This file is indexed.

/usr/share/gap/lib/cyclotom.g is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
#############################################################################
##
#W  cyclotom.g                   GAP library                    Thomas Breuer
#W                                                             & Frank Celler
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file deals with cyclotomics.
##


#############################################################################
##
#C  IsCyclotomic( <obj> ) . . . . . . . . . . . . category of all cyclotomics
#C  IsCyc( <obj> )
##
##  <#GAPDoc Label="IsCyclotomic">
##  <ManSection>
##  <Filt Name="IsCyclotomic" Arg='obj' Type='Category'/>
##  <Filt Name="IsCyc" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Index Key="CyclotomicsFamily"><C>CyclotomicsFamily</C></Index>
##  Every object in the family <C>CyclotomicsFamily</C> lies in the category
##  <Ref Func="IsCyclotomic"/>.
##  This covers integers, rationals, proper cyclotomics, the object
##  <Ref Var="infinity"/>,
##  and unknowns (see Chapter&nbsp;<Ref Chap="Unknowns"/>).
##  All these objects except <Ref Var="infinity"/> and unknowns
##  lie also in the category <Ref Func="IsCyc"/>,
##  <Ref Var="infinity"/> lies in (and can be detected from) the category
##  <Ref Func="IsInfinity"/>,
##  and unknowns lie in <Ref Func="IsUnknown"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> IsCyclotomic(0); IsCyclotomic(1/2*E(3)); IsCyclotomic( infinity );
##  true
##  true
##  true
##  gap> IsCyc(0); IsCyc(1/2*E(3)); IsCyc( infinity );
##  true
##  true
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsCyclotomic",
    IsScalar and IsAssociativeElement and IsCommutativeElement
    and IsAdditivelyCommutativeElement and IsZDFRE);

DeclareCategoryKernel( "IsCyc", IsCyclotomic, IS_CYC );


#############################################################################
##
#C  IsCyclotomicCollection  . . . . . . category of collection of cyclotomics
#C  IsCyclotomicCollColl  . . . . . . .  category of collection of collection
#C  IsCyclotomicCollCollColl  . . . .  category of collection of coll of coll
##
##  <ManSection>
##  <Filt Name="IsCyclotomicCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsCyclotomicCollColl" Arg='obj' Type='Category'/>
##  <Filt Name="IsCyclotomicCollCollColl" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryCollections( "IsCyclotomic" );
DeclareCategoryCollections( "IsCyclotomicCollection" );
DeclareCategoryCollections( "IsCyclotomicCollColl" );


#############################################################################
##
#C  IsRat( <obj> )
##
##  <#GAPDoc Label="IsRat">
##  <ManSection>
##  <Filt Name="IsRat" Arg='obj' Type='Category'/>
##
##  <Description>
##  <Index Subkey="for a rational">test</Index>
##  Every rational number lies in the category <Ref Func="IsRat"/>,
##  which is a subcategory of <Ref Func="IsCyc"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> IsRat( 2/3 );
##  true
##  gap> IsRat( 17/-13 );
##  true
##  gap> IsRat( 11 );
##  true
##  gap> IsRat( IsRat );  # `IsRat' is a function, not a rational
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategoryKernel( "IsRat", IsCyc, IS_RAT );


#############################################################################
##
#C  IsInt( <obj> )
##
##  <#GAPDoc Label="IsInt">
##  <ManSection>
##  <Filt Name="IsInt" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every rational integer lies in the category <Ref Func="IsInt"/>,
##  which is a subcategory of <Ref Func="IsRat"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategoryKernel( "IsInt", IsRat, IS_INT );


#############################################################################
##
#C  IsPosRat( <obj> )
##
##  <#GAPDoc Label="IsPosRat">
##  <ManSection>
##  <Filt Name="IsPosRat" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every positive rational number lies in the category
##  <Ref Func="IsPosRat"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsPosRat", IsRat );


#############################################################################
##
#C  IsPosInt( <obj> )
##
##  <#GAPDoc Label="IsPosInt">
##  <ManSection>
##  <Filt Name="IsPosInt" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every positive integer lies in the category <Ref Func="IsPosInt"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsPosInt", IsInt and IsPosRat );


#############################################################################
##
#C  IsNegRat( <obj> )
##
##  <#GAPDoc Label="IsNegRat">
##  <ManSection>
##  <Filt Name="IsNegRat" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every negative rational number lies in the category
##  <Ref Func="IsNegRat"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsNegRat", IsRat );


