $\psi^G = \chi$.
#
# {\it Proof:}
# Let $b$ be an integer such that $\chi(1) = [G : P] p^b$,
# and consider $\chi_P = \sum_{\psi\in Irr(P)} a_{\psi} \psi$.
# There exists $\psi$ with $a_{\psi} \not= 0$ and $\psi(1) \leq p^b$,
# as otherwise $\chi(1)$ would be divisible by a larger power of $p$.
# On the other hand, $\chi$ must be a constituent of $\psi^G$ and thus
# $p^b \leq \psi(1)$.
# So there is equality, and thus $\psi^G = \chi$.
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `true'" );
return rec( isMonomial := true,
comment := "codegree is prime power" );
fi;
# If $G$ is solvable and $\pi$ is the set of primes dividing the codegree
# then the character is induced from a $\pi$ Hall subgroup.
# This follows from Theorem~(2D) in~\cite{Fon62}.
if IsSolvableGroup( G ) then
pi := Set( FactorsInt( codegree ) );
hall := Product( Filtered( FactorsInt( factsize ), x -> x in pi ), 1 );
if factsize / hall = chi[1] then
# The character is induced from a {\em linear} character
# of the $\pi$ Hall group.
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `true'" );
return rec( isMonomial := true,
comment := "degree is index of Hall subgroup" );
elif IsMonomialNumber( hall ) then
# The {\em order} of this Hall subgroup is monomial.
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `true'" );
return rec( isMonomial := true,
comment := "induced from monomial Hall subgroup" );
fi;
fi;
# Inspect the factor group modulo the kernel.
if 1 < Length( ker ) then
if IsSolvableGroup( G ) and IsMonomialNumber( factsize ) then
# The order of the kernel factor group is monomial.
# (For faithful characters this check has been done already.)
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `true'" );
return rec( isMonomial := true,
comment := "size of kernel factor is monomial" );
elif IsSubsetSet( ker, ClassPositionsOfSupersolvableResiduum(t) ) then
# The factor group modulo the kernel is supersolvable.
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `true'" );
return rec( isMonomial:= true,
comment:= "kernel factor group is supersolvable" );
#T Is there more one can do without computing the factor group?
fi;
grouptest:= TestMonomialQuick( FactorGroupNormalSubgroupClasses(
OrdinaryCharacterTable( G ), ker ) );
#T This can help ??
if grouptest.isMonomial = true then
Info( InfoMonomial, 1,
"#I TestMonomialQuick returns with `true'" );
return rec( isMonomial := true,
comment := "kernel factor group is monomial" );
fi;
fi;
# No more cheap tests are available.
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `?'" );
return rec( isMonomial := "?",
comment := "no decision by cheap tests" );
end );
##############################################################################
##
#M TestMonomialQuick( <G> ) . . . . . . . . . . . . . . . . . . for a group
##
## The following criteria are used for a group <G>.
##
## o Nonsolvable groups are not monomial.
## o If the group order is monomial then <G> is monomial.
## (Note that monomiality of group orders is defined for solvable
## groups only, so solvability has to be checked first.)
## o Nilpotent groups are monomial.
## o Abelian by supersolvable groups are monomial.
## o Sylow abelian by supersolvable groups are monomial.
## (Compute the Sylow subgroups of the supersolvable residuum,
## and check whether they are abelian.)
##
InstallOtherMethod( TestMonomialQuick,
"for a group",
[ IsGroup ],
function( G )
#T if the table is known then call TestMonomialQuick( G.charTable ) !
#T (and implement this function ...)
local test, # the result record
ssr; # supersolvable residuum of `G'
Info( InfoMonomial, 1,
"TestMonomialQuick called for group ",
GroupString( G, "G" ) );
# If the group knows about being monomial return this.
if HasIsMonomialGroup( G ) then
test:= rec( isMonomial := IsMonomialGroup( G ),
comment := "was already stored" );
elif not IsSolvableGroup( G ) then
# Monomial groups are solvable.
test:= rec( isMonomial := false,
comment := "non-solvable group" );
elif IsMonomialNumber( Size( G ) ) then
# Every solvable group of this order is monomial.
test:= rec( isMonomial := true,
comment := "group order is monomial" );
elif IsNilpotentGroup( G ) then
# Nilpotent groups are monomial.
test:= rec( isMonomial := true,
comment := "nilpotent group" );
else
ssr:= SupersolvableResiduum( G );
if IsTrivial( ssr ) then
# Supersolvable groups are monomial.
test:= rec( isMonomial := true,
comment := "supersolvable group" );
elif IsAbelian( ssr ) then
# Abelian by supersolvable groups are monomial.
test:= rec( isMonomial := true,
comment := "abelian by supersolvable group" );
elif ForAll( Set( FactorsInt( Size( ssr ) ) ),
x -> IsAbelian( SylowSubgroup( ssr, x ) ) ) then
# Sylow abelian by supersolvable groups are monomial.
test:= rec( isMonomial := true,
comment := "Sylow abelian by supersolvable group" );
else
# No more cheap tests are available.
test:= rec( isMonomial := "?",
comment := "no decision by cheap tests" );
fi;
fi;
Info( InfoMonomial, 1,
"TestMonomialQuick returns with `", test.isMonomial, "'" );
return test;
end );
