This file is indexed.

/usr/share/gap/lib/ctblpope.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#############################################################################
##
#W  ctblpope.gd                 GAP library                     Thomas Breuer
#W                                                           & Götz Pfeiffer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of those functions that are needed to
##  compute and test possible permutation characters.
##
#T  TODO:
#T  - small improvement:
#T    if a prescribed value is equal to the degree then restrict the
#T    constituents to those having this class in the kernel
#T  - use roots in `PermCandidates' (cf. `PermCandidatesFaithful'),
#T    in order to guarantee property (d) already in the construction!
#T  - check and document `PermCandidatesFaithful'
#T  - `IsPermChar( <tbl>, <pc> )'
#T    (check whether <pc> can be a permutation character of <tbl>;
#T     use also the kernel of <pc>, i.e., check whether the kernel factor
#T     of <pc> can be a permutation character of the factor of <tbl> by the
#T     kernel; one example where this helps is the sum of characters of S3
#T     in O8+(2).3.2)
#T  - `Constituent' und `Maxdeg' - Optionen in `PermComb'


#############################################################################
##
##  <#GAPDoc Label="[1]{ctblpope}">
##  <Index Subkey="permutation">characters</Index>
##  <Index Subkey="for permutation characters">candidates</Index>
##  <Index>possible permutation characters</Index>
##  <Index Subkey="possible">permutation characters</Index>
##  For groups <M>H</M> and <M>G</M> with <M>H \leq G</M>,
##  the induced character <M>(1_G)^H</M> is called the
##  <E>permutation character</E> of the operation of <M>G</M>
##  on the right cosets of <M>H</M>.
##  If only the character table of <M>G</M> is available and not the group
##  <M>G</M> itself,
##  one can try to get information about possible subgroups of <M>G</M>
##  by inspection of those <M>G</M>-class functions that might be
##  permutation characters,
##  using that such a class function <M>\pi</M> must have at least the
##  following properties.
##  (For details, see&nbsp;<Cite Key="Isa76" Where="Theorem 5.18."/>), 
##
##  <List>
##  <Mark>(a)</Mark>
##  <Item>
##      <M>\pi</M> is a character of <M>G</M>,
##  </Item>
##  <Mark>(b)</Mark>
##  <Item>
##      <M>\pi(g)</M> is a nonnegative integer for all <M>g \in G</M>,
##  </Item>
##  <Mark>(c)</Mark>
##  <Item>
##      <M>\pi(1)</M> divides <M>|G|</M>,
##  </Item>
##  <Mark>(d)</Mark>
##  <Item>
##      <M>\pi(g^n) \geq \pi(g)</M> for <M>g \in G</M> and integers <M>n</M>,
##  </Item>
##  <Mark>(e)</Mark>
##  <Item>
##      <M>[\pi, 1_G] = 1</M>,
##  </Item>
##  <Mark>(f)</Mark>
##  <Item>
##      the multiplicity of any rational irreducible <M>G</M>-character
##      <M>\psi</M> as a constituent of <M>\pi</M> is at most
##      <M>\psi(1)/[\psi, \psi]</M>,
##  </Item>
##  <Mark>(g)</Mark>
##  <Item>
##      <M>\pi(g) = 0</M> if the order of <M>g</M> does not divide
##      <M>|G|/\pi(1)</M>,
##  </Item>
##  <Mark>(h)</Mark>
##  <Item>
##      <M>\pi(1) |N_G(g)|</M> divides <M>\pi(g) |G|</M>
##      for all <M>g \in G</M>,
##  </Item>
##  <Mark>(i)</Mark>
##  <Item>
##      <M>\pi(g) \leq (|G| - \pi(1)) / (|g^G| |Gal_G(g)|)</M>
##      for all nonidentity <M>g \in G</M>,
##      where <M>|Gal_G(g)|</M> denotes the number of conjugacy classes
##      of <M>G</M> that contain generators of the group
##      <M>\langle g \rangle</M>,
##  </Item>
##  <Mark>(j)</Mark>
##  <Item>
##      if <M>p</M> is a prime that divides <M>|G|/\pi(1)</M> only once then
##      <M>s/(p-1)</M> divides <M>|G|/\pi(1)</M> and is congruent to <M>1</M>
##      modulo <M>p</M>,
##      where <M>s</M> is the number of elements of order <M>p</M> in the
##      (hypothetical) subgroup <M>H</M> for which <M>\pi = (1_H)^G</M>
##      holds.
##      (Note that <M>s/(p-1)</M> equals the number of Sylow <M>p</M>
##      subgroups in <M>H</M>.)
##  </Item>
##  </List>
##
##  Any <M>G</M>-class function with these properties is called a
##  <E>possible permutation character</E> in &GAP;.
##  <P/>
##  (Condition (d) is checked only for those power maps that are stored in
##  the character table of <M>G</M>;
##  clearly (d) holds for all integers if it holds for all prime divisors of
##  the group order <M>|G|</M>.)
##  <P/>
##  &GAP; provides some algorithms to compute
##  possible permutation characters (see&nbsp;<Ref Func="PermChars"/>),
##  and also provides functions to check a few more criteria whether a
##  given character can be a transitive permutation character
##  (see&nbsp;<Ref Func="TestPerm1"/>).
##  <P/>
##  Some information about the subgroup <M>U</M> can be computed from the
##  permutation character <M>(1_U)^G</M> using <Ref Func="PermCharInfo"/>.
##  <#/GAPDoc>
##


#############################################################################
##
#F  PermCharInfo( <tbl>, <permchars>[, <format> ] )
