/usr/share/gap/lib/ctblpope.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 | #############################################################################
##
#W ctblpope.gd GAP library Thomas Breuer
#W & Götz Pfeiffer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declaration of those functions that are needed to
## compute and test possible permutation characters.
##
#T TODO:
#T - small improvement:
#T if a prescribed value is equal to the degree then restrict the
#T constituents to those having this class in the kernel
#T - use roots in `PermCandidates' (cf. `PermCandidatesFaithful'),
#T in order to guarantee property (d) already in the construction!
#T - check and document `PermCandidatesFaithful'
#T - `IsPermChar( <tbl>, <pc> )'
#T (check whether <pc> can be a permutation character of <tbl>;
#T use also the kernel of <pc>, i.e., check whether the kernel factor
#T of <pc> can be a permutation character of the factor of <tbl> by the
#T kernel; one example where this helps is the sum of characters of S3
#T in O8+(2).3.2)
#T - `Constituent' und `Maxdeg' - Optionen in `PermComb'
#############################################################################
##
## <#GAPDoc Label="[1]{ctblpope}">
## <Index Subkey="permutation">characters</Index>
## <Index Subkey="for permutation characters">candidates</Index>
## <Index>possible permutation characters</Index>
## <Index Subkey="possible">permutation characters</Index>
## For groups <M>H</M> and <M>G</M> with <M>H \leq G</M>,
## the induced character <M>(1_G)^H</M> is called the
## <E>permutation character</E> of the operation of <M>G</M>
## on the right cosets of <M>H</M>.
## If only the character table of <M>G</M> is available and not the group
## <M>G</M> itself,
## one can try to get information about possible subgroups of <M>G</M>
## by inspection of those <M>G</M>-class functions that might be
## permutation characters,
## using that such a class function <M>\pi</M> must have at least the
## following properties.
## (For details, see <Cite Key="Isa76" Where="Theorem 5.18."/>),
##
## <List>
## <Mark>(a)</Mark>
## <Item>
## <M>\pi</M> is a character of <M>G</M>,
## </Item>
## <Mark>(b)</Mark>
## <Item>
## <M>\pi(g)</M> is a nonnegative integer for all <M>g \in G</M>,
## </Item>
## <Mark>(c)</Mark>
## <Item>
## <M>\pi(1)</M> divides <M>|G|</M>,
## </Item>
## <Mark>(d)</Mark>
## <Item>
## <M>\pi(g^n) \geq \pi(g)</M> for <M>g \in G</M> and integers <M>n</M>,
## </Item>
## <Mark>(e)</Mark>
## <Item>
## <M>[\pi, 1_G] = 1</M>,
## </Item>
## <Mark>(f)</Mark>
## <Item>
## the multiplicity of any rational irreducible <M>G</M>-character
## <M>\psi</M> as a constituent of <M>\pi</M> is at most
## <M>\psi(1)/[\psi, \psi]</M>,
## </Item>
## <Mark>(g)</Mark>
## <Item>
## <M>\pi(g) = 0</M> if the order of <M>g</M> does not divide
## <M>|G|/\pi(1)</M>,
## </Item>
## <Mark>(h)</Mark>
## <Item>
## <M>\pi(1) |N_G(g)|</M> divides <M>\pi(g) |G|</M>
## for all <M>g \in G</M>,
## </Item>
## <Mark>(i)</Mark>
## <Item>
## <M>\pi(g) \leq (|G| - \pi(1)) / (|g^G| |Gal_G(g)|)</M>
## for all nonidentity <M>g \in G</M>,
## where <M>|Gal_G(g)|</M> denotes the number of conjugacy classes
## of <M>G</M> that contain generators of the group
## <M>\langle g \rangle</M>,
## </Item>
## <Mark>(j)</Mark>
## <Item>
## if <M>p</M> is a prime that divides <M>|G|/\pi(1)</M> only once then
## <M>s/(p-1)</M> divides <M>|G|/\pi(1)</M> and is congruent to <M>1</M>
## modulo <M>p</M>,
## where <M>s</M> is the number of elements of order <M>p</M> in the
## (hypothetical) subgroup <M>H</M> for which <M>\pi = (1_H)^G</M>
## holds.
## (Note that <M>s/(p-1)</M> equals the number of Sylow <M>p</M>
## subgroups in <M>H</M>.)
## </Item>
## </List>
##
## Any <M>G</M>-class function with these properties is called a
## <E>possible permutation character</E> in &GAP;.
## <P/>
## (Condition (d) is checked only for those power maps that are stored in
## the character table of <M>G</M>;
## clearly (d) holds for all integers if it holds for all prime divisors of
## the group order <M>|G|</M>.)
## <P/>
## &GAP; provides some algorithms to compute
## possible permutation characters (see <Ref Func="PermChars"/>),
## and also provides functions to check a few more criteria whether a
## given character can be a transitive permutation character
## (see <Ref Func="TestPerm1"/>).
## <P/>
## Some information about the subgroup <M>U</M> can be computed from the
## permutation character <M>(1_U)^G</M> using <Ref Func="PermCharInfo"/>.
## <#/GAPDoc>
##
#############################################################################
##
#F PermCharInfo( <tbl>, <permchars>[, <format> ] )