#############################################################################
##
#M TestMonomial( <chi> ) . . . . . . . . . . . . . . . . . . for a character
#M TestMonomial( <chi>, <uselattice> ) . . . for a character, and a Boolean
##
## Called with a character <chi> as argument, `TestMonomialQuick( <chi> )'
## is inspected first. If this did not decide the question, we test all
## those normal subgroups of $G$ to that <chi> restricts nonhomogeneously
## whether the interesting character of the inertia subgroup is monomial.
## (If <chi> is quasiprimitive then it is nonmonomial.)
##
BindGlobal( "TestMonomialFromLattice", function( chi )
local G, H, source;
G:= UnderlyingGroup( chi );
# Loop over representatives of the conjugacy classes of subgroups.
for H in List( ConjugacyClassesSubgroups( G ), Representative ) do
if Index( G, H ) = chi[1] then
source:= First( LinearCharacters( H ), lambda -> lambda^G = chi );
if source <> fail then
return source;
fi;
fi;
od;
# Return the negative result.
return fail;
end );
InstallMethod( TestMonomial,
"for a character",
[ IsClassFunction ],
chi -> TestMonomial( chi, false ) );
InstallMethod( TestMonomial,
"for a character, and a Boolean",
[ IsClassFunction, IsBool ],
function( chi, uselattice )
local G, # group of `chi'
test, # result record
t, # character table of `G'
nsg, # list of normal subgroups of `G'
ker, # kernel of `chi'
isqp, # is `chi' quasiprimitive
i, # loop over normal subgroups
testhom, # does `chi' restrict homogeneously
theta, # constituent of the restriction
found, # monomial character found
found2, # monomial character found
T, # inertia group of `theta'
fus, # fusion of conjugacy classes `T' in `G'
deg, # degree of `theta'
rest, # restriction of `chi' to `T'
j, # loop over irreducibles of `T'
psi, # character of `T'
testmon, # test for monomiality
orbits, # orbits of irreducibles of `T'
poss; # list of possibly nonmonomial characters
Info( InfoMonomial, 1, "TestMonomial called" );
# Start wirth elementary tests for monomiality.
test:= TestMonomialQuick( chi );
if test.isMonomial = "?" then
G:= UnderlyingGroup( chi );
if not IsSolvableGroup( G ) then
# Use the subgroup lattice or give up.
if uselattice or Size( G ) <= TestMonomialUseLattice then
test:= TestMonomialFromLattice( chi );
if test = fail then
test:= rec( isMonomial := false,
comment := "lattice checked" );
else
test:= rec( isMonomial := true,
comment := "induced from \'character\'",
character := test );
fi;
else
# We do not know whether <chi> is monomial.
Info( InfoMonomial, 1,
"TestMonomial: nonsolvable group" );
test:= rec( isMonomial:= "?",
comment:= "no criterion for nonsolvable group" );
fi;
else
# Loop over all normal subgroups of `G' to that <chi> restricts
# nonhomogeneously.
# (If there are no such normal subgroups then <chi> is
# quasiprimitive hence not monomial.)
t:= CharacterTable( G );
ker:= ClassPositionsOfKernel( ValuesOfClassFunction( chi ) );
nsg:= Filtered( ClassPositionsOfNormalSubgroups( t ),
x -> IsSubsetSet( x, ker ) );
isqp:= true;
i:= 1;
found:= false;
while not found and i <= Length( nsg ) do
testhom:= TestHomogeneous( chi, nsg[i] );
if not testhom.isHomogeneous then
isqp:= false;
# Take a constituent `theta' in a nonhomogeneous restriction.
theta:= testhom.character;
# We have $<chi>_N = e \sum_{i=1}^t \theta_i$.
# <chi> is induced from an irreducible character of
# $'T' = I_G(\theta_1)$ that restricts to $e \theta_1$,
# so we have proved monomiality if $e = \theta(1) = 1$.
if testhom.multiplicity = 1
and DegreeOfCharacter( theta ) = 1 then
found:= true;
test:= rec( isMonomial := true,
comment := "induced from \'character\'",
character := theta );
else
# Compute the inertia group `T'.
T:= InertiaSubgroup( G, theta );
if TestMonomialQuick( T ).isMonomial = true then
# `chi' is induced from `T', and `T' is monomial.
found:= true;
test:= rec( isMonomial := true,
comment := "induced from monomial subgroup",
subgroup := T );
else
# Check whether a character of `T' from that <chi>
# is induced can be proved to be monomial.
# First get all characters `psi' of `T'
# from that <chi> is induced.
t:= Irr( T );
fus:= FusionConjugacyClasses( OrdinaryCharacterTable( T ),
OrdinaryCharacterTable( G ) );
deg:= DegreeOfCharacter( chi ) / Index( G, T );
rest:= ValuesOfClassFunction( chi ){ fus };
j:= 1;
found2:= false;
while not found2 and j <= Length(t) do
if DegreeOfCharacter( t[j] ) = deg
and ScalarProduct( CharacterTable( T ),
ValuesOfClassFunction( t[j] ),
rest ) <> 0 then
psi:= t[j];
testmon:= TestMonomial( psi );
if testmon.isMonomial = true then
found:= true;
found2:= true;
test:= testmon;
fi;
fi;
j:= j+1;
od;
fi;
fi;
fi;
i:= i+1;
od;
if isqp then
# <chi> is quasiprimitive, for a solvable group this implies
# primitivity,
# for a nonlinear character this proves nonmonomiality.
test:= rec( isMonomial := false,
comment := "quasiprimitive character" );
elif not found then
# We have tried all suitable normal subgroups and always got
# back that the character of the inertia subgroup was
# (possibly) nonmonomial.
if uselattice or Size( G ) <= TestMonomialUseLattice then
# Use explicit computations with the subgroup lattice,
test:= TestMonomialFromLattice( chi );
if test = fail then
test:= rec( isMonomial := false,
comment := "lattice checked" );
else
test:= rec( isMonomial := true,
comment := "induced from \'character\'",
character := test );
fi;
else
# We cannot decide whether <chi> is monomial.
test:= rec( isMonomial:= "?",
comment:= "all inertia subgroups checked, no result" );
fi;
fi;
fi;
fi;
# Return the result.
Info( InfoMonomial, 1,
"TestMonomial returns with `", test.isMonomial, "'" );
return test;
end );
#############################################################################
##
#M TestMonomial( <G> ) . . . . . . . . . . . . . . . . . . . . . for a group
#M TestMonomial( <G>, <uselattice> ) . . . . . . for a group, and a Boolean
##
## Called with a group <G> the program checks whether all representatives
## of character orbits are monomial.
##
#T used e.g. by `Irr' for supersolvable groups, function `IrrConlon'!