##
##  <#GAPDoc Label="PermCharInfo">
##  <Index Subkey="for permutation characters">LaTeX</Index>
##  <ManSection>
##  <Func Name="PermCharInfo" Arg='tbl, permchars[, format ]'/>
##
##  <Description>
##  Let <A>tbl</A> be the ordinary character table of the group <M>G</M>,
##  and <A>permchars</A> either the permutation character <M>(1_U)^G</M>,
##  for a subgroup <M>U</M> of <M>G</M>, or a list of such permutation
##  characters.
##  <Ref Func="PermCharInfo"/> returns a record with the following components.
##  <List>
##  <Mark><C>contained</C>:</Mark>
##  <Item>
##    a list containing, for each character <M>\psi = (1_U)^G</M> in
##    <A>permchars</A>, a list containing at position <M>i</M> the number
##    <M>\psi[i] |U| /</M> <C>SizesCentralizers( </C><A>tbl</A><C> )</C><M>[i]</M>,
##    which equals the number of those elements of <M>U</M>
##    that are contained in class <M>i</M> of <A>tbl</A>,
##  </Item>
##  <Mark><C>bound</C>:</Mark>
##  <Item>
##    a list containing,
##    for each character <M>\psi = (1_U)^G</M> in <A>permchars</A>,
##    a list containing at position <M>i</M> the number
##    <M>|U| / \gcd( |U|,</M> <C>SizesCentralizers( <A>tbl</A> )</C><M>[i] )</M>,
##    which divides the class length in <M>U</M> of an element in class <M>i</M>
##    of <A>tbl</A>,
##  </Item>
##  <Mark><C>display</C>:</Mark>
##  <Item>
##    a record that can be used as second argument of <Ref Oper="Display"/>
##    to display each permutation character in <A>permchars</A> and the
##    corresponding components <C>contained</C> and <C>bound</C>,
##    for those classes where at least one character of <A>permchars</A> is
##    nonzero,
##  </Item>
##  <Mark><C>ATLAS</C>:</Mark>
##  <Item>
##    a list of strings describing the decomposition of the permutation
##    characters in <A>permchars</A> into the irreducible characters of
##    <A>tbl</A>, given in an &ATLAS;-like notation.
##    This means that the irreducible constituents are indicated by their
##    degrees followed by lower case letters <C>a</C>, <C>b</C>, <C>c</C>,
##    <M>\ldots</M>,
##    which indicate the successive irreducible characters of <A>tbl</A>
##    of that degree,
##    in the order in which they appear in <C>Irr( </C><A>tbl</A><C> )</C>.
##    A sequence of small letters (not necessarily distinct) after a single
##    number indicates a sum of irreducible constituents all of the same
##    degree, an exponent <A>n</A> for the letter <A>lett</A> means that
##    <A>lett</A> is repeated <A>n</A> times.
##    The default notation for exponentiation is
##    <C><A>lett</A>^{<A>n</A>}</C>,
##    this is also chosen if the optional third argument <A>format</A> is
##    the string <C>"LaTeX"</C>;
##    if the third argument is the string <C>"HTML"</C> then exponentiation
##    is denoted by <C><A>lett</A>&lt;sup><A>n</A>&lt;/sup></C>.
##  </Item>
##  </List>
##  <P/>
##  <Example><![CDATA[
##  gap> t:= CharacterTable( "A6" );;
##  gap> psi:= Sum( Irr( t ){ [ 1, 3, 6 ] } );
##  Character( CharacterTable( "A6" ), [ 15, 3, 0, 3, 1, 0, 0 ] )
##  gap> info:= PermCharInfo( t, psi );
##  rec( ATLAS := [ "1a+5b+9a" ], bound := [ [ 1, 3, 8, 8, 6, 24, 24 ] ], 
##    contained := [ [ 1, 9, 0, 8, 6, 0, 0 ] ], 
##    display := 
##      rec( 
##        chars := [ [ 15, 3, 0, 3, 1, 0, 0 ], [ 1, 9, 0, 8, 6, 0, 0 ], 
##            [ 1, 3, 8, 8, 6, 24, 24 ] ], classes := [ 1, 2, 4, 5 ], 
##        letter := "I" ) )
##  gap> Display( t, info.display );
##  A6
##  
##       2  3  3  .  