#############################################################################
##
#C  IsNegInt( <obj> )
##
##  <ManSection>
##  <Filt Name="IsNegInt" Arg='obj' Type='Category'/>
##
##  <Description>
##  Every negative integer lies in the category <Ref Func="IsNegInt"/>.
##  </Description>
##  </ManSection>
##
DeclareSynonym( "IsNegInt", IsInt and IsNegRat );


#############################################################################
##
#C  IsZeroCyc( <obj> )
##
##  <ManSection>
##  <Filt Name="IsZeroCyc" Arg='obj' Type='Category'/>
##
##  <Description>
##  Only the zero <C>0</C> of the cyclotomics lies in the category
##  <Ref Func="IsZeroCyc"/>.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsZeroCyc", IsInt and IsZero );


#############################################################################
##
#V  CyclotomicsFamily . . . . . . . . . . . . . . . . . family of cyclotomics
##
##  <ManSection>
##  <Var Name="CyclotomicsFamily"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "CyclotomicsFamily",
    NewFamily( "CyclotomicsFamily",
    IsCyclotomic,CanEasilySortElements,
    CanEasilySortElements ) );

#############################################################################
##
#R  IsSmallIntRep . . . . . . . . . . . . . . . . . .  small internal integer
##
##  <ManSection>
##  <Filt Name="IsSmallIntRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsSmallIntRep", IsInternalRep, [] );


#############################################################################
##
#V  TYPE_INT_SMALL_ZERO . . . . . . . . . . . . . . type of the internal zero
##
##  <ManSection>
##  <Var Name="TYPE_INT_SMALL_ZERO"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_ZERO", NewType( CyclotomicsFamily,
                            IsInt and IsZeroCyc and IsSmallIntRep ) );


#############################################################################
##
#V  TYPE_INT_SMALL_NEG  . . . . . . type of a small negative internal integer
##
##  <ManSection>
##  <Var Name="TYPE_INT_SMALL_NEG"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_NEG", NewType( CyclotomicsFamily,
                            IsInt and IsNegRat and IsSmallIntRep ) );


#############################################################################
##
#V  TYPE_INT_SMALL_POS  . . . . . . type of a small positive internal integer
##
##  <ManSection>
##  <Var Name="TYPE_INT_SMALL_POS"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_POS", NewType( CyclotomicsFamily,
                            IsPosInt and IsSmallIntRep ) );


#############################################################################
##
#V  TYPE_INT_LARGE_NEG  . . . . . . type of a large negative internal integer
##
##  <ManSection>
##  <Var Name="TYPE_INT_LARGE_NEG"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_LARGE_NEG", NewType( CyclotomicsFamily,
                            IsInt and IsNegRat and IsInternalRep ) );


#############################################################################
##
#V  TYPE_INT_LARGE_POS  . . . . . . type of a large positive internal integer
##
##  <ManSection>
##  <Var Name="TYPE_INT_LARGE_POS"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_INT_LARGE_POS", NewType( CyclotomicsFamily,
                            IsPosInt and IsInternalRep ) );


#############################################################################
##
#V  TYPE_RAT_NEG  . . . . . . . . . . .  type of a negative internal rational
##
##  <ManSection>
##  <Var Name="TYPE_RAT_NEG"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_RAT_NEG", NewType( CyclotomicsFamily,
                            IsRat and IsNegRat and IsInternalRep ) );


#############################################################################
##
#V  TYPE_RAT_POS  . . . . . . . . . . .  type of a positive internal rational
##
##  <ManSection>
##  <Var Name="TYPE_RAT_POS"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_RAT_POS", NewType( CyclotomicsFamily,
                            IsRat and IsPosRat and IsInternalRep ) );

#############################################################################
##
#V  TYPE_CYC  . . . . . . . . . . . . . . . . type of an internal cyclotomics
##
##  <ManSection>
##  <Var Name="TYPE_CYC"/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "TYPE_CYC",
    NewType( CyclotomicsFamily, IsCyc and IsInternalRep ) );


#############################################################################
##
#v  One( CyclotomicsFamily )
#v  Zero( CyclotomicsFamily )
#v  Characteristic( CyclotomicsFamily )
##
SetOne( CyclotomicsFamily, 1 );
SetZero( CyclotomicsFamily, 0 );
SetCharacteristic( CyclotomicsFamily, 0 );


#############################################################################
##
#v  IsUFDFamily( CyclotomicsFamily )
##
SetIsUFDFamily( CyclotomicsFamily, true );


