/usr/share/gap/lib/cyclotom.g is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 | #############################################################################
##
#W cyclotom.g GAP library Thomas Breuer
#W & Frank Celler
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file deals with cyclotomics.
##
#############################################################################
##
#C IsCyclotomic( <obj> ) . . . . . . . . . . . . category of all cyclotomics
#C IsCyc( <obj> )
##
## <#GAPDoc Label="IsCyclotomic">
## <ManSection>
## <Filt Name="IsCyclotomic" Arg='obj' Type='Category'/>
## <Filt Name="IsCyc" Arg='obj' Type='Category'/>
##
## <Description>
## <Index Key="CyclotomicsFamily"><C>CyclotomicsFamily</C></Index>
## Every object in the family <C>CyclotomicsFamily</C> lies in the category
## <Ref Func="IsCyclotomic"/>.
## This covers integers, rationals, proper cyclotomics, the object
## <Ref Var="infinity"/>,
## and unknowns (see Chapter <Ref Chap="Unknowns"/>).
## All these objects except <Ref Var="infinity"/> and unknowns
## lie also in the category <Ref Func="IsCyc"/>,
## <Ref Var="infinity"/> lies in (and can be detected from) the category
## <Ref Func="IsInfinity"/>,
## and unknowns lie in <Ref Func="IsUnknown"/>.
## <P/>
## <Example><![CDATA[
## gap> IsCyclotomic(0); IsCyclotomic(1/2*E(3)); IsCyclotomic( infinity );
## true
## true
## true
## gap> IsCyc(0); IsCyc(1/2*E(3)); IsCyc( infinity );
## true
## true
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsCyclotomic",
IsScalar and IsAssociativeElement and IsCommutativeElement
and IsAdditivelyCommutativeElement and IsZDFRE);
DeclareCategoryKernel( "IsCyc", IsCyclotomic, IS_CYC );
#############################################################################
##
#C IsCyclotomicCollection . . . . . . category of collection of cyclotomics
#C IsCyclotomicCollColl . . . . . . . category of collection of collection
#C IsCyclotomicCollCollColl . . . . category of collection of coll of coll
##
## <ManSection>
## <Filt Name="IsCyclotomicCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsCyclotomicCollColl" Arg='obj' Type='Category'/>
## <Filt Name="IsCyclotomicCollCollColl" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryCollections( "IsCyclotomic" );
DeclareCategoryCollections( "IsCyclotomicCollection" );
DeclareCategoryCollections( "IsCyclotomicCollColl" );
#############################################################################
##
#C IsRat( <obj> )
##
## <#GAPDoc Label="IsRat">
## <ManSection>
## <Filt Name="IsRat" Arg='obj' Type='Category'/>
##
## <Description>
## <Index Subkey="for a rational">test</Index>
## Every rational number lies in the category <Ref Func="IsRat"/>,
## which is a subcategory of <Ref Func="IsCyc"/>.
## <P/>
## <Example><![CDATA[
## gap> IsRat( 2/3 );
## true
## gap> IsRat( 17/-13 );
## true
## gap> IsRat( 11 );
## true
## gap> IsRat( IsRat ); # `IsRat' is a function, not a rational
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryKernel( "IsRat", IsCyc, IS_RAT );
#############################################################################
##
#C IsInt( <obj> )
##
## <#GAPDoc Label="IsInt">
## <ManSection>
## <Filt Name="IsInt" Arg='obj' Type='Category'/>
##
## <Description>
## Every rational integer lies in the category <Ref Func="IsInt"/>,
## which is a subcategory of <Ref Func="IsRat"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategoryKernel( "IsInt", IsRat, IS_INT );
#############################################################################
##
#C IsPosRat( <obj> )
##
## <#GAPDoc Label="IsPosRat">
## <ManSection>
## <Filt Name="IsPosRat" Arg='obj' Type='Category'/>
##
## <Description>
## Every positive rational number lies in the category
## <Ref Func="IsPosRat"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsPosRat", IsRat );
#############################################################################
##
#C IsPosInt( <obj> )
##
## <#GAPDoc Label="IsPosInt">
## <ManSection>
## <Filt Name="IsPosInt" Arg='obj' Type='Category'/>
##
## <Description>
## Every positive integer lies in the category <Ref Func="IsPosInt"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsPosInt", IsInt and IsPosRat );
#############################################################################
##
#C IsNegRat( <obj> )
##
## <#GAPDoc Label="IsNegRat">
## <ManSection>
## <Filt Name="IsNegRat" Arg='obj' Type='Category'/>
##
## <Description>
## Every negative rational number lies in the category
## <Ref Func="IsNegRat"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsNegRat", IsRat );
#############################################################################
##
#C IsNegInt( <obj> )