##
InstallOtherMethod( TestMonomial,
"for a group",
[ IsGroup ],
G -> TestMonomial( G, false ) );
InstallOtherMethod( TestMonomial,
"for a group, and a Boolean",
[ IsGroup, IsBool ],
function( G, uselattice )
local test, # result record
found, # monomial character found
testmon, # test for monomiality
j, # loop over irreducibles of `T'
psi, # character of `T'
orbits, # orbits of irreducibles of `T'
poss; # list of possibly nonmonomial characters
Info( InfoMonomial, 1, "TestMonomial called for a group" );
# elementary test for monomiality
test:= TestMonomialQuick( G );
if test.isMonomial = "?" then
if Size( G ) mod 2 = 0 and ForAny( Delta( G ), x -> 1 < x ) then
# For even order groups it is checked whether
# the list `Delta( G )' contains an entry that is bigger
# than one. (For monomial groups and for odd order groups
# this is always less than one,
# according to Taketa's Theorem and Berger's result).
test:= rec( isMonomial := false,
comment := "list Delta( G ) contains entry > 1" );
else
orbits:= OrbitRepresentativesCharacters( Irr( G ) );
found:= false;
j:= 2;
poss:= [];
while ( not found ) and j <= Length( orbits ) do
psi:= orbits[j];
testmon:= TestMonomial( psi, uselattice ).isMonomial;
if testmon = false then
found:= true;
elif testmon = "?" then
Add( poss, psi );
fi;
j:= j+1;
od;
if found then
# A nonmonomial character was found.
test:= rec( isMonomial := false,
comment := "nonmonomial character found",
character := psi );
elif IsEmpty( poss ) then
# All checks answered `true'.
test:= rec( isMonomial := true,
comment := "all characters checked" );
else
# We give up.
test:= rec( isMonomial := "?",
comment := "(possibly) nonmon. characters found",
characters := poss );
fi;
fi;
fi;
# Return the result.
Info( InfoMonomial, 1,
"TestMonomial returns with `", test.isMonomial, "'" );
return test;
end );
#############################################################################
##
#M IsMonomialGroup( <G> ) . . . . . . . . . . . . . . . . . . . for a group
##
InstallMethod( IsMonomialGroup,
"for a group",
[ IsGroup ],
G -> TestMonomial( G, true ).isMonomial );
#############################################################################
##
#M IsMonomialCharacter( <chi> ) . . . . . . . . . . . . . . for a character
##
InstallMethod( IsMonomialCharacter,
"for a character",
[ IsClassFunction ],
chi -> TestMonomial( chi, true ).isMonomial );
#############################################################################
##
#A TestRelativelySM( <G> )
#A TestRelativelySM( <chi> )
#F TestRelativelySM( <G>, <N> )
#F TestRelativelySM( <chi>, <N> )
##
## The algorithm for a character <chi> and a normal subgroup <N>
## proceeds as follows.
## If <N> is abelian or has nilpotent factor then <chi> is relatively SM
## with respect to <N>.
## Otherwise we check whether <chi> restricts irreducibly to <N>; in this
## case we also get a positive answer.
## Otherwise a subnormal subgroup from that <chi> is induced must be
## contained in a maximal normal subgroup of <N>. So we get all maximal
## normal subgroups containing <N> from that <chi> can be induced, take a
## character that induces to <chi>, and check recursively whether it is
## relatively subnormally monomial with respect to <N>.
##
## For a group $G$ we consider only representatives of character orbits.
##
BindGlobal( "TestRelativelySMFun", function( arg )
local test, # result record
G, # argument, group
chi, # argument, character of `G'
N, # argument, normal subgroup of `G'
n, # classes in `N'
t, # character table of `G'
nsg, # list of normal subgroups of `G'
newnsg, # filtered list of normal subgroups
orbits, # orbits on `t.irreducibles'
found, # not relatively SM character found?
i, # loop over `nsg'
j, # loop over characters
fus, # fusion of conjugacy classes `N' in `G'
norm, # norm of restriction of `chi' to `N'
isrelSM, # is the constituent relatively SM?
check, #
induced, # is a subnormal subgroup found from where
# the actual character can be induced?
k; # loop over `newnsg'
# step 1:
# Check the arguments.
if Length( arg ) < 1 or 2 < Length( arg )
or not ( IsGroup( arg[1] ) or IsCharacter( arg[1] ) ) then
Error( "first argument must be a group or a character" );
elif HasTestRelativelySM( arg[1] ) then
return TestRelativelySM( arg[1] );
fi;
if IsGroup( arg[1] ) then
G:= arg[1];
Info( InfoMonomial, 1,
"TestRelativelySM called with group ", GroupString( G, "G" ) );
elif IsCharacter( arg[1] ) then
G:= UnderlyingGroup( arg[1] );
chi:= ValuesOfClassFunction( arg[1] );
Info( InfoMonomial, 1,
"TestRelativelySM called with character ",
CharacterString( arg[1], "chi" ) );
fi;
# step 2:
# Get the interesting normal subgroups.
# We want to consider normal subgroups and factor groups.
# If this test yields a solution we can avoid to compute
# the character table of `G'.
# But if the character table of `G' is already known we use it
# and store the factor groups.
if Length( arg ) = 1 then
# If a normal subgroup <N> is abelian or has nilpotent factor group
# then <G> is relatively SM w.r. to <N>, so consider only the other
# normal subgroups.
if HasOrdinaryCharacterTable( G ) then
nsg:= ClassPositionsOfNormalSubgroups( CharacterTable( G ) );
newnsg:= [];
for n in nsg do
if not CharacterTable_IsNilpotentFactor( CharacterTable( G ),
n ) then
N:= NormalSubgroupClasses( CharacterTable( G ), n );
#T geht das?