#############################################################################
##
#F  E( <n> )
##
##  <#GAPDoc Label="E">
##  <ManSection>
##  <Func Name="E" Arg='n'/>
##
##  <Description>
##  <Index>roots of unity</Index>
##  <Ref Func="E"/> returns the primitive <A>n</A>-th root of unity
##  <M>e_n = \exp(2\pi i/n)</M>.
##  Cyclotomics are usually entered as sums of roots of unity,
##  with rational coefficients,
##  and irrational cyclotomics are displayed in such a way.
##  (For special cyclotomics, see&nbsp;<Ref Sect="ATLAS Irrationalities"/>.)
##  <P/>
##  <Example><![CDATA[
##  gap> E(9); E(9)^3; E(6); E(12) / 3;
##  -E(9)^4-E(9)^7
##  E(3)
##  -E(3)^2
##  -1/3*E(12)^7
##  ]]></Example>
##  <P/>
##  A particular basis is used to express cyclotomics,
##  see&nbsp;<Ref Sect="Integral Bases of Abelian Number Fields"/>;
##  note that <C>E(9)</C> is <E>not</E> a basis element,
##  as the above example shows.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsInfinity( <obj> ) . . . . . . . . . . . . . . . .  category of infinity
#V  infinity  . . . . . . . . . . . . . . . . . . . . . .  the value infinity
#C  IsNegInfinity( <obj> ) . . . . . . . . . .  category of negative infinity
#V  -infinity . . . . . . . . . . . . . . . . . . . . . . the value -infinity
##  <#GAPDoc Label="IsInfinity">
##  <ManSection>
##  <Filt Name="IsInfinity" Arg='obj' Type='Category'/>
##  <Filt Name="IsNegInfinity" Arg='obj' Type='Category'/>
##  <Var Name="infinity"/>
##  <Var Name="-infinity"/>
##
##  <Description>
##  <Ref Var="infinity"/> and <Ref Var="-infinity"/> are special &GAP; objects
##  that lie in <C>CyclotomicsFamily</C>.
##  They are larger or smaller than all other objects in this family
##  respectively.
##  <Ref Var="infinity"/> is mainly used as return value of operations such
##  as <Ref Func="Size"/>
##  and <Ref Func="Dimension"/> for infinite and infinite dimensional domains,
##  respectively.
##  <P/>
##  Some arithmetic operations are provided for convenience when using
##  <Ref Var="infinity"/> and <Ref Var="-infinity"/> as top and bottom element
##  respectively.
##  <Example><![CDATA[
##  gap> -infinity + 1;
##  -infinity
##  gap> infinity + infinity;
##  infinity
##  ]]></Example>
##  Often it is useful to distinguish <Ref Var="infinity"/>
##  from <Q>proper</Q> cyclotomics.
##  For that, <Ref Var="infinity"/> lies in the category
##  <Ref Func="IsInfinity"/> but not in <Ref Func="IsCyc"/>,
##  and the other cyclotomics lie in the category <Ref Func="IsCyc"/> but not
##  in <Ref Func="IsInfinity"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> s:= Size( Rationals );
##  infinity
##  gap> s = infinity; IsCyclotomic( s ); IsCyc( s ); IsInfinity( s );
##  true
##  true
##  false
##  true
##  gap> s in Rationals; s > 17;
##  false
##  true
##  gap> Set( [ s, 2, s, E(17), s, 19 ] );
##  [ 2, 19, E(17), infinity ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsInfinity", IsCyclotomic );

UNBIND_GLOBAL( "infinity" );
BIND_GLOBAL( "infinity",
    Objectify( NewType( CyclotomicsFamily, IsInfinity
                        and IsPositionalObjectRep ), [] ) );

InstallMethod( PrintObj,
    "for infinity",
    [ IsInfinity ], function( obj ) Print( "infinity" ); end );

InstallMethod( \=,
    "for cyclotomic and `infinity'",
    IsIdenticalObj, [ IsCyc, IsInfinity ], ReturnFalse );

InstallMethod( \=,
    "for `infinity' and cyclotomic",
    IsIdenticalObj, [ IsInfinity, IsCyc ], ReturnFalse );

InstallMethod( \=,
    "for `infinity' and `infinity'",
    IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnTrue );

InstallMethod( \<,
    "for cyclotomic and `infinity'",
    IsIdenticalObj, [ IsCyc, IsInfinity ], ReturnTrue );

InstallMethod( \<,
    "for `infinity' and cyclotomic",
    IsIdenticalObj, [ IsInfinity, IsCyc ], ReturnFalse );

InstallMethod( \<,
    "for `infinity' and `infinity'",
    IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnFalse );


DeclareCategory( "IsNegInfinity", IsCyclotomic );