##
## <ManSection>
## <Filt Name="IsNegInt" Arg='obj' Type='Category'/>
##
## <Description>
## Every negative integer lies in the category <Ref Func="IsNegInt"/>.
## </Description>
## </ManSection>
##
DeclareSynonym( "IsNegInt", IsInt and IsNegRat );
#############################################################################
##
#C IsZeroCyc( <obj> )
##
## <ManSection>
## <Filt Name="IsZeroCyc" Arg='obj' Type='Category'/>
##
## <Description>
## Only the zero <C>0</C> of the cyclotomics lies in the category
## <Ref Func="IsZeroCyc"/>.
## </Description>
## </ManSection>
##
DeclareCategory( "IsZeroCyc", IsInt and IsZero );
#############################################################################
##
#V CyclotomicsFamily . . . . . . . . . . . . . . . . . family of cyclotomics
##
## <ManSection>
## <Var Name="CyclotomicsFamily"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "CyclotomicsFamily",
NewFamily( "CyclotomicsFamily",
IsCyclotomic,CanEasilySortElements,
CanEasilySortElements ) );
#############################################################################
##
#R IsSmallIntRep . . . . . . . . . . . . . . . . . . small internal integer
##
## <ManSection>
## <Filt Name="IsSmallIntRep" Arg='obj' Type='Representation'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareRepresentation( "IsSmallIntRep", IsInternalRep, [] );
#############################################################################
##
#V TYPE_INT_SMALL_ZERO . . . . . . . . . . . . . . type of the internal zero
##
## <ManSection>
## <Var Name="TYPE_INT_SMALL_ZERO"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_ZERO", NewType( CyclotomicsFamily,
IsInt and IsZeroCyc and IsSmallIntRep ) );
#############################################################################
##
#V TYPE_INT_SMALL_NEG . . . . . . type of a small negative internal integer
##
## <ManSection>
## <Var Name="TYPE_INT_SMALL_NEG"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_NEG", NewType( CyclotomicsFamily,
IsInt and IsNegRat and IsSmallIntRep ) );
#############################################################################
##
#V TYPE_INT_SMALL_POS . . . . . . type of a small positive internal integer
##
## <ManSection>
## <Var Name="TYPE_INT_SMALL_POS"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_INT_SMALL_POS", NewType( CyclotomicsFamily,
IsPosInt and IsSmallIntRep ) );
#############################################################################
##
#V TYPE_INT_LARGE_NEG . . . . . . type of a large negative internal integer
##
## <ManSection>
## <Var Name="TYPE_INT_LARGE_NEG"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_INT_LARGE_NEG", NewType( CyclotomicsFamily,
IsInt and IsNegRat and IsInternalRep ) );
#############################################################################
##
#V TYPE_INT_LARGE_POS . . . . . . type of a large positive internal integer
##
## <ManSection>
## <Var Name="TYPE_INT_LARGE_POS"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_INT_LARGE_POS", NewType( CyclotomicsFamily,
IsPosInt and IsInternalRep ) );
#############################################################################
##
#V TYPE_RAT_NEG . . . . . . . . . . . type of a negative internal rational
##
## <ManSection>
## <Var Name="TYPE_RAT_NEG"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_RAT_NEG", NewType( CyclotomicsFamily,
IsRat and IsNegRat and IsInternalRep ) );
#############################################################################
##
#V TYPE_RAT_POS . . . . . . . . . . . type of a positive internal rational
##
## <ManSection>
## <Var Name="TYPE_RAT_POS"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_RAT_POS", NewType( CyclotomicsFamily,
IsRat and IsPosRat and IsInternalRep ) );
#############################################################################
##
#V TYPE_CYC . . . . . . . . . . . . . . . . type of an internal cyclotomics
##
## <ManSection>
## <Var Name="TYPE_CYC"/>
##
## <Description>
## </Description>
## </ManSection>
##
BIND_GLOBAL( "TYPE_CYC",
NewType( CyclotomicsFamily, IsCyc and IsInternalRep ) );
#############################################################################
##
#v One( CyclotomicsFamily )
#v Zero( CyclotomicsFamily )
#v Characteristic( CyclotomicsFamily )
##
SetOne( CyclotomicsFamily, 1 );
SetZero( CyclotomicsFamily, 0 );
SetCharacteristic( CyclotomicsFamily, 0 );
#############################################################################
##
#v IsUFDFamily( CyclotomicsFamily )
##
SetIsUFDFamily( CyclotomicsFamily, true );
#############################################################################
##
#F E( <n> )