##
## <#GAPDoc Label="PermCharInfo">
## <Index Subkey="for permutation characters">LaTeX</Index>
## <ManSection>
## <Func Name="PermCharInfo" Arg='tbl, permchars[, format ]'/>
##
## <Description>
## Let <A>tbl</A> be the ordinary character table of the group <M>G</M>,
## and <A>permchars</A> either the permutation character <M>(1_U)^G</M>,
## for a subgroup <M>U</M> of <M>G</M>, or a list of such permutation
## characters.
## <Ref Func="PermCharInfo"/> returns a record with the following components.
## <List>
## <Mark><C>contained</C>:</Mark>
## <Item>
## a list containing, for each character <M>\psi = (1_U)^G</M> in
## <A>permchars</A>, a list containing at position <M>i</M> the number
## <M>\psi[i] |U| /</M> <C>SizesCentralizers( </C><A>tbl</A><C> )</C><M>[i]</M>,
## which equals the number of those elements of <M>U</M>
## that are contained in class <M>i</M> of <A>tbl</A>,
## </Item>
## <Mark><C>bound</C>:</Mark>
## <Item>
## a list containing,
## for each character <M>\psi = (1_U)^G</M> in <A>permchars</A>,
## a list containing at position <M>i</M> the number
## <M>|U| / \gcd( |U|,</M> <C>SizesCentralizers( <A>tbl</A> )</C><M>[i] )</M>,
## which divides the class length in <M>U</M> of an element in class <M>i</M>
## of <A>tbl</A>,
## </Item>
## <Mark><C>display</C>:</Mark>
## <Item>
## a record that can be used as second argument of <Ref Oper="Display"/>
## to display each permutation character in <A>permchars</A> and the
## corresponding components <C>contained</C> and <C>bound</C>,
## for those classes where at least one character of <A>permchars</A> is
## nonzero,
## </Item>
## <Mark><C>ATLAS</C>:</Mark>
## <Item>
## a list of strings describing the decomposition of the permutation
## characters in <A>permchars</A> into the irreducible characters of
## <A>tbl</A>, given in an &ATLAS;-like notation.
## This means that the irreducible constituents are indicated by their
## degrees followed by lower case letters <C>a</C>, <C>b</C>, <C>c</C>,
## <M>\ldots</M>,
## which indicate the successive irreducible characters of <A>tbl</A>
## of that degree,
## in the order in which they appear in <C>Irr( </C><A>tbl</A><C> )</C>.
## A sequence of small letters (not necessarily distinct) after a single
## number indicates a sum of irreducible constituents all of the same
## degree, an exponent <A>n</A> for the letter <A>lett</A> means that
## <A>lett</A> is repeated <A>n</A> times.
## The default notation for exponentiation is
## <C><A>lett</A>^{<A>n</A>}</C>,
## this is also chosen if the optional third argument <A>format</A> is
## the string <C>"LaTeX"</C>;
## if the third argument is the string <C>"HTML"</C> then exponentiation
## is denoted by <C><A>lett</A><sup><A>n</A></sup></C>.
## </Item>
## </List>
## <P/>
## <Example><![CDATA[
## gap> t:= CharacterTable( "A6" );;
## gap> psi:= Sum( Irr( t ){ [ 1, 3, 6 ] } );
## Character( CharacterTable( "A6" ), [ 15, 3, 0, 3, 1, 0, 0 ] )
## gap> info:= PermCharInfo( t, psi );
## rec( ATLAS := [ "1a+5b+9a" ], bound := [ [ 1, 3, 8, 8, 6, 24, 24 ] ],
## contained := [ [ 1, 9, 0, 8, 6, 0, 0 ] ],
## display :=
## rec(
## chars := [ [ 15, 3, 0, 3, 1, 0, 0 ], [ 1, 9, 0, 8, 6, 0, 0 ],
## [ 1, 3, 8, 8, 6, 24, 24 ] ], classes := [ 1, 2, 4, 5 ],
## letter := "I" ) )
## gap> Display( t, info.display );
## A6
##
## 2 3 3 . 2
## 3 2 . 2 .
## 5 1 . . .
##
## 1a 2a 3b 4a
## 2P 1a 1a 3b 2a
## 3P 1a 2a 1a 4a
## 5P 1a 2a 3b 4a
##
## I.1 15 3 3 1
## I.2 1 9 8 6
## I.3 1 3 8 6
## gap> j1:= CharacterTable( "J1" );;
## gap> psi:= TrivialCharacter( CharacterTable( "7:6" ) )^j1;
## Character( CharacterTable( "J1" ), [ 4180, 20, 10, 0, 0, 2, 1, 0, 0,
## 0, 0, 0, 0, 0, 0 ] )
## gap> PermCharInfo( j1, psi ).ATLAS;
## [ "1a+56aabb+76aaab+77aabbcc+120aaabbbccc+133a^{4}bbcc+209a^{5}" ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PermCharInfo" );
#############################################################################
##
#F PermCharInfoRelative( <tbl>, <tbl2>, <permchars> )