#T if IsSubset( n, centre ) and
if not IsAbelian( N ) then
Add( newnsg, N );
fi;
fi;
od;
nsg:= newnsg;
else
nsg:= NormalSubgroups( G );
nsg:= Filtered( nsg, x -> not IsAbelian( x ) and
not IsNilpotentGroup( G / x ) );
fi;
elif Length( arg ) = 2 then
nsg:= [];
if IsList( arg[2] ) then
if not CharacterTable_IsNilpotentFactor( CharacterTable( G ),
arg[2] ) then
N:= NormalSubgroupClasses( CharacterTable( G ), arg[2] );
if not IsAbelian( N ) then
nsg[1]:= N;
fi;
fi;
elif IsGroup( arg[2] ) then
N:= arg[2];
if not IsAbelian( N ) and not IsNilpotentGroup( G / N ) then
nsg[1]:= N;
fi;
else
Error( "second argument must be normal subgroup or classes list" );
fi;
fi;
# step 3:
# Test whether all characters are relatively SM for all interesting
# normal subgroups.
if IsEmpty( nsg ) then
test:= rec( isRelativelySM := true,
comment :=
"normal subgroups are abelian or have nilpotent factor group" );
else
t:= CharacterTable( G );
if IsGroup( arg[1] ) then
# Compute representatives of orbits of characters.
orbits:= OrbitRepresentativesCharacters( Irr( t ) );
orbits:= orbits{ [ 2 .. Length( orbits ) ] };
else
orbits:= [ chi ];
fi;
# Loop over all normal subgroups in `nsg' and all
# irreducible characters in `orbits' until a not rel. SM
# character is found.
found:= false;
i:= 1;
while ( not found ) and i <= Length( nsg ) do
N:= nsg[i];
j:= 1;
while ( not found ) and j <= Length( orbits ) do
#T use the kernel or centre here!!
#T if N does not contain the centre of chi then we need not test?
#T Isn't it sufficient to consider the factor modulo
#T the product of `N' and kernel of `chi'?
chi:= orbits[j];
# Is the restriction of `chi' to `N' irreducible?
# This means we can choose $H = G$.
n:= ClassPositionsOfNormalSubgroup( OrdinaryCharacterTable( G ),
N );
fus:= FusionConjugacyClasses( OrdinaryCharacterTable( N ),
OrdinaryCharacterTable( G ) );
norm:= Sum( n,
c -> SizesConjugacyClasses( CharacterTable( G ) )[c] * chi[c]
* GaloisCyc( chi[c], -1 ), 0 );
if norm = Size( N ) then
test:= rec( isRelativelySM := true,
comment := "irreducible restriction",
character := Character( G, chi ) );
else
# If there is a subnormal subgroup $H$ from where <chi> is
# induced then $H$ is contained in a maximal normal subgroup
# of $G$ that contains <N>.
# So compute all maximal subgroups ...
newnsg:= ClassPositionsOfMaximalNormalSubgroups(
CharacterTable( G ) );
# ... containing <N> ...
newnsg:= Filtered( newnsg, x -> IsSubsetSet( x, n ) );
# ... from where <chi> possibly can be induced.
newnsg:= List( newnsg,
x -> TestInducedFromNormalSubgroup(
Character( G, chi ),
NormalSubgroupClasses( CharacterTable( G ),
x ) ) );
induced:= false;
k:= 1;
while not induced and k <= Length( newnsg ) do
check:= newnsg[k];
if check.isInduced then
# check whether the constituent is relatively SM w.r. to <N>
isrelSM:= TestRelativelySM( check.character, N );
if isrelSM.isRelativelySM then
induced:= true;
fi;
fi;
k:= k+1;
od;
if induced then
test:= rec( isRelativelySM := true,
comment := "suitable character found"
);
if IsBound( isrelSM.character ) then
test.character:= isrelSM.character;
fi;
else
test:= rec( isRelativelySM := false,
comment := "all possibilities checked" );
fi;
fi;
if not test.isRelativelySM then
found:= true;
test.character:= chi;
test.normalSubgroup:= N;
fi;
j:= j+1;
od;
i:= i+1;
od;
if not found then
# All characters are rel. SM w.r. to all normal subgroups.
test:= rec( isRelativelySM := true,
comment := "all possibilities checked" );
fi;
fi;
Info( InfoMonomial, 1, "TestRelativelySM returns with `", test, "'" );
return test;
end );
InstallMethod( TestRelativelySM,
"for a character",
[ IsClassFunction ],
TestRelativelySMFun );
InstallOtherMethod( TestRelativelySM,
"for a group",
[ IsGroup ],
TestRelativelySMFun );
InstallOtherMethod( TestRelativelySM,
"for a character, and an object",
[ IsClassFunction, IsObject ],
TestRelativelySMFun );
InstallOtherMethod( TestRelativelySM,
"for a group, and an object",
[ IsGroup, IsObject ],
TestRelativelySMFun );
#############################################################################
##
#M IsRelativelySM( <chi> )
#M IsRelativelySM( <G> )
##
InstallMethod( IsRelativelySM,
"for a character",
[ IsClassFunction ],
chi -> TestRelativelySM( chi ).isRelativelySM );
InstallOtherMethod( IsRelativelySM,
"for a group",
[ IsGroup ],
G -> TestRelativelySM( G ).isRelativelySM );
#############################################################################
##
## 4. Minimal Nonmonomial Groups
##
#############################################################################
##
#M IsMinimalNonmonomial( <G> ) . . . . . . . . . . . for a (solvable) group
##
## We use the classification by van der Waall.
##
InstallMethod( IsMinimalNonmonomial,
"for a (solvable) group",
[ IsGroup ],
function( K )
local F, # Fitting subgroup
factsize, # index of `F' in `K'
facts, # prime factorization of the order of `F'
p, # prime dividing the order of `F'
m, # `F' is of order $p ^ m $
syl, # Sylow subgroup
sylgen, # one generator of `syl'
gens, # generators list
C, # centre of `K' in dihedral case
fc, # element in $F C$
q; # half of `factsize' in dihedral case
# Check whether `K' is solvable.
if not IsSolvableGroup( K ) then
TryNextMethod();
fi;