##
## <#GAPDoc Label="E">
## <ManSection>
## <Func Name="E" Arg='n'/>
##
## <Description>
## <Index>roots of unity</Index>
## <Ref Func="E"/> returns the primitive <A>n</A>-th root of unity
## <M>e_n = \exp(2\pi i/n)</M>.
## Cyclotomics are usually entered as sums of roots of unity,
## with rational coefficients,
## and irrational cyclotomics are displayed in such a way.
## (For special cyclotomics, see <Ref Sect="ATLAS Irrationalities"/>.)
## <P/>
## <Example><![CDATA[
## gap> E(9); E(9)^3; E(6); E(12) / 3;
## -E(9)^4-E(9)^7
## E(3)
## -E(3)^2
## -1/3*E(12)^7
## ]]></Example>
## <P/>
## A particular basis is used to express cyclotomics,
## see <Ref Sect="Integral Bases of Abelian Number Fields"/>;
## note that <C>E(9)</C> is <E>not</E> a basis element,
## as the above example shows.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
#############################################################################
##
#C IsInfinity( <obj> ) . . . . . . . . . . . . . . . . category of infinity
#V infinity . . . . . . . . . . . . . . . . . . . . . . the value infinity
#C IsNegInfinity( <obj> ) . . . . . . . . . . category of negative infinity
#V -infinity . . . . . . . . . . . . . . . . . . . . . . the value -infinity
## <#GAPDoc Label="IsInfinity">
## <ManSection>
## <Filt Name="IsInfinity" Arg='obj' Type='Category'/>
## <Filt Name="IsNegInfinity" Arg='obj' Type='Category'/>
## <Var Name="infinity"/>
## <Var Name="-infinity"/>
##
## <Description>
## <Ref Var="infinity"/> and <Ref Var="-infinity"/> are special &GAP; objects
## that lie in <C>CyclotomicsFamily</C>.
## They are larger or smaller than all other objects in this family
## respectively.
## <Ref Var="infinity"/> is mainly used as return value of operations such
## as <Ref Func="Size"/>
## and <Ref Func="Dimension"/> for infinite and infinite dimensional domains,
## respectively.
## <P/>
## Some arithmetic operations are provided for convenience when using
## <Ref Var="infinity"/> and <Ref Var="-infinity"/> as top and bottom element
## respectively.
## <Example><![CDATA[
## gap> -infinity + 1;
## -infinity
## gap> infinity + infinity;
## infinity
## ]]></Example>
## Often it is useful to distinguish <Ref Var="infinity"/>
## from <Q>proper</Q> cyclotomics.
## For that, <Ref Var="infinity"/> lies in the category
## <Ref Func="IsInfinity"/> but not in <Ref Func="IsCyc"/>,
## and the other cyclotomics lie in the category <Ref Func="IsCyc"/> but not
## in <Ref Func="IsInfinity"/>.
## <P/>
## <Example><![CDATA[
## gap> s:= Size( Rationals );
## infinity
## gap> s = infinity; IsCyclotomic( s ); IsCyc( s ); IsInfinity( s );
## true
## true
## false
## true
## gap> s in Rationals; s > 17;
## false
## true
## gap> Set( [ s, 2, s, E(17), s, 19 ] );
## [ 2, 19, E(17), infinity ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsInfinity", IsCyclotomic );
UNBIND_GLOBAL( "infinity" );
BIND_GLOBAL( "infinity",
Objectify( NewType( CyclotomicsFamily, IsInfinity
and IsPositionalObjectRep ), [] ) );
InstallMethod( PrintObj,
"for infinity",