##
## <#GAPDoc Label="PermCharInfoRelative">
## <ManSection>
## <Func Name="PermCharInfoRelative" Arg='tbl, tbl2, permchars'/>
##
## <Description>
## Let <A>tbl</A> and <A>tbl2</A> be the ordinary character tables of two
## groups <M>H</M> and <M>G</M>, respectively,
## where <M>H</M> is of index two in <M>G</M>,
## and <A>permchars</A> either the permutation character <M>(1_U)^G</M>,
## for a subgroup <M>U</M> of <M>G</M>,
## or a list of such permutation characters.
## <Ref Func="PermCharInfoRelative"/> returns a record with the same
## components as <Ref Func="PermCharInfo"/>, the only exception is that the
## entries of the <C>ATLAS</C> component are names relative to <A>tbl</A>.
## <P/>
## More precisely, the <M>i</M>-th entry of the <C>ATLAS</C> component is a
## string describing the decomposition of the <M>i</M>-th entry in
## <A>permchars</A>.
## The degrees and distinguishing letters of the constituents refer to
## the irreducibles of <A>tbl</A>, as follows.
## The two irreducible characters of <A>tbl2</A> of degree <M>N</M>, say,
## that extend the irreducible character <M>N</M> <C>a</C> of <A>tbl</A>
## are denoted by <M>N</M> <C>a</C><M>^+</M> and <M>N </M><C>a</C><M>^-</M>.
## The irreducible character of <A>tbl2</A> of degree <M>2N</M>, say, whose
## restriction to <A>tbl</A> is the sum of the irreducible characters
## <M>N</M> <C>a</C> and <M>N</M> <C>b</C> is denoted as <M>N</M> <C>ab</C>.
## Multiplicities larger than <M>1</M> of constituents are denoted by
## exponents.
## <P/>
## (This format is useful mainly for multiplicity free permutation
## characters.)
## <P/>
## <Example><![CDATA[
## gap> t:= CharacterTable( "A5" );;
## gap> t2:= CharacterTable( "A5.2" );;
## gap> List( Irr( t2 ), x -> x[1] );
## [ 1, 1, 6, 4, 4, 5, 5 ]
## gap> List( Irr( t ), x -> x[1] );
## [ 1, 3, 3, 4, 5 ]
## gap> permchars:= List( [ [1], [1,2], [1,7], [1,3,4,4,6,6,7] ],
## > l -> Sum( Irr( t2 ){ l } ) );
## [ Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 6, 2, 0, 1, 0, 2, 0 ] ),
## Character( CharacterTable( "A5.2" ), [ 30, 2, 0, 0, 6, 0, 0 ] ) ]
## gap> info:= PermCharInfoRelative( t, t2, permchars );;
## gap> info.ATLAS;
## [ "1a^+", "1a^{\\pm}", "1a^++5a^-",
## "1a^++3ab+4(a^+)^{2}+5a^+a^{\\pm}" ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PermCharInfoRelative" );
#############################################################################
##
#F TestPerm1( <tbl>, <char> ) . . . . . . . . . . . . . . . . test permchar
#F TestPerm2( <tbl>, <char> ) . . . . . . . . . . . . . . . . test permchar
#F TestPerm3( <tbl>, <chars> ) . . . . . . . . . . . . . . . test permchars
#F TestPerm4( <tbl>, <chars> ) . . . . . . . . . . . . . . . test permchars
#F TestPerm5( <tbl>, <chars>, <modtbl> ) . . . . . . . . . . test permchars
##
## <#GAPDoc Label="TestPerm1">
## <ManSection>
## <Heading>TestPerm1, ..., TestPerm5</Heading>
## <Func Name="TestPerm1" Arg='tbl, char'/>
## <Func Name="TestPerm2" Arg='tbl, char'/>
## <Func Name="TestPerm3" Arg='tbl, chars'/>
## <Func Name="TestPerm4" Arg='tbl, chars'/>
## <Func Name="TestPerm5" Arg='tbl, chars, modtbl'/>
##
## <Description>
## The first three of these functions implement tests of the properties of
## possible permutation characters listed in
## Section <Ref Sect="Possible Permutation Characters"/>,
## The other two implement test of additional properties.
## Let <A>tbl</A> be the ordinary character table of a group <M>G</M>, say,
## <A>char</A> a rational character of <A>tbl</A>,
## and <A>chars</A> a list of rational characters of <A>tbl</A>.
## For applying <Ref Func="TestPerm5"/>, the knowledge of a <M>p</M>-modular
## Brauer table <A>modtbl</A> of <M>G</M> is required.
## <Ref Func="TestPerm4"/> and <Ref Func="TestPerm5"/> expect the characters
## in <A>chars</A> to satisfy the conditions checked by
## <Ref Func="TestPerm1"/> and <Ref Func="TestPerm2"/> (see below).
## <P/>
## The return values of the functions were chosen parallel to the tests
## listed in <Cite Key="NPP84"/>.
## <P/>
## <Ref Func="TestPerm1"/> return <C>1</C> or <C>2</C> if <A>char</A> fails
## because of (T1) or (T2), respectively;
## this corresponds to the criteria (b) and (d).
## Note that only those power maps are considered that are stored on
## <A>tbl</A>.
## If <A>char</A> satisfies the conditions, <C>0</C> is returned.
## <P/>
## <Ref Func="TestPerm2"/> returns <C>1</C> if <A>char</A> fails because of
## the criterion (c),
## it returns <C>3</C>, <C>4</C>, or <C>5</C> if <A>char</A> fails because
## of (T3), (T4), or (T5), respectively;
## these tests correspond to (g), a weaker form of (h), and (j).