# Compute the Fitting factor of the group.
F:= FittingSubgroup( K );
factsize:= Index( K, F );
# The Fitting subgroup of a minimal nomonomial group is a $p$-group.
facts:= FactorsInt( Size( F ) );
p:= Set( facts );
if 1 < Length( p ) then
return false;
fi;
p:= p[1];
m:= Length( facts );
# Check for the five possible structures.
if factsize = 4 then
# If $K$ is minimal nonmonomial then
# $K / F(K)$ is cyclic of order 4,
# $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
# where $p \equiv -1 \pmod{4}$.
if IsPrimeInt( p )
and p >= 3
and ( p + 1 ) mod 4 = 0
and m = 3
and Centre( F ) = FrattiniSubgroup( F )
and Size( Centre( F ) ) = p then
# Check that the factor is cyclic and acts irreducibly.
# For that, it is sufficient that the square acts
# nontrivially.
syl:= SylowSubgroup( K, 2 );
if IsCyclic( syl )
and ForAny( GeneratorsOfGroup( syl ),
x -> Order( x ) = 4
and ForAny( GeneratorsOfGroup( F ),
y -> not IsOne( Comm( y, x^2 ) ) ) ) then
SetIsMonomialGroup( K, false );
return true;
fi;
fi;
elif factsize = 8 then
# If $K$ is minimal nonmonomial then
# $K / F(K)$ is quaternion of order 8,
# $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
# where $p \equiv 1 \pmod{4}$.
if IsPrimeInt( p )
and p >= 5
and ( p - 1 ) mod 4 = 0
and m = 3
and Centre( F ) = FrattiniSubgroup( F )
and Size( Centre( F ) ) = p then
# Check whether $K/F(K)$ is quaternion of order 8,
# (i.e., is nonabelian with two *generators* of order 4 that do
# not generate the same subgroup)
# and that it acts irreducibly on $F$
# For that, it is sufficient to show that the central involution
# acts nontrivially.
syl:= SylowSubgroup( K, 2 );
gens:= Filtered( GeneratorsOfGroup( syl ), x -> Order( x ) = 4 );
if not IsAbelian( syl )
and ForAny( gens,
x -> x <> gens[1]
and x <> gens[1]^(-1)
and ForAny( GeneratorsOfGroup( F ),
y -> not IsOne( Comm( y, x^2 ) ) ) ) then
SetIsMonomialGroup( K, false );
return true;
fi;
fi;
elif factsize <> 2 and IsPrimeInt( factsize ) then
# If $K$ is minimal nonmonomial then
# $K / F(K)$ has order an odd prime $q$.
# $F(K)$ is extraspecial of order $p^{2m+1}$ and of exponent $p$
# where $2m$ is the order of $p$ modulo $q$.
if OrderMod( p, factsize ) = m-1
and m mod 2 = 1
and Centre( F ) = FrattiniSubgroup( F )
and Size( Centre( F ) ) = p then
# Furthermore, $F / Z(F)$ is a chief factor.
# It is sufficient to show that the Fitting factor acts
# trivially on $Z(F)$, and that there is no nontrivial
# fixed point under the action on $F / Z(F)$.
# These conditions are sufficient for our test.
syl:= SylowSubgroup( K, factsize );
sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );
if IsCentral( Centre( F ), syl )
and ForAny( GeneratorsOfGroup( F ),
x -> not x in Centre( F )
and not IsOne( Comm( x, sylgen ) ) )
then
SetIsMonomialGroup( K, false );
return true;
fi;
fi;
elif factsize mod 2 = 0 and IsPrimeInt( factsize / 2 ) then
# If $K$ is minimal nonmonomial then
# $K / F(K)$ is dihedral of order $2 q$ where $q$ is an odd prime.
# Let $m$ denote the order of 2 mod $q$.
# $F(K)$ is a central product of an extraspecial group $F$ of order
# $2^{2m+1}$ (that is purely dihedral) with a cyclic group $C$
# of order $2^{s+1}$.
# We have $C = Z(K)$ and $F(K) = C_K( F/Z(F) )$.
q:= factsize / 2;
m:= OrderMod( 2, q );
if m mod 2 = 1 then
# Compute a Sylow $q$ subgroup $Q$, with generator $r$.
syl:= SylowSubgroup( K, q );
sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );
# Show that the Fitting factor is dihedral.
if not IsConjugate( K, sylgen, sylgen^-1 ) then
return false;
fi;
# The centralizer of $Q$ is $Q \times C$.
# Take an element $fc$ in $F(K) \setminus C$ with $f\in F$,
# $c\in C$ (exists, since otherwise $Q$ would centralize $F(K)$),
# and consider $[r,fc] = [r,f] \in F$. This commutator cannot lie
# in $Z = F \cap C$ since this would imply that $r^2$ fixes $f$,
# because of odd order this means $r$ fixes $f$, a contradiction.
# Thus we find $F$ as the normal closure of $[r,f]$,
# of order $2^{2m+1}$.
C:= SylowSubgroup( Centralizer( K, syl ), 2 );
fc:= First( GeneratorsOfGroup( F ), x -> not x in C );
F:= NormalClosure( K, Subgroup( K, [ Comm( sylgen, fc ) ] ) );
if Size( F ) <> 2^(2*m+1)
or IsAbelian( F )
or not IsCentral( K, C )
or not IsCyclic( C )
or Size( Intersection( F, C ) ) <> 2 then
return false;
fi;
# Now $Q$ acts nontrivially on $F$, and because every nontrivial
# irreducible 2-modular representation of $D_{2q}$ has degree
# $2m$ we have necessarily $F / Z$ an irreducible module, thus
# $F$ must be extraspecial.
SetIsMonomialGroup( K, false );
return true;
fi;