[ IsInfinity ], function( obj ) Print( "infinity" ); end );
InstallMethod( \=,
"for cyclotomic and `infinity'",
IsIdenticalObj, [ IsCyc, IsInfinity ], ReturnFalse );
InstallMethod( \=,
"for `infinity' and cyclotomic",
IsIdenticalObj, [ IsInfinity, IsCyc ], ReturnFalse );
InstallMethod( \=,
"for `infinity' and `infinity'",
IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnTrue );
InstallMethod( \<,
"for cyclotomic and `infinity'",
IsIdenticalObj, [ IsCyc, IsInfinity ], ReturnTrue );
InstallMethod( \<,
"for `infinity' and cyclotomic",
IsIdenticalObj, [ IsInfinity, IsCyc ], ReturnFalse );
InstallMethod( \<,
"for `infinity' and `infinity'",
IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnFalse );
DeclareCategory( "IsNegInfinity", IsCyclotomic );
BIND_GLOBAL( "Ninfinity",
Objectify( NewType( CyclotomicsFamily, IsNegInfinity
and IsPositionalObjectRep ), [] ) );
InstallMethod( PrintObj,
"for -infinity",
[ IsNegInfinity ], function( obj ) Print( "-infinity" ); end );
InstallMethod( \=,
"for cyclotomic and `-infinity'",
IsIdenticalObj, [ IsCyc, IsNegInfinity ], ReturnFalse );
InstallMethod( \=,
"for `-infinity' and cyclotomic",
IsIdenticalObj, [ IsNegInfinity, IsCyc ], ReturnFalse );
InstallMethod( \=,
"for `infinity' and `-infinity'",
IsIdenticalObj, [ IsInfinity, IsNegInfinity ], ReturnFalse );
InstallMethod( \=,
"for `-infinity' and `infinity'",
IsIdenticalObj, [ IsNegInfinity, IsInfinity ], ReturnFalse );
InstallMethod( \=,
"for `-infinity' and `-infinity'",
IsIdenticalObj, [ IsNegInfinity, IsNegInfinity ], ReturnTrue );
InstallMethod( \<,
"for cyclotomic and `-infinity'",
IsIdenticalObj, [ IsCyc, IsNegInfinity ], ReturnFalse );
InstallMethod( \<,
"for `-infinity' and cyclotomic",
IsIdenticalObj, [ IsNegInfinity, IsCyc ], ReturnTrue );
InstallMethod( \<,
"for `infinity' and `-infinity'",
IsIdenticalObj, [ IsInfinity, IsNegInfinity ], ReturnFalse );
InstallMethod( \<,
"for `-infinity' and `infinity'",
IsIdenticalObj, [ IsNegInfinity, IsInfinity ], ReturnTrue );
InstallMethod( \<,
"for `infinity' and `infinity'",
IsIdenticalObj, [ IsInfinity, IsInfinity ], ReturnFalse );
InstallMethod( AdditiveInverseOp,
"for `infinity'",
[ IsInfinity ], x -> Ninfinity );
InstallMethod( AdditiveInverseOp,
"for `-infinity'",
[ IsNegInfinity ], x -> infinity );
InstallMethod( \+,
"for `infinity' and cyclotomic",
IsIdenticalObj, [ IsInfinity, IsCyc ], function(x,y) return infinity; end );
InstallMethod( \+,
"for cyclotomic and `infinity'",
IsIdenticalObj, [ IsCyc, IsInfinity ], function(x,y) return infinity; end );
InstallMethod( \+,
"for `infinity' and `infinity'",
IsIdenticalObj, [ IsInfinity, IsInfinity ], function(x,y) return infinity; end );
InstallMethod( \+,
"for `-infinity' and cyclotomic",
IsIdenticalObj, [ IsNegInfinity, IsCyc ], function(x,y) return -infinity; end );
InstallMethod( \+,
"for cyclotomic and `-infinity'",
IsIdenticalObj, [ IsCyc, IsNegInfinity ], function(x,y) return -infinity; end );
InstallMethod( \+,
"for `-infinity' and `-infinity'",
IsIdenticalObj, [ IsNegInfinity, IsNegInfinity ], function(x,y) return -infinity; end );