## If <A>char</A> satisfies the conditions, <C>0</C> is returned.
## <P/>
## <Ref Func="TestPerm3"/> returns the list of all those class functions in
## the list <A>chars</A> that satisfy criterion (h);
## this is a stronger version of (T6).
## <P/>
## <Ref Func="TestPerm4"/> returns the list of all those class functions in
## the list <A>chars</A> that satisfy (T8) and (T9) for each prime divisor
## <M>p</M> of the order of <M>G</M>;
## these tests use modular representation theory but do not require the
## knowledge of decomposition matrices
## (cf. <Ref Func="TestPerm5"/> below).
## <P/>
## (T8) implements the test of the fact that in the case that <M>p</M>
## divides <M>|G|</M> and the degree of a transitive permutation character
## <M>\pi</M> exactly once,
## the projective cover of the trivial character is a summand of <M>\pi</M>.
## (This test is omitted if the projective cover cannot be identified.)
## <P/>
## Given a permutation character <M>\pi</M> of a group <M>G</M> and a prime
## integer <M>p</M>,
## the restriction <M>\pi_B</M> to a <M>p</M>-block <M>B</M> of <M>G</M> has
## the following property, which is checked by (T9).
## For each <M>g \in G</M> such that <M>g^n</M> is a <M>p</M>-element of
## <M>G</M>, <M>\pi_B(g^n)</M> is a nonnegative integer that satisfies
## <M>|\pi_B(g)| \leq \pi_B(g^n) \leq \pi(g^n)</M>.
## (This is <Cite Key="Sco73" Where="Corollary A on p. 113"/>.)
## <P/>
## <Ref Func="TestPerm5"/> requires the <M>p</M>-modular Brauer table
## <A>modtbl</A> of <M>G</M>, for some prime <M>p</M> dividing the order of
## <M>G</M>,
## and checks whether those characters in the list <A>chars</A> whose degree
## is divisible by the <M>p</M>-part of the order of <M>G</M> can be
## decomposed into projective indecomposable characters;
## <Ref Func="TestPerm5"/> returns the sublist of all those characters in
## <A>chars</A> that either satisfy this condition or to which the test does
## not apply.
## <P/>
## <!-- Say a word about (T7)?-->
## <!-- This is the check whether the cycle structure of elements is well-defined;-->
## <!-- the check is superfluous (at least) for elements of prime power order-->
## <!-- or order equal to the product of two primes (see <Cite Key="NPP84"/>);-->
## <!-- note that by construction, the numbers of <Q>cycles</Q> are always integral,-->
## <!-- the only thing to test is whether they are nonnegative.-->
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "A5" );;
## gap> rat:= RationalizedMat( Irr( tbl ) );
## [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 6, -2, 0, 1, 1 ] ),
## Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ),
## Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ]
## gap> tup:= Filtered( Tuples( [ 0, 1 ], 4 ), x -> not IsZero( x ) );
## [ [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 1, 1 ], [ 0, 1, 0, 0 ],
## [ 0, 1, 0, 1 ], [ 0, 1, 1, 0 ], [ 0, 1, 1, 1 ], [ 1, 0, 0, 0 ],
## [ 1, 0, 0, 1 ], [ 1, 0, 1, 0 ], [ 1, 0, 1, 1 ], [ 1, 1, 0, 0 ],
## [ 1, 1, 0, 1 ], [ 1, 1, 1, 0 ], [ 1, 1, 1, 1 ] ]
## gap> lincomb:= List( tup, coeff -> coeff * rat );;
## gap> List( lincomb, psi -> TestPerm1( tbl, psi ) );
## [ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0 ]
## gap> List( lincomb, psi -> TestPerm2( tbl, psi ) );
## [ 0, 5, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1 ]
## gap> Set( List( TestPerm3(tbl, lincomb), x -> Position(lincomb, x) ) );
## [ 1, 4, 6, 7, 8, 9, 10, 11, 13 ]
## gap> tbl:= CharacterTable( "A7" );
## CharacterTable( "A7" )
## gap> perms:= PermChars( tbl, rec( degree:= 315 ) );
## [ Character( CharacterTable( "A7" ), [ 315, 3, 0, 0, 3, 0, 0, 0, 0 ] )
## , Character( CharacterTable( "A7" ),
## [ 315, 15, 0, 0, 1, 0, 0, 0, 0 ] ) ]
## gap> TestPerm4( tbl, perms );
## [ Character( CharacterTable( "A7" ), [ 315, 15, 0, 0, 1, 0, 0, 0, 0
## ] ) ]
## gap> perms:= PermChars( tbl, rec( degree:= 15 ) );
## [ Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
## Character( CharacterTable( "A7" ), [ 15, 3, 3, 0, 1, 0, 3, 1, 1 ] )
## ]
## gap> TestPerm5( tbl, perms, tbl mod 5 );
## [ Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] )
## ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "TestPerm1" );
DeclareGlobalFunction( "TestPerm2" );
DeclareGlobalFunction( "TestPerm3" );
DeclareGlobalFunction( "TestPerm4" );
DeclareGlobalFunction( "TestPerm5" );
#############################################################################
##
#F PermChars( <tbl> )
#F PermChars( <tbl>, <degree> )
#F PermChars( <tbl>, <arec> )