2
##       3  2  .  2  .
##       5  1  .  .  .
##  
##         1a 2a 3b 4a
##      2P 1a 1a 3b 2a
##      3P 1a 2a 1a 4a
##      5P 1a 2a 3b 4a
##  
##  I.1    15  3  3  1
##  I.2     1  9  8  6
##  I.3     1  3  8  6
##  gap> j1:= CharacterTable( "J1" );;
##  gap> psi:= TrivialCharacter( CharacterTable( "7:6" ) )^j1;
##  Character( CharacterTable( "J1" ), [ 4180, 20, 10, 0, 0, 2, 1, 0, 0, 
##    0, 0, 0, 0, 0, 0 ] )
##  gap> PermCharInfo( j1, psi ).ATLAS;
##  [ "1a+56aabb+76aaab+77aabbcc+120aaabbbccc+133a^{4}bbcc+209a^{5}" ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PermCharInfo" );


#############################################################################
##
#F  PermCharInfoRelative( <tbl>, <tbl2>, <permchars> )
##
##  <#GAPDoc Label="PermCharInfoRelative">
##  <ManSection>
##  <Func Name="PermCharInfoRelative" Arg='tbl, tbl2, permchars'/>
##
##  <Description>
##  Let <A>tbl</A> and <A>tbl2</A> be the ordinary character tables of two
##  groups <M>H</M> and <M>G</M>, respectively,
##  where <M>H</M> is of index two in <M>G</M>,
##  and <A>permchars</A> either the permutation character <M>(1_U)^G</M>,
##  for a subgroup <M>U</M> of <M>G</M>,
##  or a list of such permutation characters.
##  <Ref Func="PermCharInfoRelative"/> returns a record with the same
##  components as <Ref Func="PermCharInfo"/>, the only exception is that the
##  entries of the <C>ATLAS</C> component are names relative to <A>tbl</A>.
##  <P/>
##  More precisely, the <M>i</M>-th entry of the <C>ATLAS</C> component is a
##  string describing the decomposition of the <M>i</M>-th entry in
##  <A>permchars</A>.
##  The degrees and distinguishing letters of the constituents refer to
##  the irreducibles of <A>tbl</A>, as follows.
##  The two irreducible characters of <A>tbl2</A> of degree <M>N</M>, say,
##  that extend the irreducible character <M>N</M> <C>a</C> of <A>tbl</A>
##  are denoted by <M>N</M> <C>a</C><M>^+</M> and <M>N </M><C>a</C><M>^-</M>.
##  The irreducible character of <A>tbl2</A> of degree <M>2N</M>, say, whose
##  restriction to <A>tbl</A> is the sum of the irreducible characters
##  <M>N</M> <C>a</C> and <M>N</M> <C>b</C> is denoted as <M>N</M> <C>ab</C>.
##  Multiplicities larger than <M>1</M> of constituents are denoted by
##  exponents.
##  <P/>
##  (This format is useful mainly for multiplicity free permutation
##  characters.)
##  <P/>
##  <Example><![CDATA[
##  gap> t:= CharacterTable( "A5" );;
##  gap> t2:= CharacterTable( "A5.2" );;
##  gap> List( Irr( t2 ), x -> x[1] );
##  [ 1, 1, 6, 4, 4, 5, 5 ]
##  gap> List( Irr( t ), x -> x[1] );
##  [ 1, 3, 3, 4, 5 ]
##  gap> permchars:= List( [ [1], [1,2], [1,7], [1,3,4,4,6,6,7] ],
##  >                      l -> Sum( Irr( t2 ){ l } ) );
##  [ Character( CharacterTable( "A5.2" ), [ 1, 1, 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 2, 2, 2, 2, 0, 0, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 6, 2, 0, 1, 0, 2, 0 ] ), 
##    Character( CharacterTable( "A5.2" ), [ 30, 2, 0, 0, 6, 0, 0 ] ) ]
##  gap> info:= PermCharInfoRelative( t, t2, permchars );;
##  gap> info.ATLAS;
##  [ "1a^+", "1a^{\\pm}", "1a^++5a^-", 
##    "1a^++3ab+4(a^+)^{2}+5a^+a^{\\pm}" ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PermCharInfoRelative" );