#############################################################################
##
#P IsIntegralCyclotomic( <obj> ) . . . . . . . . . . . integral cyclotomics
##
## <#GAPDoc Label="IsIntegralCyclotomic">
## <ManSection>
## <Prop Name="IsIntegralCyclotomic" Arg='obj'/>
##
## <Description>
## A cyclotomic is called <E>integral</E> or a <E>cyclotomic integer</E>
## if all coefficients of its minimal polynomial over the rationals are
## integers.
## Since the underlying basis of the external representation of cyclotomics
## is an integral basis
## (see <Ref Sect="Integral Bases of Abelian Number Fields"/>),
## the subring of cyclotomic integers in a cyclotomic field is formed
## by those cyclotomics for which the external representation is a list of
## integers.
## For example, square roots of integers are cyclotomic integers
## (see <Ref Sect="ATLAS Irrationalities"/>),
## any root of unity is a cyclotomic integer,
## character values are always cyclotomic integers,
## but all rationals which are not integers are not cyclotomic integers.
## <P/>
## <Example><![CDATA[
## gap> r:= ER( 5 ); # The square root of 5 ...
## E(5)-E(5)^2-E(5)^3+E(5)^4
## gap> IsIntegralCyclotomic( r ); # ... is a cyclotomic integer.
## true
## gap> r2:= 1/2 * r; # This is not a cyclotomic integer, ...
## 1/2*E(5)-1/2*E(5)^2-1/2*E(5)^3+1/2*E(5)^4
## gap> IsIntegralCyclotomic( r2 );
## false
## gap> r3:= 1/2 * r - 1/2; # ... but this is one.
## E(5)+E(5)^4
## gap> IsIntegralCyclotomic( r3 );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsIntegralCyclotomic", IsObject );
DeclareSynonymAttr( "IsCycInt", IsIntegralCyclotomic );
InstallMethod( IsIntegralCyclotomic,
"for an internally represented cyclotomic",
[ IsInternalRep ],
IS_CYC_INT );
#############################################################################
##
#A Conductor( <cyc> ) . . . . . . . . . . . . . . . . . . for a cyclotomic
#A Conductor( <C> ) . . . . . . . . . . . . for a collection of cyclotomics
##
## <#GAPDoc Label="Conductor">
## <ManSection>
## <Attr Name="Conductor" Arg='cyc' Label="for a cyclotomic"/>
## <Attr Name="Conductor" Arg='C' Label="for a collection of cyclotomics"/>
##
## <Description>
## For an element <A>cyc</A> of a cyclotomic field,
## <Ref Attr="Conductor" Label="for a cyclotomic"/>
## returns the smallest integer <M>n</M> such that <A>cyc</A> is contained
## in the <M>n</M>-th cyclotomic field.
## For a collection <A>C</A> of cyclotomics (for example a dense list of
## cyclotomics or a field of cyclotomics),
## <Ref Attr="Conductor" Label="for a collection of cyclotomics"/> returns
## the smallest integer <M>n</M> such that all elements of <A>C</A>
## are contained in the <M>n</M>-th cyclotomic field.
## <P/>
## <Example><![CDATA[
## gap> Conductor( 0 ); Conductor( E(10) ); Conductor( E(12) );
## 1
## 5
## 12
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttributeKernel( "Conductor", IsCyc, CONDUCTOR );
DeclareAttribute( "Conductor", IsCyclotomicCollection );
#T also for matrices, matrix groups etc. of cyclotomics?