##
## <#GAPDoc Label="PermChars">
## <ManSection>
## <Func Name="PermChars" Arg='tbl[, cond]'/>
##
## <Description>
## &GAP; provides several algorithms to determine
## possible permutation characters from a given character table.
## They are described in detail in <Cite Key="BP98"/>.
## The algorithm is selected from the choice of the optional argument
## <A>cond</A>.
## The user is encouraged to try different approaches,
## especially if one choice fails to come to an end.
## <P/>
## Regardless of the algorithm used in a specific case,
## <Ref Func="PermChars"/> returns a list of <E>all</E>
## possible permutation characters with the properties described by
## <A>cond</A>.
## There is no guarantee that a character of this list is in fact
## a permutation character.
## But an empty list always means there is no permutation character
## with these properties (e.g., of a certain degree).
## <P/>
## Called with only one argument, a character table <A>tbl</A>,
## <Ref Func="PermChars"/> returns the list of all possible permutation
## characters of the group with this character table.
## This list might be rather long for big groups,
## and its computation might take much time.
## The algorithm is described in <Cite Key="BP98" Where="Section 3.2"/>;
## it depends on a preprocessing step, where the inequalities
## arising from the condition <M>\pi(g) \geq 0</M> are transformed into
## a system of inequalities that guides the search
## (see <Ref Func="Inequalities"/>).
## So the following commands compute the list of 39 possible permutation
## characters of the Mathieu group <M>M_{11}</M>.
## <P/>
## <Example><![CDATA[
## gap> m11:= CharacterTable( "M11" );;
## gap> SetName( m11, "m11" );
## gap> perms:= PermChars( m11 );;
## gap> Length( perms );
## 39
## ]]></Example>
## <P/>
## There are two different search strategies for this algorithm.
## The default strategy simply constructs all characters with nonnegative
## values and then tests for each such character whether its degree
## is a divisor of the order of the group.
## The other strategy uses the inequalities to predict
## whether a character of a certain degree can lie
## in the currently searched part of the search tree.
## To choose this strategy, enter a record as the second argument of
## <Ref Func="PermChars"/>,
## and set its component <C>degree</C> to the range of degrees
## (which might also be a range containing all divisors of the group order)
## you want to look for;
## additionally, the record component <C>ineq</C> can take the inequalities
## computed by <Ref Func="Inequalities"/> if they are needed more than once.
## <P/>
## If a positive integer is given as the second argument <A>cond</A>,
## <Ref Func="PermChars"/> returns the list of all
## possible permutation characters of <A>tbl</A> that have degree
## <A>cond</A>.
## For that purpose, a preprocessing step is performed where
## essentially the rational character table is inverted
## in order to determine boundary points for the simplex
## in which the possible permutation characters of the given degree
## must lie (see <Ref Func="PermBounds"/>).
## The algorithm is described at the end of
## <Cite Key="BP98" Where="Section 3.2"/>.
## Note that inverting big integer matrices needs a lot of time and space.
## So this preprocessing is restricted to groups with less than 100 classes,
## say.
## <P/>
## <Example><![CDATA[
## gap> deg220:= PermChars( m11, 220 );
## [ Character( m11, [ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ),
## Character( m11, [ 220, 12, 4, 4, 0, 0, 0, 0, 0, 0 ] ),
## Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ) ]