#############################################################################
##
#F  TestPerm1( <tbl>, <char> ) . . . . . . . . . . . . . . . .  test permchar
#F  TestPerm2( <tbl>, <char> ) . . . . . . . . . . . . . . . .  test permchar
#F  TestPerm3( <tbl>, <chars> )  . . . . . . . . . . . . . . . test permchars
#F  TestPerm4( <tbl>, <chars> )  . . . . . . . . . . . . . . . test permchars
#F  TestPerm5( <tbl>, <chars>, <modtbl> ) . . . . . . . . . .  test permchars
##
##  <#GAPDoc Label="TestPerm1">
##  <ManSection>
##  <Heading>TestPerm1, ..., TestPerm5</Heading>
##  <Func Name="TestPerm1" Arg='tbl, char'/>
##  <Func Name="TestPerm2" Arg='tbl, char'/>
##  <Func Name="TestPerm3" Arg='tbl, chars'/>
##  <Func Name="TestPerm4" Arg='tbl, chars'/>
##  <Func Name="TestPerm5" Arg='tbl, chars, modtbl'/>
##
##  <Description>
##  The first three of these functions implement tests of the properties of
##  possible permutation characters listed in
##  Section&nbsp;<Ref Sect="Possible Permutation Characters"/>,
##  The other two implement test of additional properties.
##  Let <A>tbl</A> be the ordinary character table of a group <M>G</M>, say,
##  <A>char</A> a rational character of <A>tbl</A>,
##  and <A>chars</A> a list of rational characters of <A>tbl</A>.
##  For applying <Ref Func="TestPerm5"/>, the knowledge of a <M>p</M>-modular
##  Brauer table <A>modtbl</A> of <M>G</M> is required.
##  <Ref Func="TestPerm4"/> and <Ref Func="TestPerm5"/> expect the characters
##  in <A>chars</A> to satisfy the conditions checked by
##  <Ref Func="TestPerm1"/> and <Ref Func="TestPerm2"/> (see below).
##  <P/>
##  The return values of the functions were chosen parallel to the tests
##  listed in&nbsp;<Cite Key="NPP84"/>.
##  <P/>
##  <Ref Func="TestPerm1"/> return <C>1</C> or <C>2</C> if <A>char</A> fails
##  because of (T1) or (T2), respectively;
##  this corresponds to the criteria (b) and (d).
##  Note that only those power maps are considered that are stored on
##  <A>tbl</A>.
##  If <A>char</A> satisfies the conditions, <C>0</C> is returned.
##  <P/>
##  <Ref Func="TestPerm2"/> returns <C>1</C> if <A>char</A> fails because of
##  the criterion (c),
##  it returns <C>3</C>, <C>4</C>, or <C>5</C> if <A>char</A> fails because
##  of (T3), (T4), or (T5), respectively;
##  these tests correspond to (g), a weaker form of (h), and (j).
##  If <A>char</A> satisfies the conditions, <C>0</C> is returned.
##  <P/>
##  <Ref Func="TestPerm3"/> returns the list of all those class functions in
##  the list <A>chars</A> that satisfy criterion (h);
##  this is a stronger version of (T6).
##  <P/>
##  <Ref Func="TestPerm4"/> returns the list of all those class functions in
##  the list <A>chars</A> that satisfy (T8) and (T9) for each prime divisor
##  <M>p</M> of the order of <M>G</M>;
##  these tests use modular representation theory but do not require the
##  knowledge of decomposition matrices
##  (cf.&nbsp;<Ref Func="TestPerm5"/> below).
##  <P/>
##  (T8) implements the test of the fact that in the case that <M>p</M>
##  divides <M>|G|</M> and the degree of a transitive permutation character
##  <M>\pi</M> exactly once,
##  the projective cover of the trivial character is a summand of <M>\pi</M>.
##  (This test is omitted if the projective cover cannot be identified.)
##  <P/>
##  Given a permutation character <M>\pi</M> of a group <M>G</M> and a prime
##  integer <M>p</M>,
##  the restriction <M>\pi_B</M> to a <M>p</M>-block <M>B</M> of <M>G</M> has
##  the following property, which is checked by (T9).
##  For each <M>g \in G</M> such that <M>g^n</M> is a <M>p</M>-element of
##  <M>G</M>, <M>\pi_B(g^n)</M> is a nonnegative integer that satisfies
##  <M>|\pi_B(g)| \leq \pi_B(g^n) \leq \pi(g^n)</M>.
##  (This is <Cite Key="Sco73" Where="Corollary A on p. 113"/>.)
##  <P/>
##  <Ref Func="TestPerm5"/> requires the <M>p</M>-modular Brauer table
##  <A>modtbl</A> of <M>G</M>, for some prime <M>p</M> dividing the order of
##  <M>G</M>,
##  and checks whether those characters in the list <A>chars</A> whose degree
##  is divisible by the <M>p</M>-part of the order of <M>G</M> can be
##  decomposed into projective indecomposable characters;
##  <Ref Func="TestPerm5"/> returns the sublist of all those characters in
##  <A>chars</A> that either satisfy this condition or to which the test does
##  not apply.
##  <P/>
##  <!-- Say a word about (T7)?-->
##  <!-- This is the check whether the cycle structure of elements is well-defined;-->
##  <!-- the check is superfluous (at least) for elements of prime power order-->
##  <!-- or order equal to the product of two primes (see&nbsp;<Cite Key="NPP84"/>);-->
##  <!-- note that by construction, the numbers of <Q>cycles</Q> are always integral,-->
##  <!-- the only thing to test is whether they are nonnegative.-->
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "A5" );;