#############################################################################
##
#O GaloisCyc( <cyc>, <k> ) . . . . . . . . . . . . . . . . Galois conjugate
#O GaloisCyc( <list>, <k> ) . . . . . . . . . . . list of Galois conjugates
##
## <#GAPDoc Label="GaloisCyc">
## <ManSection>
## <Oper Name="GaloisCyc" Arg='cyc, k' Label="for a cyclotomic"/>
## <Oper Name="GaloisCyc" Arg='list, k' Label="for a list of cyclotomics"/>
##
## <Description>
## For a cyclotomic <A>cyc</A> and an integer <A>k</A>,
## <Ref Oper="GaloisCyc" Label="for a cyclotomic"/> returns the cyclotomic
## obtained by raising the roots of unity in the Zumbroich basis
## representation of <A>cyc</A> to the <A>k</A>-th power.
## If <A>k</A> is coprime to the integer <M>n</M>,
## <C>GaloisCyc( ., <A>k</A> )</C> acts as a Galois automorphism
## of the <M>n</M>-th cyclotomic field
## (see <Ref Sect="Galois Groups of Abelian Number Fields"/>);
## to get the Galois automorphisms themselves,
## use <Ref Oper="GaloisGroup" Label="of field"/>.
## <P/>
## The <E>complex conjugate</E> of <A>cyc</A> is
## <C>GaloisCyc( <A>cyc</A>, -1 )</C>,
## which can also be computed using <Ref Func="ComplexConjugate"/>.
## <P/>
## For a list or matrix <A>list</A> of cyclotomics,
## <Ref Oper="GaloisCyc" Label="for a list of cyclotomics"/> returns
## the list obtained by applying
## <Ref Oper="GaloisCyc" Label="for a cyclotomic"/> to the entries of
## <A>list</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperationKernel( "GaloisCyc", [ IsCyc, IsInt ], GALOIS_CYC );
DeclareOperation( "GaloisCyc", [ IsCyclotomicCollection, IsInt ] );
DeclareOperation( "GaloisCyc", [ IsCyclotomicCollColl, IsInt ] );
InstallMethod( GaloisCyc,
"for a list of cyclotomics, and an integer",
[ IsList and IsCyclotomicCollection, IsInt ],
function( list, k )
return List( list, entry -> GaloisCyc( entry, k ) );
end );
InstallMethod( GaloisCyc,
"for a list of lists of cyclotomics, and an integer",
[ IsList and IsCyclotomicCollColl, IsInt ],
function( list, k )
return List( list, entry -> GaloisCyc( entry, k ) );
end );
#############################################################################
##
#F NumeratorRat( <rat> ) . . . . . . . . . . numerator of internal rational
##
## <#GAPDoc Label="NumeratorRat">
## <ManSection>
## <Func Name="NumeratorRat" Arg='rat'/>
##
## <Description>
## <Index Subkey="of a rational">numerator</Index>
## <Ref Func="NumeratorRat"/> returns the numerator of the rational
## <A>rat</A>.
## Because the numerator holds the sign of the rational it may be any
## integer.
## Integers are rationals with denominator <M>1</M>,
## thus <Ref Func="NumeratorRat"/> is the identity function for integers.
## <P/>
## <Example><![CDATA[
## gap> NumeratorRat( 2/3 );
## 2
## gap> # numerator and denominator are made relatively prime:
## gap> NumeratorRat( 66/123 );
## 22
## gap> NumeratorRat( 17/-13 ); # numerator holds the sign of the rational
## -17
## gap> NumeratorRat( 11 ); # integers are rationals with denominator 1
## 11
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "NumeratorRat", NUMERATOR_RAT );
#############################################################################
##
#F DenominatorRat( <rat> ) . . . . . . . . denominator of internal rational
##
## <#GAPDoc Label="DenominatorRat">
## <ManSection>
## <Func Name="DenominatorRat" Arg='rat'/>
##
## <Description>
## <Index Subkey="of a rational">denominator</Index>
## <Ref Func="DenominatorRat"/> returns the denominator of the rational
## <A>rat</A>.
## Because the numerator holds the sign of the rational the denominator is
## always a positive integer.
## Integers are rationals with the denominator 1,
## thus <Ref Func="DenominatorRat"/> returns 1 for integers.
## <P/>
## <Example><![CDATA[
## gap> DenominatorRat( 2/3 );
## 3
## gap> # numerator and denominator are made relatively prime:
## gap> DenominatorRat( 66/123 );
## 41
## gap> # the denominator holds the sign of the rational:
## gap> DenominatorRat( 17/-13 );
## 13
## gap> DenominatorRat( 11 ); # integers are rationals with denominator 1
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "DenominatorRat", DENOMINATOR_RAT );
#############################################################################
##
#F QuoInt( <n>, <m> ) . . . . . . . . . . . . quotient of internal integers
##
## <#GAPDoc Label="QuoInt">
## <ManSection>
## <Func Name="QuoInt" Arg='n, m'/>
##
## <Description>
## <Index>integer part of a quotient</Index>
## <Ref Func="QuoInt"/> returns the integer part of the quotient of its
## integer operands.
## <P/>
## If <A>n</A> and <A>m</A> are positive, <Ref Func="QuoInt"/> returns
## the largest positive integer <M>q</M> such that
## <M>q * <A>m</A> \leq <A>n</A></M>.
## If <A>n</A> or <A>m</A> or both are negative the absolute value of the
## integer part of the quotient is the quotient of the absolute values of
## <A>n</A> and <A>m</A>,
## and the sign of it is the product of the signs of <A>n</A> and <A>m</A>.
## <P/>
## <Ref Func="QuoInt"/> is used in a method for the general operation
## <Ref Func="EuclideanQuotient"/>.
## <Example><![CDATA[
## gap> QuoInt(5,3); QuoInt(-5,3); QuoInt(5,-3); QuoInt(-5,-3);
## 1
## -1
## -1
## 1
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "QuoInt", QUO_INT );