BIND_GLOBAL( "Ninfinity",
    Objectify( NewType( CyclotomicsFamily, IsNegInfinity
                        and IsPositionalObjectRep ), [] ) );

InstallMethod( PrintObj,
    "for -infinity",
    [ IsNegInfinity ], function( obj ) Print( "-infinity" ); end );

InstallMethod( \=,
    "for cyclotomic and `-infinity'",
    IsIdenticalObj, [ IsCyc, IsNegInfinity ], ReturnFalse );

InstallMethod( \=,
    "for `-infinity' and cyclotomic",
    IsIdenticalObj, [ IsNegInfinity, IsCyc ], ReturnFalse );

InstallMethod( \=,
    "for `infinity' and `-infinity'",
    IsIdenticalObj, [ IsInfinity, IsNegInfinity ], ReturnFalse );

InstallMethod( \=,
    "for `-infinity' and `infinity'",
    IsIdenticalObj, [ IsNegInfinity, IsInfinity ], ReturnFalse );

InstallMethod( \=,
    "for `-infinity' and `-infinity'",
    IsIdenticalObj, [ IsNegInfinity, IsNegInfinity ], ReturnTrue );

InstallMethod( \<,
    "for cyclotomic and `-infinity'",
    IsIdenticalObj, [ IsCyc, IsNegInfinity ], ReturnFalse );

InstallMethod( \<,
    "for `-infinity' and cyclotomic",
    IsIdenticalObj, [ IsNegInfinity, IsCyc ], ReturnTrue );

InstallMethod( \<,
    "for `infinity' and `-infinity'",
    IsIdenticalObj, [ IsInfinity, IsNegInfinity ], ReturnFalse );

InstallMethod( \<,
    "for `-infinity' and `infinity'",
    IsIdenticalObj, [ IsNegInfinity, IsInfinity ], ReturnTrue );

InstallMethod( \<,
    "for `infinity' and `infinity'",
    IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnFalse );

InstallMethod( AdditiveInverseOp,
    "for `infinity'",
    [ IsInfinity ], x -> Ninfinity  );

InstallMethod( AdditiveInverseOp,
    "for `-infinity'",
    [ IsNegInfinity ], x -> infinity  );

InstallMethod( \+,
    "for `infinity' and cyclotomic",
    IsIdenticalObj, [ IsInfinity, IsCyc ], function(x,y) return infinity; end );

InstallMethod( \+,
    "for cyclotomic and `infinity'",
    IsIdenticalObj, [ IsCyc, IsInfinity ], function(x,y) return infinity; end );

InstallMethod( \+,
    "for `infinity' and `infinity'",
    IsIdenticalObj, [ IsInfinity, IsInfinity ], function(x,y) return infinity; end );

InstallMethod( \+,
    "for `-infinity' and cyclotomic",
    IsIdenticalObj, [ IsNegInfinity, IsCyc ], function(x,y) return -infinity; end );

InstallMethod( \+,
    "for cyclotomic and `-infinity'",
    IsIdenticalObj, [ IsCyc, IsNegInfinity ], function(x,y) return -infinity; end );

InstallMethod( \+,
    "for `-infinity' and `-infinity'",
    IsIdenticalObj, [ IsNegInfinity, IsNegInfinity ], function(x,y) return -infinity; end );

#############################################################################
##
#P  IsIntegralCyclotomic( <obj> ) . . . . . . . . . . .  integral cyclotomics
##
##  <#GAPDoc Label="IsIntegralCyclotomic">
##  <ManSection>
##  <Prop Name="IsIntegralCyclotomic" Arg='obj'/>
##
##  <Description>
##  A cyclotomic is called <E>integral</E> or a <E>cyclotomic integer</E>
##  if all coefficients of its minimal polynomial over the rationals are
##  integers.
##  Since the underlying basis of the external representation of cyclotomics
##  is an integral basis
##  (see&nbsp;<Ref Sect="Integral Bases of Abelian Number Fields"/>),
##  the subring of cyclotomic integers in a cyclotomic field is formed
##  by those cyclotomics for which the external representation is a list of
##  integers.
##  For example, square roots of integers are cyclotomic integers
##  (see&nbsp;<Ref Sect="ATLAS Irrationalities"/>),
##  any root of unity is a cyclotomic integer,
##  character values are always cyclotomic integers,
##  but all rationals which are not integers are not cyclotomic integers.
##  <P/>
##  <Example><![CDATA[
##  gap> r:= ER( 5 );               # The square root of 5 ...
##  E(5)-E(5)^2-E(5)^3+E(5)^4
##  gap> IsIntegralCyclotomic( r ); # ... is a cyclotomic integer.
##  true
##  gap> r2:= 1/2 * r;              # This is not a cyclotomic integer, ...
##  1/2*E(5)-1/2*E(5)^2-1/2*E(5)^3+1/2*E(5)^4
##  gap> IsIntegralCyclotomic( r2 );
##  false
##  gap> r3:= 1/2 * r - 1/2;        # ... but this is one.
##  E(5)+E(5)^4
##  gap> IsIntegralCyclotomic( r3 );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsIntegralCyclotomic", IsObject );