##  gap> rat:= RationalizedMat( Irr( tbl ) );
##  [ Character( CharacterTable( "A5" ), [ 1, 1, 1, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 6, -2, 0, 1, 1 ] ), 
##    Character( CharacterTable( "A5" ), [ 4, 0, 1, -1, -1 ] ), 
##    Character( CharacterTable( "A5" ), [ 5, 1, -1, 0, 0 ] ) ]
##  gap> tup:= Filtered( Tuples( [ 0, 1 ], 4 ), x -> not IsZero( x ) );
##  [ [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 0, 0, 1, 1 ], [ 0, 1, 0, 0 ], 
##    [ 0, 1, 0, 1 ], [ 0, 1, 1, 0 ], [ 0, 1, 1, 1 ], [ 1, 0, 0, 0 ], 
##    [ 1, 0, 0, 1 ], [ 1, 0, 1, 0 ], [ 1, 0, 1, 1 ], [ 1, 1, 0, 0 ], 
##    [ 1, 1, 0, 1 ], [ 1, 1, 1, 0 ], [ 1, 1, 1, 1 ] ]
##  gap> lincomb:= List( tup, coeff -> coeff * rat );;
##  gap> List( lincomb, psi -> TestPerm1( tbl, psi ) );
##  [ 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0 ]
##  gap> List( lincomb, psi -> TestPerm2( tbl, psi ) );
##  [ 0, 5, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1 ]
##  gap> Set( List( TestPerm3(tbl, lincomb), x -> Position(lincomb, x) ) );
##  [ 1, 4, 6, 7, 8, 9, 10, 11, 13 ]
##  gap> tbl:= CharacterTable( "A7" );
##  CharacterTable( "A7" )
##  gap> perms:= PermChars( tbl, rec( degree:= 315 ) );
##  [ Character( CharacterTable( "A7" ), [ 315, 3, 0, 0, 3, 0, 0, 0, 0 ] )
##      , Character( CharacterTable( "A7" ), 
##      [ 315, 15, 0, 0, 1, 0, 0, 0, 0 ] ) ]
##  gap> TestPerm4( tbl, perms );
##  [ Character( CharacterTable( "A7" ), [ 315, 15, 0, 0, 1, 0, 0, 0, 0 
##       ] ) ]
##  gap> perms:= PermChars( tbl, rec( degree:= 15 ) );
##  [ Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ),
##    Character( CharacterTable( "A7" ), [ 15, 3, 3, 0, 1, 0, 3, 1, 1 ] ) 
##   ]
##  gap> TestPerm5( tbl, perms, tbl mod 5 );
##  [ Character( CharacterTable( "A7" ), [ 15, 3, 0, 3, 1, 0, 0, 1, 1 ] ) 
##   ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "TestPerm1" );
DeclareGlobalFunction( "TestPerm2" );
DeclareGlobalFunction( "TestPerm3" );
DeclareGlobalFunction( "TestPerm4" );
DeclareGlobalFunction( "TestPerm5" );


#############################################################################
##
#F  PermChars( <tbl> )
#F  PermChars( <tbl>, <degree> )
#F  PermChars( <tbl>, <arec> )
##
##  <#GAPDoc Label="PermChars">
##  <ManSection>
##  <Func Name="PermChars" Arg='tbl[, cond]'/>
##
##  <Description>
##  &GAP; provides several algorithms to determine
##  possible permutation characters from a given character table.
##  They are described in detail in&nbsp;<Cite Key="BP98"/>.
##  The algorithm is selected from the choice of the optional argument
##  <A>cond</A>.
##  The user is encouraged to try different approaches,
##  especially if one choice fails to come to an end.
##  <P/>
##  Regardless of the algorithm used in a specific case,
##  <Ref Func="PermChars"/> returns a list of <E>all</E>
##  possible permutation characters with the properties described by
##  <A>cond</A>.
##  There is no guarantee that a character of this list is in fact
##  a permutation character.
##  But an empty list always means there is no permutation character
##  with these properties (e.g., of a certain degree).
##  <P/>
##  Called with only one argument, a character table <A>tbl</A>,
##  <Ref Func="PermChars"/> returns the list of all possible permutation
##  characters of the group with this character table.
##  This list might be rather long for big groups,
##  and its computation might take much time.
##  The algorithm is described in <Cite Key="BP98" Where="Section 3.2"/>;
##  it depends on a preprocessing step, where the inequalities
##  arising from the condition <M>\pi(g) \geq 0</M> are transformed into
##  a system of inequalities that guides the search
##  (see&nbsp;<Ref Func="Inequalities"/>).
##  So the following commands compute the list of 39 possible permutation
##  characters of the Mathieu group <M>M_{11}</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> m11:= CharacterTable( "M11" );;