#############################################################################
##
#F RemInt( <n>, <m> ) . . . . . . . . . . . remainder of internal integers
##
## <#GAPDoc Label="RemInt">
## <ManSection>
## <Func Name="RemInt" Arg='n, m'/>
##
## <Description>
## <Index>remainder of a quotient</Index>
## <Ref Func="RemInt"/> returns the remainder of its two integer operands.
## <P/>
## If <A>m</A> is not equal to zero, <Ref Func="RemInt"/> returns
## <C><A>n</A> - <A>m</A> * QuoInt( <A>n</A>, <A>m</A> )</C>.
## Note that the rules given for <Ref Func="QuoInt"/> imply that the return
## value of <Ref Func="RemInt"/> has the same sign as <A>n</A>
## and its absolute value is strictly less than the absolute value
## of <A>m</A>.
## Note also that the return value equals <C><A>n</A> mod <A>m</A></C>
## when both <A>n</A> and <A>m</A> are nonnegative.
## Dividing by <C>0</C> signals an error.
## <P/>
## <Ref Func="RemInt"/> is used in a method for the general operation
## <Ref Func="EuclideanRemainder"/>.
## <Example><![CDATA[
## gap> RemInt(5,3); RemInt(-5,3); RemInt(5,-3); RemInt(-5,-3);
## 2
## -2
## 2
## -2
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "RemInt", REM_INT );
#############################################################################
##
#F GcdInt( <m>, <n> ) . . . . . . . . . . . . . . gcd of internal integers
##
## <#GAPDoc Label="GcdInt">
## <ManSection>
## <Func Name="GcdInt" Arg='m, n'/>
##
## <Description>
## <Ref Func="GcdInt"/> returns the greatest common divisor
## of its two integer operands <A>m</A> and <A>n</A>, i.e.,
## the greatest integer that divides both <A>m</A> and <A>n</A>.
## The greatest common divisor is never negative, even if the arguments are.
## We define
## <C>GcdInt( <A>m</A>, 0 ) = GcdInt( 0, <A>m</A> ) = AbsInt( <A>m</A> )</C>
## and <C>GcdInt( 0, 0 ) = 0</C>.
## <P/>
## <Ref Func="GcdInt"/> is a method used by the general function
## <Ref Func="Gcd" Label="for (a ring and) several elements"/>.
## <P/>
## <Example><![CDATA[
## gap> GcdInt( 123, 66 );
## 3
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "GcdInt", GCD_INT );
#############################################################################
##
#m Order( <cyc> ) . . . . . . . . . . . . . . . . . order of an alg. number
##
## If <cyc> is not a cyclotomic integer then its order is infinity.
## Otherwise, <cyc> is a root of unity iff its absolute value is $1$.
## (This follows from the more general theorem that an algebraic integer is
## a root of unity iff all its algebraic conjugates have absolute value $1$;
## note that we assume that <cyc> lies in a cyclotomic field,
## so the Galois group of the field extension is abelian.)
##
## This method is thought for cyclotomics for which it is cheap to decide
## whether they are algebraic integers, and to compute the conductor;
## both conditions hold for internally represented cyclotomics,
## since they are represented w.r.t. an integral basis of the smallest
## possible cyclotomic field.
##
InstallMethod( Order,
"for a cyclotomic",
[ IsCyc ],
function ( cyc )
local n;
# Check that the argument is a root of unity.
if cyc = 0 then
Error( "argument must be nonzero" );
elif not IsIntegralCyclotomic( cyc )
or cyc * GaloisCyc( cyc, -1 ) <> 1 then
return infinity;
fi;
# Let $n$ be the conductor of `cyc'.
# The roots of unity in the $n$-th cyclotomic field are exactly the
# $n$-th roots if $n$ is even, and the $2 n$-th roots if $n$ is odd.
n:= Conductor( cyc );
if n mod 2 = 0 or cyc^n = 1 then
return n;
else
Assert( 1, cyc^n = -1 );
return 2*n;
fi;
end );