DeclareSynonymAttr( "IsCycInt", IsIntegralCyclotomic );

InstallMethod( IsIntegralCyclotomic,
    "for an internally represented cyclotomic",
    [ IsInternalRep ],
    IS_CYC_INT );


#############################################################################
##
#A  Conductor( <cyc> )  . . . . . . . . . . . . . . . . . .  for a cyclotomic
#A  Conductor( <C> )  . . . . . . . . . . . . for a collection of cyclotomics
##
##  <#GAPDoc Label="Conductor">
##  <ManSection>
##  <Attr Name="Conductor" Arg='cyc' Label="for a cyclotomic"/>
##  <Attr Name="Conductor" Arg='C' Label="for a collection of cyclotomics"/>
##
##  <Description>
##  For an element <A>cyc</A> of a cyclotomic field,
##  <Ref Attr="Conductor" Label="for a cyclotomic"/>
##  returns the smallest integer <M>n</M> such that <A>cyc</A> is contained
##  in the <M>n</M>-th cyclotomic field.
##  For a collection <A>C</A> of cyclotomics (for example a dense list of
##  cyclotomics or a field of cyclotomics),
##  <Ref Attr="Conductor" Label="for a collection of cyclotomics"/> returns
##  the smallest integer <M>n</M> such that all elements of <A>C</A>
##  are contained in the <M>n</M>-th cyclotomic field.
##  <P/>
##  <Example><![CDATA[
##  gap> Conductor( 0 ); Conductor( E(10) ); Conductor( E(12) );
##  1
##  5
##  12
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttributeKernel( "Conductor", IsCyc, CONDUCTOR );
DeclareAttribute( "Conductor", IsCyclotomicCollection );

#T also for matrices, matrix groups etc. of cyclotomics?


#############################################################################
##
#O  GaloisCyc( <cyc>, <k> ) . . . . . . . . . . . . . . . .  Galois conjugate
#O  GaloisCyc( <list>, <k> )  . . . . . . . . . . . list of Galois conjugates
##
##  <#GAPDoc Label="GaloisCyc">
##  <ManSection>
##  <Oper Name="GaloisCyc" Arg='cyc, k' Label="for a cyclotomic"/>
##  <Oper Name="GaloisCyc" Arg='list, k' Label="for a list of cyclotomics"/>
##
##  <Description>
##  For a cyclotomic <A>cyc</A> and an integer <A>k</A>,
##  <Ref Oper="GaloisCyc" Label="for a cyclotomic"/> returns the cyclotomic
##  obtained by raising the roots of unity in the Zumbroich basis
##  representation of <A>cyc</A> to the <A>k</A>-th power.
##  If <A>k</A> is coprime to the integer <M>n</M>,
##  <C>GaloisCyc( ., <A>k</A> )</C> acts as a Galois automorphism
##  of the <M>n</M>-th cyclotomic field
##  (see&nbsp;<Ref Sect="Galois Groups of Abelian Number Fields"/>);
##  to get the Galois automorphisms themselves,
##  use <Ref Oper="GaloisGroup" Label="of field"/>.
##  <P/>
##  The <E>complex conjugate</E> of <A>cyc</A> is
##  <C>GaloisCyc( <A>cyc</A>, -1 )</C>,
##  which can also be computed using <Ref Func="ComplexConjugate"/>.
##  <P/>
##  For a list or matrix <A>list</A> of cyclotomics,
##  <Ref Oper="GaloisCyc" Label="for a list of cyclotomics"/> returns
##  the list obtained by applying
##  <Ref Oper="GaloisCyc" Label="for a cyclotomic"/> to the entries of
##  <A>list</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperationKernel( "GaloisCyc", [ IsCyc, IsInt ], GALOIS_CYC );
DeclareOperation( "GaloisCyc", [ IsCyclotomicCollection, IsInt ] );
DeclareOperation( "GaloisCyc", [ IsCyclotomicCollColl, IsInt ] );