##  gap> SetName( m11, "m11" );
##  gap> perms:= PermChars( m11 );;
##  gap> Length( perms );
##  39
##  ]]></Example>
##  <P/>
##  There are two different search strategies for this algorithm.
##  The default strategy simply constructs all characters with nonnegative
##  values and then tests for each such character whether its degree
##  is a divisor of the order of the group.
##  The other strategy uses the inequalities to predict
##  whether a character of a certain degree can lie
##  in the currently searched part of the search tree.
##  To choose this strategy, enter a record as the second argument of
##  <Ref Func="PermChars"/>,
##  and set its component <C>degree</C> to the range of degrees
##  (which might also be a range containing all divisors of the group order)
##  you want to look for;
##  additionally, the record component <C>ineq</C> can take the inequalities
##  computed by <Ref Func="Inequalities"/> if they are needed more than once.
##  <P/>
##  If a positive integer is given as the second argument <A>cond</A>,
##  <Ref Func="PermChars"/> returns the list of all
##  possible permutation characters of <A>tbl</A> that have degree
##  <A>cond</A>.
##  For that purpose, a preprocessing step is performed where
##  essentially the rational character table is inverted
##  in order to determine boundary points for the simplex
##  in which the possible permutation characters of the given degree
##  must lie (see&nbsp;<Ref Func="PermBounds"/>).
##  The algorithm is described at the end of
##  <Cite Key="BP98" Where="Section 3.2"/>.
##  Note that inverting big integer matrices needs a lot of time and space.
##  So this preprocessing is restricted to groups with less than 100 classes,
##  say.
##  <P/>
##  <Example><![CDATA[
##  gap> deg220:= PermChars( m11, 220 );
##  [ Character( m11, [ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ), 
##    Character( m11, [ 220, 12, 4, 4, 0, 0, 0, 0, 0, 0 ] ), 
##    Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ) ]
##  ]]></Example>
##  <P/>
##  If a record is given as the second argument <A>cond</A>,
##  <Ref Func="PermChars"/> returns the list of all
##  possible permutation characters that have the properties described by
##  the components of this record.
##  One such situation has been mentioned above.
##  If <A>cond</A> contains a degree as value of the record component
##  <C>degree</C>
##  then <Ref Func="PermChars"/> will behave exactly as if this degree was
##  entered as <A>cond</A>.
##  <P/>
##  <Example><![CDATA[
##  gap> deg220 = PermChars( m11, rec( degree:= 220 ) );
##  true
##  ]]></Example>
##  <P/>
##  For the meaning of additional components of <A>cond</A> besides
##  <C>degree</C>, see&nbsp;<Ref Func="PermComb"/>.
##  <P/>
##  Instead of <C>degree</C>, <A>cond</A> may have the component <C>torso</C>
##  bound to a list that contains some known values of the required
##  characters at the right positions;
##  at least the degree <A>cond</A><C>.torso[1]</C> must be an integer.
##  In this case, the algorithm described in
##  <Cite Key="BP98" Where="Section 3.3"/> is chosen.
##  The component <C>chars</C>, if present, holds a list of all those
##  <E>rational</E> irreducible characters of <A>tbl</A> that might be
##  constituents of the required characters.
##  <P/>
##  (<E>Note</E>: If <A>cond</A><C>.chars</C> is bound and does not contain
##  <E>all</E> rational irreducible characters of <A>tbl</A>,
##  &GAP; checks whether the scalar products of all class functions in the
##  result list with the omitted rational irreducible characters of
##  <A>tbl</A> are nonnegative;
##  so there should be nontrivial reasons for excluding a character
##  that is known to be not a constituent of the desired possible permutation
##  characters.)
##  <P/>
##  <Example><![CDATA[
##  gap> PermChars( m11, rec( torso:= [ 220 ] ) );
##  [ Character( m11, [ 220, 4, 4, 0, 0, 4, 0, 0, 0, 0 ] ), 
##    Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ), 
##    Character( m11, [ 220, 12, 4, 4, 0, 0, 0, 0, 0, 0 ] ) ]
##  gap> PermChars( m11, rec( torso:= [ 220,,,,, 2 ] ) );
##  [ Character( m11, [ 220, 20, 4, 0, 0, 2, 0, 0, 0, 0 ] ) ]
##  ]]></Example>
##  <P/>
##  An additional restriction on the possible permutation characters computed
##  can be forced if <A>con</A> contains, in addition to <C>torso</C>,
##  the components <C>normalsubgroup</C> and <C>nonfaithful</C>,
##  with values a list of class positions of a normal subgroup <M>N</M> of
##  the group <M>G</M> of <A>tbl</A> and a possible permutation character
##  <M>\pi</M> of <M>G</M>, respectively, such that <M>N</M> is contained in
##  the kernel of <M>\pi</M>.