elif factsize mod 4 = 0 and IsPrimeInt( factsize / 4 ) then
# $K / F(K)$ is a central extension of the dihedral group of order
# $2 t$ where $t$ is an odd prime, such that all involutions lift to
# elements of order 4. $F(K)$ is an extraspecial $p$-group
# for an odd prime $p$ with $p \equiv 1 \pmod{4}$.
# Let $m$ denote the order of $p$ mod $t$, then $F(K)$ is of order
# $p^{2m+1}$, and $m$ is odd.
if m mod 2 <> 0
and ( p - 1 ) mod 4 = 0
and OrderMod( p, factsize / 4 ) = ( m-1 ) / 2
and Centre( F ) = FrattiniSubgroup( F )
and Size( Centre( F ) ) = p then
# Check whether the factor has the required isomorphism type,
# i.e., whether it is of order $4t$ where $t$ is an odd prime,
# and each element of order 4 inverts a generator of the
# Sylow $t$ subgroup (then the presentation is satisfied).
# Check whether the action of the factor on $F$ is irreducible.
# Since every faithful representation is of the required
# dimension we must only check that the central involution and
# the generator of the Sylow $t$ subgroup both act nontrivially.
syl:= SylowSubgroup( K, factsize / 4 );
sylgen:= First( GeneratorsOfGroup( syl ), g -> not IsOne( g ) );
gens:= Filtered( GeneratorsOfGroup( SylowSubgroup( K, 2 ) ),
x -> Order( x ) = 4 );
if not IsEmpty( gens )
and sylgen * gens[1] * sylgen = gens[1]
and ForAny( GeneratorsOfGroup( F ),
x -> not IsOne( Comm( gens[1], x ) ) )
and ForAny( GeneratorsOfGroup( F ),
x -> not IsOne( Comm( sylgen, x ) ) ) then
SetIsMonomialGroup( K, false );
return true;
fi;
fi;
fi;
# None of the structure conditions is satisfied.
return false;
end );
#############################################################################
##
#F MinimalNonmonomialGroup( <p>, <factsize> )
##
InstallGlobalFunction( MinimalNonmonomialGroup, function( p, factsize )
local K, # free group
Kgens, # free generators of `K'
rels, # relators of `K'
name, # name of `K'
t, # number with suitable multiplicative order
form, # matrix of the commutator form
x, # indeterminate
val, # one entry in `form'
i, # loop
j, # loop
v, # coefficient vector
rhs, # right hand side of a relator when viewed as relation
q, # another name for `factsize'
2m, # exponent of size of Frattini factor of group $F$
m, # half of `2m'
facts, # factors of cylotomic polynomial
coeff, # coefficients vector of one factor in `facts'
inv, # inverse of first in `coeff'
f, # `GF(2)'
s, # exponent of centre (minus 1) in dihedral case
W, # part of matrix of an order 2 automorphism
Winv, # part of matrix of an order 2 automorphism
Atr; # transposed of $A$
if factsize = 4 then
# $K / F(K)$ is cyclic of order 4,
# $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
# where $p \equiv -1 \pmod{4}$.
if not IsPrimeInt( p ) or p < 3 or ( p + 1 ) mod 4 <> 0 then
Info( InfoMonomial, 1, "<p> must be a prime congruent 1 mod 4" );
return fail;
fi;
K:= FreeGroup(IsSyllableWordsFamily, 5 );
Kgens:= GeneratorsOfGroup( K );
name:= Concatenation( String(p), "^(1+2):4" );
rels:= [
# the relators of the cyclic group
Kgens[1]^2 / Kgens[2], Kgens[2]^2,
# the relators of the extraspecial group
Kgens[3]^p, Kgens[4]^p, Kgens[5]^p,
Kgens[4]^Kgens[3] / ( Kgens[4] * Kgens[5]^-1 ),
# the action of the cyclic group
Kgens[3]^Kgens[1] / Kgens[4],
Kgens[4]^Kgens[1] / Kgens[3]^-1,
Kgens[3]^Kgens[2] / Kgens[3]^-1,
Kgens[4]^Kgens[2] / Kgens[4]^-1 ];
elif factsize = 8 then
# $K / F(K)$ is quaternion of order 8,
# $F(K)$ is extraspecial of order $p^3$ and of exponent $p$
# where $p \equiv 1 \pmod{4}$.
if not IsPrimeInt( p ) or p < 5 or ( p - 1 ) mod 4 <> 0 then
Info( InfoMonomial, 1, "<p> must be a prime congruent 1 mod 4" );
return fail;
fi;
# Choose $t$ with $t^2 \equiv -1 \pmod{p}$.
t:= PrimitiveRootMod( p ) ^ ( (p-1)/4 );
K:= FreeGroup(IsSyllableWordsFamily, 6 );
Kgens:= GeneratorsOfGroup( K );
name:= Concatenation( String(p), "^(1+2):Q8" );
rels:= [
# the relators of the quaternion group
Kgens[1]^2 / Kgens[3], Kgens[2]^2 / Kgens[3], Kgens[3]^2,
(Kgens[2]^Kgens[1] ) / ( Kgens[2]^-1 ),
# the relators of the extraspecial group
Kgens[4]^p, Kgens[5]^p, Kgens[6]^p,
Kgens[5]^Kgens[4] / ( Kgens[5]*Kgens[6]^-1 ),
# the action of the quaternion group
Kgens[4]^Kgens[1] / Kgens[4]^t,
Kgens[5]^Kgens[1] / Kgens[5]^( (1/t) mod p ),
Kgens[4]^Kgens[2] / Kgens[5],
Kgens[5]^Kgens[2] / Kgens[4]^-1,
Kgens[4]^Kgens[3] / Kgens[4]^-1,
Kgens[5]^Kgens[3] / Kgens[5]^-1 ];