InstallMethod( GaloisCyc,
    "for a list of cyclotomics, and an integer",
    [ IsList and IsCyclotomicCollection, IsInt ],
    function( list, k )
    return List( list, entry -> GaloisCyc( entry, k ) );
    end );

InstallMethod( GaloisCyc,
    "for a list of lists of cyclotomics, and an integer",
    [ IsList and IsCyclotomicCollColl, IsInt ],
    function( list, k )
    return List( list, entry -> GaloisCyc( entry, k ) );
    end );


#############################################################################
##
#F  NumeratorRat( <rat> ) . . . . . . . . . .  numerator of internal rational
##
##  <#GAPDoc Label="NumeratorRat">
##  <ManSection>
##  <Func Name="NumeratorRat" Arg='rat'/>
##
##  <Description>
##  <Index Subkey="of a rational">numerator</Index>
##  <Ref Func="NumeratorRat"/> returns the numerator of the rational
##  <A>rat</A>.
##  Because the numerator holds the sign of the rational it may be any
##  integer.
##  Integers are rationals with denominator <M>1</M>,
##  thus <Ref Func="NumeratorRat"/> is the identity function for integers.
##  <P/>
##  <Example><![CDATA[
##  gap> NumeratorRat( 2/3 );
##  2
##  gap> # numerator and denominator are made relatively prime:
##  gap> NumeratorRat( 66/123 );
##  22
##  gap> NumeratorRat( 17/-13 );  # numerator holds the sign of the rational
##  -17
##  gap> NumeratorRat( 11 );      # integers are rationals with denominator 1
##  11
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "NumeratorRat", NUMERATOR_RAT );


#############################################################################
##
#F  DenominatorRat( <rat> ) . . . . . . . .  denominator of internal rational
##
##  <#GAPDoc Label="DenominatorRat">
##  <ManSection>
##  <Func Name="DenominatorRat" Arg='rat'/>
##
##  <Description>
##  <Index Subkey="of a rational">denominator</Index>
##  <Ref Func="DenominatorRat"/> returns the denominator of the rational
##  <A>rat</A>.
##  Because the numerator holds the  sign of the rational the denominator is
##  always a positive integer.
##  Integers are rationals with the denominator 1,
##  thus <Ref Func="DenominatorRat"/> returns 1 for integers.
##  <P/>
##  <Example><![CDATA[
##  gap> DenominatorRat( 2/3 );
##  3
##  gap> # numerator and denominator are made relatively prime:
##  gap> DenominatorRat( 66/123 );
##  41
##  gap> # the denominator holds the sign of the rational:
##  gap> DenominatorRat( 17/-13 );
##  13
##  gap> DenominatorRat( 11 ); # integers are rationals with denominator 1
##  1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "DenominatorRat", DENOMINATOR_RAT );


#############################################################################
##
#F  QuoInt( <n>, <m> )  . . . . . . . . . . . . quotient of internal integers
##
##  <#GAPDoc Label="QuoInt">
##  <ManSection>
##  <Func Name="QuoInt" Arg='n, m'/>
##
##  <Description>
##  <Index>integer part of a quotient</Index>
##  <Ref Func="QuoInt"/> returns the integer part of the quotient of its
##  integer operands.
##  <P/>
##  If <A>n</A> and <A>m</A> are positive, <Ref Func="QuoInt"/> returns
##  the largest positive integer <M>q</M> such that
##  <M>q * <A>m</A> \leq <A>n</A></M>.
##  If <A>n</A> or <A>m</A> or both are negative the absolute value of the
##  integer part of the quotient is the quotient of the absolute values of
##  <A>n</A> and <A>m</A>,
##  and the sign of it is the product of the signs of <A>n</A> and <A>m</A>.
##  <P/>
##  <Ref Func="QuoInt"/> is used in a method for the general operation
##  <Ref Func="EuclideanQuotient"/>.
##  <Example><![CDATA[
##  gap> QuoInt(5,3);  QuoInt(-5,3);  QuoInt(5,-3);  QuoInt(-5,-3);
##  1
##  -1
##  -1
##  1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "QuoInt", QUO_INT );