## ]]></Example>
## <P/>
## If a record is given as the second argument <A>cond</A>,
## <Ref Func="PermChars"/> returns the list of all
## possible permutation characters that have the properties described by
## the components of this record.
## One such situation has been mentioned above.
## If <A>cond</A> contains a degree as value of the record component
## <C>degree</C>
## then <Ref Func="PermChars"/> will behave exactly as if this degree was
## entered as <A>cond</A>.
## <P/>
## <Example><![CDATA[
## gap> deg220 = PermChars( m11, rec( degree:= 220 ) );
## true
## ]]></Example>
## <P/>
## For the meaning of additional components of <A>cond</A> besides
## <C>degree</C>, see <Ref Func="PermComb"/>.
## <P/>
## Instead of <C>degree</C>, <A>cond</A> may have the component <C>torso</C>
## bound to a list that contains some known values of the required
## characters at the right positions;
## at least the degree <A>cond</A><C>.torso[1]</C> must be an integer.
## In this case, the algorithm described in
## <Cite Key="BP98" Where="Section 3.3"/> is chosen.
## The component <C>chars</C>, if present, holds a list of all those
## <E>rational</E> irreducible characters of <A>tbl</A> that might be
## constituents of the required characters.
## <P/>
## (<E>Note</E>: If <A>cond</A><C>.chars</C> is bound and does not contain
## <E>all</E> rational irreducible characters of <A>tbl</A>,
## &GAP; checks whether the scalar products of all class functions in the
## result list with the omitted rational irreducible characters of
## <A>tbl</A> are nonnegative;
## so there should be nontrivial reasons for excluding a character
## that is known to be not a constituent of the desired possible permutation
## characters.)
## <P/>
## <Example><![CDATA[
## gap> PermChars( m11, rec( torso:= [ 220 ] ) );
## [ Character( m11, [ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ),
## Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ),
## Character( m11, [ 220, 12, 4, 4, 0, 0, 0, 0, 0, 0 ] ) ]
## gap> PermChars( m11, rec( torso:= [ 220,,,,, 2 ] ) );
## [ Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ) ]
## ]]></Example>
## <P/>
## An additional restriction on the possible permutation characters computed
## can be forced if <A>con</A> contains, in addition to <C>torso</C>,
## the components <C>normalsubgroup</C> and <C>nonfaithful</C>,
## with values a list of class positions of a normal subgroup <M>N</M> of
## the group <M>G</M> of <A>tbl</A> and a possible permutation character
## <M>\pi</M> of <M>G</M>, respectively, such that <M>N</M> is contained in
## the kernel of <M>\pi</M>.
## In this case, <Ref Func="PermChars"/> returns the list of those possible
## permutation characters <M>\psi</M> of <A>tbl</A> coinciding with
## <C>torso</C> wherever its values are bound
## and having the property that no irreducible constituent of
## <M>\psi - \pi</M> has <M>N</M> in its kernel.
## If the component <C>chars</C> is bound in <A>cond</A> then the above
## statements apply.
## An interpretation of the computed characters is the following.
## Suppose there exists a subgroup <M>V</M> of <M>G</M> such that
## <M>\pi = (1_V)^G</M>;
## Then <M>N \leq V</M>, and if a computed character is of the form
## <M>(1_U)^G</M>, for a subgroup <M>U</M> of <M>G</M>, then <M>V = UN</M>.
## <P/>
## <Example><![CDATA[
## gap> s4:= CharacterTable( "Symmetric", 4 );;
## gap> nsg:= ClassPositionsOfDerivedSubgroup( s4 );;
## gap> pi:= TrivialCharacter( s4 );;
## gap> PermChars( s4, rec( torso:= [ 12 ], normalsubgroup:= nsg,
## > nonfaithful:= pi ) );
## [ Character( CharacterTable( "Sym(4)" ), [ 12, 2, 0, 0, 0 ] ) ]
## gap> pi:= Sum( Filtered( Irr( s4 ),
## > chi -> IsSubset( ClassPositionsOfKernel( chi ), nsg ) ) );
## Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, 2, 0 ] )