#############################################################################
##
#M Int( <int> ) . . . . . . . . . . . . . . . . . . . . . . for an integer
#M Int( <rat> ) . . . . . . . . . . . . convert a rational into an integer
#M Int( <cyc> ) . . . . . . . . . . . . . cyclotomic integer near to <cyc>
##
## <#GAPDoc Label="Int:cyclotomics">
## <ManSection>
## <Func Name="Int" Arg='cyc' Label="for a cyclotomic"/>
##
## <Description>
## The operation <Ref Func="Int" Label="for a cyclotomic"/>
## can be used to find a cyclotomic integer near to an arbitrary cyclotomic,
## by applying <Ref Attr="Int"/> to the coefficients.
## <P/>
## <Example><![CDATA[
## gap> Int( E(5)+1/2*E(5)^2 ); Int( 2/3*E(7)-3/2*E(4) );
## E(5)
## -E(4)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InstallMethod( Int,
"for an integer",
[ IsInt ],
IdFunc );
InstallMethod( Int,
"for a rational",
[ IsRat ],
obj -> QuoInt( NumeratorRat( obj ), DenominatorRat( obj ) ) );
InstallMethod( Int,
"for a cyclotomic",
[ IsCyc ],
cyc -> CycList( List( COEFFS_CYC( cyc ), Int ) ) );
#############################################################################
##
#M String( <int> ) . . . . . . . . . . . . . . . . . . . . . for an integer
#M String( <rat> ) . . . . . . . . . . . . convert a rational into a string
#M String( <cyc> ) . . . . . . . . . . . . convert cyclotomic into a string
#M String( <infinity> ) . . . . . . . . . . . . . . . . . . for `infinity'
##
## <#GAPDoc Label="String:cyclotomics">
## <ManSection>
## <Meth Name="String" Arg='cyc' Label="for a cyclotomic"/>
##
## <Description>
## The operation <Ref Func="String" Label="for a cyclotomic"/>
## returns for a cyclotomic <A>cyc</A> a string corresponding to the way
## the cyclotomic is printed by <Ref Func="ViewObj"/> and
## <Ref Func="PrintObj"/>.
## <P/>
## <Example><![CDATA[
## gap> String( E(5)+1/2*E(5)^2 ); String( 17/3 );
## "E(5)+1/2*E(5)^2"
## "17/3"
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InstallMethod( String,
"for an integer",
[ IsInt ],
function(a)
local sign, halflen, b, q, qr, s1, s2, pad;
# "small" numbers
if Log2Int(a) < 5000 then
# kernel method
return STRING_INT(a);
fi;
# sign
if a < 0 then
sign := "-";
a := -a;
else
sign := "";
fi;
# recursion
halflen := QuoInt(Log2Int(a)*100, 664);
b := 10^halflen;
q := QUO_INT(a, b);
qr := [q, a-q*b]; #QuotientRemainder(a, 10^halflen);
if qr[1] = 0 then
s1 := "";
else
s1 := String(qr[1]);
fi;
s2 := String(qr[2]);
pad := ListWithIdenticalEntries(halflen-Length(s2), '0');
return Concatenation(sign,s1,pad,s2);
end);
InstallMethod( String,
"for a rational",
[ IsRat ],
function ( rat )
local str;
str := String( NumeratorRat( rat ) );
if DenominatorRat( rat ) <> 1 then
str := Concatenation( str, "/", String( DenominatorRat( rat ) ) );
fi;
ConvertToStringRep( str );
return str;
end );
InstallMethod( String,
"for a cyclotomic",
[ IsCyc ],
function( cyc )
local i, j, En, coeffs, str;
# get the coefficients
coeffs := COEFFS_CYC( cyc );
# get the root as a string
En := Concatenation( "E(", String( Length( coeffs ) ), ")" );
# print the first non zero coefficient
i := 1;
while coeffs[i] = 0 do i:= i+1; od;
if i = 1 then
str := ShallowCopy( String( coeffs[1] ) );
elif coeffs[i] = -1 then
str := Concatenation( "-", En );
elif coeffs[i] = 1 then
str := ShallowCopy( En );
else
str := Concatenation( String( coeffs[i] ), "*", En );
fi;
if 2 < i then
Add( str, '^' );
Append( str, String(i-1) );
fi;
# print the other coefficients
for j in [i+1..Length(coeffs)] do
if coeffs[j] = 1 then
Add( str, '+' );
Append( str, En );
elif coeffs[j] = -1 then
Add( str, '-' );
Append( str, En );
elif 0 < coeffs[j] then
Add( str, '+' );
Append( str, String( coeffs[j] ) );
Add( str, '*' );
Append( str, En );
elif coeffs[j] < 0 then
Append( str, String( coeffs[j] ) );
Add( str, '*' );
Append( str, En );
fi;
if 2 < j and coeffs[j] <> 0 then
Add( str, '^' );
Append( str, String( j-1 ) );
fi;
od;
# Convert to string representation.
ConvertToStringRep( str );
# Return the string.
return str;
end );
InstallMethod( String,
"for infinity",
[ IsInfinity ],
x -> "infinity" );
InstallMethod( String,
"for -infinity",
[ IsNegInfinity ],
x -> "-infinity" );
#############################################################################
##
#E
|