elif factsize <> 2 and IsPrimeInt( factsize ) then
# $K / F(K)$ has order an odd prime $q$.
# $F(K)$ is extraspecial of order $p^{2m+1}$ and of exponent $p$
# where $2m$ is the order of $p$ modulo $q$,
q:= factsize;
2m:= OrderMod( p, q );
if 2m = 0 or 2m mod 2 <> 0 then
Info( InfoMonomial, 1,
"order of <p> mod <factsize> must be nonzero and even" );
return fail;
fi;
m:= 2m / 2;
# The `q'-th cyclotomic polynomial splits over the field with
# `p' elements into factors of degree `2*m'.
facts:= Factors( CyclotomicPolynomial( GF(p), q ) );
# Take the coefficients i$a_1, a_2, \ldots, a_{2m}, 1$ of a factor.
coeff:= IntVecFFE(
- CoefficientsOfLaurentPolynomial( facts[1] )[1] );
# Compute the vector $\epsilon$.
v:= [];
v[ 2m-1 ]:= 1;
for i in [ m .. 2m-2 ] do
v[i]:= 0;
od;
for j in [ m-1, m-2 .. 1 ] do
v[j]:= coeff[ j+2 ] - coeff[j];
for i in [ 1 .. m-j-1 ] do
v[j]:= v[j] + v[ m-i ] * coeff[ m+i+j+1 ];
od;
v[j]:= v[j] mod p;
od;
# Write down the presentation,
K:= FreeGroup(IsSyllableWordsFamily, 2m+2 );
Kgens:= GeneratorsOfGroup( K );
name:= Concatenation( String(p), "^(1+", String( 2m ), "):",
String(q) );
# power relators \ldots
rels:= [ Kgens[1]^q ];
if p = 2 then
for j in [ 2 .. 2m+1 ] do
Add( rels, Kgens[j]^p / Kgens[2m+2] );
od;
Add( rels, Kgens[ 2m+2 ]^p );
else
for j in [ 2 .. 2m+2 ] do
Add( rels, Kgens[j]^p );
od;
fi;
# \ldots action of the automorphism, \ldots
for j in [ 2 .. 2m ] do
Add( rels, Kgens[j]^Kgens[1] / Kgens[j+1] );
od;
rhs:= One( K );
for j in [ 1 .. 2m ] do
rhs:= rhs * Kgens[j+1]^Int( coeff[j] );
od;
Add( rels, Kgens[2m+1]^Kgens[1] / rhs );
# \ldots and commutator relators.
for i in [ 3 .. 2m+1 ] do
for j in [ 2 .. i-1 ] do
Add( rels, Kgens[i]^Kgens[j]
/ ( Kgens[i] * Kgens[2m+2]^v[ 2m+j-i ] ) );
od;
od;
elif factsize mod 2 = 0 and IsPrimeInt( factsize / 2 ) then
# $K / F(K)$ is dihedral of order $2 q$ where $q$ is an odd prime.
# Let $m$ denote the order of 2 mod $q$ (which is odd).
# $F(K)$ is a central product of an extraspecial group $F$ of order
# $2^{2m+1}$ (that is purely dihedral) with a cyclic group $C$
# of order $2^{s+1}$. Note that in this case the second argument
# is $s+1$.
# We have $C = Z(K)$ and $F(K) = C_K( F/Z(F) )$.
s:= p-1;
q:= factsize / 2;
m:= OrderMod( 2, q );
if m mod 2 = 0 then
Info( InfoMonomial, 1, "order of 2 mod <factsize>/2 must be odd" );
return fail;
fi;
# The first generator is $t$, the second is $r$,
# generators 3 to $3+s-1$ are the powers of $t$ that are
# not contained in $Z(K)$.
K:= FreeGroup(IsSyllableWordsFamily, 2*m + s + 3 );
Kgens:= GeneratorsOfGroup( K );
name:= Concatenation( "2^(1+", String( 2*m ), ")" );
if 0 < s then
name:= Concatenation( "(", name, "Y", String( 2^(s+1) ), ")" );
fi;
name:= Concatenation( name, ":D", String( factsize ) );
rels:= [];
# $t^2$ is a generator of $Z(K)$.
if s = 0 then
# $t$ squares to $z$ or the identity, since for $s = 0$ we have
# $Z(K) = \langle z \rangle$.
# Here we choose the identity in order to get Dade\'s example.
rels[1]:= Kgens[1]^2 / One( K );
else
# Describe the cyclic group spanned by $t^2$.
rels[1]:= Kgens[1]^2 / Kgens[2];
for i in [ 2 .. s ] do
rels[i]:= Kgens[i]^2 / Kgens[i+1];
od;
rels[ s+1 ]:= Kgens[ s+1 ]^2 / Kgens[ 2*m+s+3 ];
fi;
# The $(s+2)$-nd generator is $r$, that of order $q$.
rels[ s+2 ]:= Kgens[ s+2 ]^q;
# $t$ inverts $r$.
rels[ s+3 ]:= Kgens[ s+2 ] ^ Kgens[1] / Kgens[ s+2 ]^-1;
# The remaining $2m+1$ generators form the extraspecial group $F$.
for i in [ s+3 .. 2*m+s+3 ] do
rels[ i+1 ]:= Kgens[ i ]^2;
od;
for i in [ 1 .. m ] do
Add( rels, Kgens[ s+2+m+i ]^Kgens[ s+2+i ]
/ ( Kgens[ s+2+m+i ] / Kgens[ 2*m+s+3 ] ) );
od;
# Describe the actions of $t$ and $r$ on $F$.
# First we construct the matrices of the linear actions on the
# Frattini factor of $F$. (Note that because of even characteristic
# the sign plays no role here.)
f:= GF(2);
facts:= Factors( CyclotomicPolynomial( f, q ) );
coeff:= CoefficientsOfLaurentPolynomial( facts[1] )[1];
Atr:= NullMat( m, m, f );
for i in [ 1 .. m-1 ] do
Atr[i+1][i]:= One( f );
od;
for i in [ 1 .. m ] do
Atr[i][m]:= coeff[i];
od;
v:= Zero( f );
v:= List( Atr, x -> v );
v[1]:= One( f );
W:= [ v ];
for i in [ 2 .. m ] do
v:= v * Atr;
W[i]:= v;
od;
Winv:= W^-1;
W := List( W , IntVecFFE );
Winv := List( Winv, IntVecFFE );
coeff := IntVecFFE( coeff );
# The action of $t$ is described by `W' and its inverse.
for i in [ s+3 .. s+m+2 ] do
rhs:= One( K );
for j in [ 1 .. m ] do
rhs:= rhs * Kgens[ s+2+m+j ]^W[i-s-2][j];
od;
Add( rels, Kgens[i] ^ Kgens[1] / rhs );
od;
for i in [ s+m+3 .. s+2*m+2 ] do
rhs:= One( K );
for j in [ 1 .. m ] do
rhs:= rhs * Kgens[ s+2+j ]^Winv[i-s-m-2][j];
od;
Add( rels, Kgens[i] ^ Kgens[1] / rhs );
od;