## gap> PermChars( s4, rec( torso:= [ 12 ], normalsubgroup:= nsg,
## > nonfaithful:= pi ) );
## [ Character( CharacterTable( "Sym(4)" ), [ 12, 0, 4, 0, 0 ] ) ]
## ]]></Example>
## <P/>
## The class functions returned by <Ref Func="PermChars"/> have the
## properties tested by <Ref Func="TestPerm1"/>, <Ref Func="TestPerm2"/>,
## and <Ref Func="TestPerm3"/>.
## So they are possible permutation characters.
## See <Ref Func="TestPerm1"/> for criteria whether a
## possible permutation character can in fact be a permutation character.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PermChars" );
#############################################################################
##
#O Inequalities( <tbl>, <chars>[, <option>] )
##
## <#GAPDoc Label="Inequalities">
## <ManSection>
## <Oper Name="Inequalities" Arg='tbl, chars[, option]'/>
##
## <Description>
## Let <A>tbl</A> be the ordinary character table of a group <M>G</M>.
## The condition <M>\pi(g) \geq 0</M> for every possible permutation
## character <M>\pi</M> of <M>G</M> places restrictions on the
## multiplicities <M>a_i</M> of the irreducible constituents <M>\chi_i</M>
## of <M>\pi = \sum_{{i = 1}}^r a_i \chi_i</M>.
## For every element <M>g \in G</M>,
## we have <M>\sum_{{i = 1}}^r a_i \chi_i(g) \geq 0</M>.
## The power maps provide even stronger conditions.
## <P/>
## This system of inequalities is kind of diagonalized,
## resulting in a system of inequalities restricting <M>a_i</M>
## in terms of <M>a_j</M>, <M>j < i</M>.
## These inequalities are used to construct characters with nonnegative
## values (see <Ref Func="PermChars"/>).
## <Ref Func="PermChars"/> either calls <Ref Oper="Inequalities"/> or takes
## this information from the <C>ineq</C> component of its argument record.
## <P/>
## The number of inequalities arising in the process of diagonalization may
## grow very strongly.
## <P/>
## There are two ways to organize the projection.
## The first, which is chosen if no <A>option</A> argument is present,
## is the straight approach which takes the rational irreducible
## characters in their original order and by this guarantees the character
## with the smallest degree to be considered first.
## The other way, which is chosen if the string <C>"small"</C> is entered as
## third argument <A>option</A>, tries to keep the number of intermediate
## inequalities small by eventually changing the order of characters.
## <P/>
## <Example><![CDATA[
## gap> tbl:= CharacterTable( "M11" );;
## gap> PermComb( tbl, rec( degree:= 110 ) );
## [ Character( CharacterTable( "M11" ),
## [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ),
## Character( CharacterTable( "M11" ),
## [ 110, 6, 2, 6, 0, 0, 0, 0, 0, 0 ] ),
## Character( CharacterTable( "M11" ), [ 110, 14, 2, 2, 0, 2, 0, 0, 0,
## 0 ] ) ]
## gap> # Now compute only multiplicity free permutation characters.
## gap> bounds:= List( RationalizedMat( Irr( tbl ) ), x -> 1 );;
## gap> PermComb( tbl, rec( degree:= 110, maxmult:= bounds ) );
## [ Character( CharacterTable( "M11" ),
## [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "Inequalities", [ IsOrdinaryTable, IsList ] );
DeclareOperation( "Inequalities", [ IsOrdinaryTable, IsList, IsObject ] );
#############################################################################
##
#F Permut( <tbl>, <arec> )