##  In this case, <Ref Func="PermChars"/> returns the list of those possible
##  permutation characters <M>\psi</M> of <A>tbl</A> coinciding with
##  <C>torso</C> wherever its values are bound
##  and having the property that no irreducible constituent of
##  <M>\psi - \pi</M> has <M>N</M> in its kernel.
##  If the component <C>chars</C> is bound in <A>cond</A> then the above
##  statements apply.
##  An interpretation of the computed characters is the following.
##  Suppose there exists a subgroup <M>V</M> of <M>G</M> such that
##  <M>\pi = (1_V)^G</M>;
##  Then <M>N \leq V</M>, and if a computed character is of the form
##  <M>(1_U)^G</M>, for a subgroup <M>U</M> of <M>G</M>, then <M>V = UN</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> s4:= CharacterTable( "Symmetric", 4 );;
##  gap> nsg:= ClassPositionsOfDerivedSubgroup( s4 );;
##  gap> pi:= TrivialCharacter( s4 );;
##  gap> PermChars( s4, rec( torso:= [ 12 ], normalsubgroup:= nsg,
##  >                        nonfaithful:= pi ) );
##  [ Character( CharacterTable( "Sym(4)" ), [ 12, 2, 0, 0, 0 ] ) ]
##  gap> pi:= Sum( Filtered( Irr( s4 ),
##  >              chi -> IsSubset( ClassPositionsOfKernel( chi ), nsg ) ) );
##  Character( CharacterTable( "Sym(4)" ), [ 2, 0, 2, 2, 0 ] )
##  gap> PermChars( s4, rec( torso:= [ 12 ], normalsubgroup:= nsg,
##  >                        nonfaithful:= pi ) );
##  [ Character( CharacterTable( "Sym(4)" ), [ 12, 0, 4, 0, 0 ] ) ]
##  ]]></Example>
##  <P/>
##  The class functions returned by <Ref Func="PermChars"/> have the
##  properties tested by <Ref Func="TestPerm1"/>, <Ref Func="TestPerm2"/>,
##  and <Ref Func="TestPerm3"/>.
##  So they are possible permutation characters.
##  See&nbsp;<Ref Func="TestPerm1"/> for criteria whether a
##  possible permutation character can in fact be a permutation character.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PermChars" );


#############################################################################
##
#O  Inequalities( <tbl>, <chars>[, <option>] )
##
##  <#GAPDoc Label="Inequalities">
##  <ManSection>
##  <Oper Name="Inequalities" Arg='tbl, chars[, option]'/>
##
##  <Description>
##  Let <A>tbl</A> be the ordinary character table of a group <M>G</M>.
##  The condition <M>\pi(g) \geq 0</M> for every possible permutation
##  character <M>\pi</M> of <M>G</M> places restrictions on the
##  multiplicities <M>a_i</M> of the irreducible constituents <M>\chi_i</M>
##  of <M>\pi = \sum_{{i = 1}}^r a_i \chi_i</M>.
##  For every element <M>g \in G</M>,
##  we have <M>\sum_{{i = 1}}^r a_i \chi_i(g) \geq 0</M>.
##  The power maps provide even stronger conditions.
##  <P/>
##  This system of inequalities is kind of diagonalized,
##  resulting in a system of inequalities restricting <M>a_i</M>
##  in terms of <M>a_j</M>, <M>j &lt; i</M>.
##  These inequalities are used to construct characters with nonnegative
##  values (see&nbsp;<Ref Func="PermChars"/>).
##  <Ref Func="PermChars"/> either calls <Ref Oper="Inequalities"/> or takes
##  this information from the <C>ineq</C> component of its argument record.
##  <P/>
##  The number of inequalities arising in the process of diagonalization may
##  grow very strongly.
##  <P/>
##  There are two ways to organize the projection.
##  The first, which is chosen if no <A>option</A> argument is present,
##  is the straight approach which takes the rational irreducible
##  characters in their original order and by this guarantees the character
##  with the smallest degree to be considered first.
##  The other way, which is chosen if the string <C>"small"</C> is entered as
##  third argument <A>option</A>, tries to keep the number of intermediate
##  inequalities small by eventually changing the order of characters.
##  <P/>
##  <Example><![CDATA[
##  gap> tbl:= CharacterTable( "M11" );;
##  gap> PermComb( tbl, rec( degree:= 110 ) );
##  [ Character( CharacterTable( "M11" ), 
##      [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ), 
##    Character( CharacterTable( "M11" ), 
##      [ 110, 6, 2, 6, 0, 0, 0, 0, 0, 0 ] ), 
##    Character( CharacterTable( "M11" ), [ 110, 14, 2, 2, 0, 2, 0, 0, 0, 
##        0 ] ) ]
##  gap> # Now compute only multiplicity free permutation characters.
##  gap> bounds:= List( RationalizedMat( Irr( tbl ) ), x -> 1 );;
##  gap> PermComb( tbl, rec( degree:= 110, maxmult:= bounds ) );
##  [ Character( CharacterTable( "M11" ), 
##      [ 110, 6, 2, 2, 0, 0, 2, 2, 0, 0 ] ) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Inequalities", [ IsOrdinaryTable, IsList ] );
DeclareOperation( "Inequalities", [ IsOrdinaryTable, IsList, IsObject ] );


#############################################################################
##
#F  Permut( <tbl>, <arec> )