#############################################################################
##
#F  RemInt( <n>, <m> )  . . . . . . . . . . .  remainder of internal integers
##
##  <#GAPDoc Label="RemInt">
##  <ManSection>
##  <Func Name="RemInt" Arg='n, m'/>
##
##  <Description>
##  <Index>remainder of a quotient</Index>
##  <Ref Func="RemInt"/> returns the remainder of its two integer operands.
##  <P/>
##  If <A>m</A> is not equal to zero, <Ref Func="RemInt"/> returns
##  <C><A>n</A> - <A>m</A> * QuoInt( <A>n</A>, <A>m</A> )</C>.
##  Note that the rules given for <Ref Func="QuoInt"/> imply that the return
##  value of <Ref Func="RemInt"/> has the same sign as <A>n</A>
##  and its absolute value is strictly less than the absolute value
##  of <A>m</A>.
##  Note also that the return value equals <C><A>n</A> mod <A>m</A></C>
##  when both <A>n</A> and <A>m</A> are nonnegative.
##  Dividing by <C>0</C> signals an error.
##  <P/>
##  <Ref Func="RemInt"/> is used in a method for the general operation
##  <Ref Func="EuclideanRemainder"/>.
##  <Example><![CDATA[
##  gap> RemInt(5,3);  RemInt(-5,3);  RemInt(5,-3);  RemInt(-5,-3);
##  2
##  -2
##  2
##  -2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "RemInt", REM_INT );


#############################################################################
##
#F  GcdInt( <m>, <n> )  . . . . . . . . . . . . . .  gcd of internal integers
##
##  <#GAPDoc Label="GcdInt">
##  <ManSection>
##  <Func Name="GcdInt" Arg='m, n'/>
##
##  <Description>
##  <Ref Func="GcdInt"/> returns the greatest common divisor
##  of its two integer operands <A>m</A> and <A>n</A>, i.e.,
##  the greatest integer that divides both <A>m</A> and <A>n</A>.
##  The greatest common divisor is never negative, even if the arguments are.
##  We define
##  <C>GcdInt( <A>m</A>, 0 ) = GcdInt( 0, <A>m</A> ) = AbsInt( <A>m</A> )</C>
##  and <C>GcdInt( 0, 0 ) = 0</C>.
##  <P/>
##  <Ref Func="GcdInt"/> is a method used by the general function
##  <Ref Func="Gcd" Label="for (a ring and) several elements"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> GcdInt( 123, 66 );
##  3
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "GcdInt", GCD_INT );


#############################################################################
##
#m  Order( <cyc> ) . . . . . . . . . . . . . . . . .  order of an alg. number
##
##  If <cyc> is not a cyclotomic integer then its order is infinity.
##  Otherwise, <cyc> is a root of unity iff its absolute value is $1$.
##  (This follows from the more general theorem that an algebraic integer is
##  a root of unity iff all its algebraic conjugates have absolute value $1$;
##  note that we assume that <cyc> lies in a cyclotomic field,
##  so the Galois group of the field extension is abelian.)
##
##  This method is thought for cyclotomics for which it is cheap to decide
##  whether they are algebraic integers, and to compute the conductor;
##  both conditions hold for internally represented cyclotomics,
##  since they are represented w.r.t. an integral basis of the smallest
##  possible cyclotomic field.
##
InstallMethod( Order,
    "for a cyclotomic",
    [ IsCyc ],
    function ( cyc )
    local n;

    # Check that the argument is a root of unity.
    if cyc = 0 then
      Error( "argument must be nonzero" );
    elif not IsIntegralCyclotomic( cyc )
         or cyc * GaloisCyc( cyc, -1 ) <> 1 then
      return infinity;
    fi;

    # Let $n$ be the conductor of `cyc'.
    # The roots of unity in the $n$-th cyclotomic field are exactly the
    # $n$-th roots if $n$ is even, and the $2 n$-th roots if $n$ is odd.
    n:= Conductor( cyc );
    if n mod 2 = 0 or cyc^n = 1 then
      return n;
    else
      Assert( 1, cyc^n = -1 );
      return 2*n;
    fi;
    end );


#############################################################################
##
#M  Int( <int> )  . . . . . . . . . . . . . . . . . . . . . .  for an integer
#M  Int( <rat> ) . . . . . . . . . . . .   convert a rational into an integer
#M  Int( <cyc> )  . . . . . . . . . . . . .  cyclotomic integer near to <cyc>
##
##  <#GAPDoc Label="Int:cyclotomics">
##  <ManSection>
##  <Func Name="Int" Arg='cyc' Label="for a cyclotomic"/>
##  
##  <Description>
##  The operation <Ref Func="Int" Label="for a cyclotomic"/>
##  can be used to find a cyclotomic integer near to an arbitrary cyclotomic,
##  by applying <Ref Attr="Int"/> to the coefficients.
##  <P/>
##  <Example><![CDATA[
##  gap> Int( E(5)+1/2*E(5)^2 ); Int( 2/3*E(7)-3/2*E(4) );
##  E(5)
##  -E(4)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( Int,
    "for an integer",
    [ IsInt ],
    IdFunc );