##
## <ManSection>
## <Func Name="Permut" Arg='tbl, arec'/>
##
## <Description>
## <C>Permut</C> computes possible permutation characters of the character table
## <A>tbl</A> by the algorithm that solves a system of inequalities.
## This is described in <Cite Key="BP98" Where="Section 3.2"/>.
## <P/>
## <A>arec</A> must be a record.
## Only the following components are used in the function.
## <List>
## <Mark><C>ineq</C> </Mark>
## <Item>
## the result of <Ref Func="Inequalities"/>,
## will be computed if it is not present,
## <C>degree</C> &
## the list of degrees for which the possible permutation characters
## shall be computed,
## this will lead to a speedup only if the range of degrees is
## restricted.
## </Item>
## </List>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "Permut" );
#############################################################################
##
#F PermBounds( <tbl>, <d> ) . . . . . . . . . . boundary points for simplex
##
## <#GAPDoc Label="PermBounds">
## <ManSection>
## <Func Name="PermBounds" Arg='tbl, d'/>
##
## <Description>
## Let <A>tbl</A> be the ordinary character table of the group <M>G</M>.
## All <M>G</M>-characters <M>\pi</M> satisfying <M>\pi(g) > 0</M> and
## <M>\pi(1) = <A>d</A></M>,
## for a given degree <A>d</A>, lie in a simplex described by these
## conditions.
## <Ref Func="PermBounds"/> computes the boundary points of this simplex for
## <M>d = 0</M>,
## from which the boundary points for any other <A>d</A> are easily derived.
## (Some conditions from the power maps of <A>tbl</A> are also involved.)
## For this purpose, a matrix similar to the rational character table of
## <M>G</M> has to be inverted.
## These boundary points are used by <Ref Func="PermChars"/>
## to construct all possible permutation characters
## (see <Ref Sect="Possible Permutation Characters"/>) of a given
## degree.
## <Ref Func="PermChars"/> either calls <Ref Func="PermBounds"/> or takes
## this information from the <C>bounds</C> component of its argument record.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PermBounds" );
#############################################################################
##
#F PermComb( <tbl>, <arec> ) . . . . . . . . . . . . permutation characters
##
## <#GAPDoc Label="PermComb">
## <ManSection>
## <Func Name="PermComb" Arg='tbl, arec'/>
##
## <Description>
## <Ref Func="PermComb"/> computes possible permutation characters of the
## character table <A>tbl</A> by the improved combinatorial approach
## described at the end of <Cite Key="BP98" Where="Section 3.2"/>.
## <P/>
## For computing the possible linear combinations <E>without</E> prescribing
## better bounds (i.e., when the computation of bounds shall be suppressed),
## enter
## <P/>
## <C><A>arec</A>:= rec( degree := <A>degree</A>, bounds := false )</C>,
## <P/>
## where <A>degree</A> is the character degree;
## this is useful if the multiplicities are expected to be small,
## and if this is forced by high irreducible degrees.
## <P/>
## A list of upper bounds on the multiplicities of the rational irreducibles
## characters can be explicitly prescribed as a <C>maxmult</C> component in
## <A>arec</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "PermComb" );
#############################################################################
##
#F PermCandidates( <tbl>, <characters>, <torso> )
##
## <ManSection>
## <Func Name="PermCandidates" Arg='tbl, characters, torso'/>
##
## <Description>
## <C>PermCandidates</C> computes possible permutation characters of the
## character table <A>tbl</A> with the strategy using Gaussian elimination,
## which is described in <Cite Key="BP98" Where="Section 3.3"/>.
## <P/>
## The class functions in the result have the additional properties that
## only the (necessarily rational) characters <A>characters</A> occur as
## constituents, and that they are all completions of <A>torso</A>.
## (Note that scalar products with rational irreducible characters of
## <A>tbl</A> that are omitted in <A>characters</A> may be negative,
## so not all class functions in the result list are necessarily characters
## if <A>characters</A> does not contain all rational irreducible characters
## of <A>tbl</A>.)
## <P/>
## Known values of the candidates must be nonnegative integers in
## <A>torso</A>, the other positions of <A>torso</A> are unbound;
## at least the degree <C><A>torso</A>[1]</C> must be an integer.
## <!-- what about choice lists ??-->
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "PermCandidates" );
#############################################################################
##
#F PermCandidatesFaithful( <tbl>, <chars>, <norm_subgrp>, <nonfaithful>,
#F <lower>, <upper>, <torso> )
##
## <ManSection>
## <Func Name="PermCandidatesFaithful"
## Arg='tbl, chars, norm_subgrp, nonfaithful, lower, upper, torso'/>
##
## <Description>
## computes certain possible permutation characters of the character table
## <A>tbl</A> with a generalization of the strategy
## using Gaussian elimination (see <Ref Func="PermCandidates"/>).
## These characters are all with the following properties.
## <P/>
## <Enum>
## <Item>
## Only the (necessarily rational) characters <A>chars</A> occur as
## constituents,
## </Item>
## <Item>
## they are completions of <A>torso</A>, and
## </Item>
## <Item>
## have the character <A>nonfaithful</A> as maximal constituent with kernel
## <A>norm_subgrp</A>.
## </Item>
## </Enum>
## <P/>
## Known values of the candidates must be nonnegative integers in
## <A>torso</A>, the other positions of <A>torso</A> are unbound;
## at least the degree <C><A>torso</A>[1]</C> must be an integer.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "PermCandidatesFaithful" );
#############################################################################
##
#E
|