# The action of $r$ is described by $A$ and its transposed inverse.
# (first half)
for i in [ s+3 .. s+m+1 ] do
Add( rels, Kgens[i] ^ Kgens[s+2] / Kgens[i+1] );
od;
rhs:= One( K );
for j in [ 1 .. m ] do
rhs:= rhs * Kgens[ s+2+j ]^coeff[j];
od;
Add( rels, Kgens[ s+m+2 ] ^ Kgens[s+2] / rhs );
# (second half)
for i in [ s+m+3 .. s+2*m+1 ] do
Add( rels, Kgens[i] ^ Kgens[s+2]
/ ( Kgens[s+m+3]^coeff[i-s-m-1] * Kgens[i+1] ) );
od;
Add( rels, Kgens[ s+2*m+2 ] ^ Kgens[s+2] / Kgens[s+m+3] );
elif factsize mod 4 = 0 and IsPrimeInt( factsize / 4 ) then
# $K / F(K)$ is a central extension of the dihedral group of order
# $2 t$ where $t$ is an odd prime, such that all involutions lift to
# elements of order 4. $F(K)$ is an extraspecial $p$-group
# for an odd prime $p$ with $p \equiv 1 \pmod{4}$.
# Let $m$ denote the order of $p$ mod $t$, then $F(K)$ is of order
# $p^{2m+1}$, and $m$ is odd.
t:= factsize / 4;
m:= OrderMod( p, t );
if m mod 2 = 0 or ( p - 1 ) mod 4 <> 0 then
Info( InfoMonomial, 1,
"order of <p> mod <t> must be odd, <p> congr. 1 mod 4" );
return fail;
fi;
facts:= Factors( CyclotomicPolynomial( GF(p), t ) );
coeff:= CoefficientsOfLaurentPolynomial( facts[1] )[1];
inv:= Int( coeff[1]^-1 );
coeff:= IntVecFFE( coeff );
# The symplectic form (that will be used to define the
# commutator form) is derived from the standard symplectic form
# for the 2-dimensional vector space over $GF(p^{2m})$ by first
# blowing up to the $2m$ dimensional vector space over $GF(p)$,
# and then projecting onto $GF(p)$ (that is, the first component).
# (We need only the lower triangle of the matrix of the form,
# and this is nonzero only in the lower left square.)
form:= [];
for i in [ 1 .. m ] do
form[i]:= [];
for j in [ 1 .. m-i+1 ] do
form[i][j]:= 0;
od;
od;
form[1][1]:= -1;
x:= Indeterminate( GF(p) );
for i in [ 2 .. m ] do
val:= CoefficientsOfLaurentPolynomial(
x^(i+m-2) mod facts[1] );
val:= - Int( ShiftedCoeffs( val[1], val[2] )[1] );
for j in [ i .. m ] do
form[ m+i-j ][j]:= val;
od;
od;
# Write down the presentation.
K:= FreeGroup(IsSyllableWordsFamily, 2*m + 4 );
Kgens:= GeneratorsOfGroup( K );
name:= Concatenation( String(p), "^(1+", String( 2*m), "):2.D",
String( factsize/2 ) );
# power relations,
rels:= [ Kgens[1]^2 / Kgens[3], Kgens[2]^t / Kgens[3], Kgens[3]^2 ];
for i in [ 4 .. 2*m+4 ] do
Add( rels, Kgens[i]^p );
od;
# action of the Frattini factor,
# first the order 4 element
for i in [ 4 .. m+3 ] do
Add( rels, Kgens[i]^Kgens[1] / Kgens[ i+m ]^-1 );
Add( rels, Kgens[ i+m ]^Kgens[1] / Kgens[i] );
od;
Add( rels, Kgens[2] ^ Kgens[1] / Kgens[2]^-1 );
# (The element of order $2t$ ...)
for i in [ 4 .. m+2 ] do
Add( rels, Kgens[i]^Kgens[2] / Kgens[i+1]^-1 );
od;
rhs:= One( K );
for i in [ 1 .. m ] do
rhs:= rhs * Kgens[ i+3 ]^coeff[i];
od;
Add( rels, Kgens[ m+3 ]^Kgens[2] / rhs );
rhs:= One( K );
for i in [ 1 .. m ] do
rhs:= rhs * Kgens[ m+i+3 ]^( coeff[i+1] * inv );
od;
Add( rels, Kgens[ m+4 ]^Kgens[2] / rhs );
for i in [ 5 .. m+3 ] do
Add( rels, Kgens[ m+i ]^Kgens[2] / Kgens[ m+i-1 ]^-1 );
od;
# (The central involution of the Fitting factor inverts.)
for i in [ 4 .. m+3 ] do
Add( rels, Kgens[i]^Kgens[3] / Kgens[i]^-1 );
Add( rels, Kgens[ i+m ]^Kgens[3] / Kgens[ i+m ]^-1 );
od;
# The extraspecial group is defined by the commutator form
# constructed above.
for i in [ m+1 .. 2*m ] do
for j in [ 1 .. m ] do
Add( rels, Kgens[i+3]^Kgens[j+3]
/ ( Kgens[i+3] * Kgens[ 2*m + 4 ]^form[i-m][j] ) );
od;
od;
else
return fail;
fi;
K:= PolycyclicFactorGroup( K, rels );
ConvertToStringRep( name );
SetName( K, name );
return K;
end );
#############################################################################
##
#E
|