InstallMethod( Int,
    "for a rational",
    [ IsRat ],
    obj -> QuoInt( NumeratorRat( obj ), DenominatorRat( obj ) ) );

InstallMethod( Int,
    "for a cyclotomic",
    [ IsCyc ],
    cyc -> CycList( List( COEFFS_CYC( cyc ), Int ) ) );


#############################################################################
##
#M  String( <int> ) . . . . . . . . . . . . . . . . . . . . .  for an integer
#M  String( <rat> ) . . . . . . . . . . . .  convert a rational into a string
#M  String( <cyc> ) . . . . . . . . . . . .  convert cyclotomic into a string
#M  String( <infinity> )  . . . . . . . . . . . . . . . . . .  for `infinity'
##
##  <#GAPDoc Label="String:cyclotomics">
##  <ManSection>
##  <Meth Name="String" Arg='cyc' Label="for a cyclotomic"/>
##  
##  <Description>
##  The operation <Ref Func="String" Label="for a cyclotomic"/>
##  returns for a cyclotomic <A>cyc</A> a string corresponding to the way
##  the cyclotomic is printed by <Ref Func="ViewObj"/> and
##  <Ref Func="PrintObj"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> String( E(5)+1/2*E(5)^2 ); String( 17/3 );
##  "E(5)+1/2*E(5)^2"
##  "17/3"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InstallMethod( String,
    "for an integer",
    [ IsInt ],
function(a)
  local sign, halflen, b, q, qr, s1, s2, pad;

  # "small" numbers
  if Log2Int(a) < 5000 then
    # kernel method
    return STRING_INT(a);
  fi;

  # sign
  if a < 0 then
    sign := "-";
    a := -a;
  else
    sign := "";
  fi;

  # recursion
  halflen := QuoInt(Log2Int(a)*100, 664);
  b := 10^halflen;
  q := QUO_INT(a, b);
  qr := [q, a-q*b]; #QuotientRemainder(a, 10^halflen);
  if qr[1] = 0 then
    s1 := "";
  else
    s1 := String(qr[1]);
  fi;
  s2 := String(qr[2]);
  pad := ListWithIdenticalEntries(halflen-Length(s2), '0');

  return Concatenation(sign,s1,pad,s2);
end);

InstallMethod( String,
    "for a rational",
    [ IsRat ],
    function ( rat )
    local   str;

    str := String( NumeratorRat( rat ) );
    if DenominatorRat( rat ) <> 1  then
        str := Concatenation( str, "/", String( DenominatorRat( rat ) ) );
    fi;
    ConvertToStringRep( str );
    return str;
    end );

InstallMethod( String,
    "for a cyclotomic",
    [ IsCyc ],
    function( cyc )
    local i, j, En, coeffs, str;

    # get the coefficients
    coeffs := COEFFS_CYC( cyc );

    # get the root as a string
    En := Concatenation( "E(", String( Length( coeffs ) ), ")" );

    # print the first non zero coefficient
    i := 1;
    while coeffs[i] = 0 do i:= i+1; od;
    if i = 1  then
        str := ShallowCopy( String( coeffs[1] ) );
    elif coeffs[i] = -1 then
        str := Concatenation( "-", En );
    elif coeffs[i] = 1 then
        str := ShallowCopy( En );
    else
        str := Concatenation( String( coeffs[i] ), "*", En );
    fi;
    if 2 < i  then
        Add( str, '^' );
        Append( str, String(i-1) );
    fi;

    # print the other coefficients
    for j  in [i+1..Length(coeffs)]  do
        if   coeffs[j] = 1 then
            Add( str, '+' );
            Append( str, En );
        elif coeffs[j] = -1 then
            Add( str, '-' );
            Append( str, En );
        elif 0 < coeffs[j] then
            Add( str, '+' );
            Append( str, String( coeffs[j] ) );
            Add( str, '*' );
            Append( str, En );
        elif coeffs[j] < 0 then
            Append( str, String( coeffs[j] ) );
            Add( str, '*' );
            Append( str, En );
        fi;
        if 2 < j  and coeffs[j] <> 0  then
            Add( str, '^' );
            Append( str, String( j-1 ) );
        fi;
    od;

    # Convert to string representation.
    ConvertToStringRep( str );

    # Return the string.
    return str;
    end );

InstallMethod( String,
    "for infinity",
    [ IsInfinity ],
    x -> "infinity" );

InstallMethod( String,
    "for -infinity",
    [ IsNegInfinity ],
    x -> "-infinity" );

#############################################################################
##
#E