##
##  <ManSection>
##  <Func Name="Permut" Arg='tbl, arec'/>
##
##  <Description>
##  <C>Permut</C> computes possible permutation characters of the character table
##  <A>tbl</A> by the algorithm that solves a system of inequalities.
##  This is described in <Cite Key="BP98" Where="Section 3.2"/>.
##  <P/>
##  <A>arec</A> must be a record.
##  Only the following components are used in the function.
##  <List>
##  <Mark><C>ineq</C> </Mark>
##  <Item>
##      the result of <Ref Func="Inequalities"/>,
##      will be computed if it is not present,
##  <C>degree</C> &
##      the list of degrees for which the possible permutation characters
##      shall be computed,
##      this will lead to a speedup only if the range of degrees is
##      restricted.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "Permut" );


#############################################################################
##
#F  PermBounds( <tbl>, <d> ) . . . . . . . . . .  boundary points for simplex
##
##  <#GAPDoc Label="PermBounds">
##  <ManSection>
##  <Func Name="PermBounds" Arg='tbl, d'/>
##
##  <Description>
##  Let <A>tbl</A> be the ordinary character table of the group <M>G</M>.
##  All <M>G</M>-characters <M>\pi</M> satisfying <M>\pi(g) > 0</M> and
##  <M>\pi(1) = <A>d</A></M>,
##  for a given degree <A>d</A>, lie in a simplex described by these
##  conditions.
##  <Ref Func="PermBounds"/> computes the boundary points of this simplex for
##  <M>d = 0</M>,
##  from which the boundary points for any other <A>d</A> are easily derived.
##  (Some conditions from the power maps of <A>tbl</A> are also involved.)
##  For this purpose, a matrix similar to the rational character table of
##  <M>G</M> has to be inverted.
##  These boundary points are used by <Ref Func="PermChars"/>
##  to construct all possible permutation characters
##  (see&nbsp;<Ref Sect="Possible Permutation Characters"/>) of a given
##  degree.
##  <Ref Func="PermChars"/> either calls <Ref Func="PermBounds"/> or takes
##  this information from the <C>bounds</C> component of its argument record.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PermBounds" );


#############################################################################
##
#F  PermComb( <tbl>, <arec> ) . . . . . . . . . . . .  permutation characters
##
##  <#GAPDoc Label="PermComb">
##  <ManSection>
##  <Func Name="PermComb" Arg='tbl, arec'/>
##
##  <Description>
##  <Ref Func="PermComb"/> computes possible permutation characters of the
##  character table <A>tbl</A> by the improved combinatorial approach
##  described at the end of <Cite Key="BP98" Where="Section 3.2"/>.
##  <P/>
##  For computing the possible linear combinations <E>without</E> prescribing
##  better bounds (i.e., when the computation of bounds shall be suppressed),
##  enter
##  <P/>
##  <C><A>arec</A>:= rec( degree := <A>degree</A>, bounds := false )</C>,
##  <P/>
##  where <A>degree</A> is the character degree;
##  this is useful if the multiplicities are expected to be small,
##  and if this is forced by high irreducible degrees.
##  <P/>
##  A list of upper bounds on the multiplicities of the rational irreducibles
##  characters can be explicitly prescribed as a <C>maxmult</C> component in
##  <A>arec</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PermComb" );


#############################################################################
##
#F  PermCandidates( <tbl>, <characters>, <torso> )
##
##  <ManSection>
##  <Func Name="PermCandidates" Arg='tbl, characters, torso'/>
##
##  <Description>
##  <C>PermCandidates</C> computes possible permutation characters of the
##  character table <A>tbl</A> with the strategy using Gaussian elimination,
##  which is described in <Cite Key="BP98" Where="Section 3.3"/>.
##  <P/>
##  The class functions in the result have the additional properties that
##  only the (necessarily rational) characters <A>characters</A> occur as
##  constituents, and that they are all completions of <A>torso</A>.
##  (Note that scalar products with rational irreducible characters of
##  <A>tbl</A> that are omitted in <A>characters</A> may be negative,
##  so not all class functions in the result list are necessarily characters
##  if <A>characters</A> does not contain all rational irreducible characters
##  of <A>tbl</A>.)
##  <P/>
##  Known values of the candidates must be nonnegative integers in
##  <A>torso</A>, the other positions of <A>torso</A> are unbound;
##  at least the degree <C><A>torso</A>[1]</C> must be an integer.
##  <!-- what about choice lists ??-->
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PermCandidates" );


#############################################################################
##
#F  PermCandidatesFaithful( <tbl>, <chars>, <norm_subgrp>, <nonfaithful>,
#F                          <lower>, <upper>, <torso> )
##
##  <ManSection>
##  <Func Name="PermCandidatesFaithful"
##  Arg='tbl, chars, norm_subgrp, nonfaithful, lower, upper, torso'/>
##
##  <Description>
##  computes certain possible permutation characters of the character table
##  <A>tbl</A> with a generalization of the strategy
##  using Gaussian elimination (see&nbsp;<Ref Func="PermCandidates"/>).
##  These characters are all with the following properties.
##  <P/>
##  <Enum>
##  <Item>
##     Only the (necessarily rational) characters <A>chars</A> occur as
##     constituents,
##  </Item>
##  <Item>
##     they are completions of <A>torso</A>, and
##  </Item>
##  <Item>
##     have the character <A>nonfaithful</A> as maximal constituent with kernel
##     <A>norm_subgrp</A>.
##  </Item>
##  </Enum>
##  <P/>
##  Known values of the candidates must be nonnegative integers in
##  <A>torso</A>, the other positions of <A>torso</A> are unbound;
##  at least the degree <C><A>torso</A>[1]</C> must be an integer.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PermCandidatesFaithful" );


#############################################################################
##
#E