/usr/share/gap/lib/domain.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | #############################################################################
##
#W domain.gd GAP library Martin Schönert
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This declares the operations for domains.
##
#############################################################################
##
## <#GAPDoc Label="[1]{domain}">
## <E>Domain</E> is &GAP;'s name for structured sets.
## The ring of Gaussian integers <M>&ZZ;[\sqrt{{-1}}]</M> is an example of a
## domain,
## the group <M>D_{12}</M> of symmetries of a regular hexahedron is another.
## <P/>
## The &GAP; library predefines some domains.
## For example the ring of Gaussian integers is predefined as
## <Ref Var="GaussianIntegers"/> (see <Ref Chap="Gaussians"/>)
## and the field of rationals is predefined as <Ref Var="Rationals"/>
## (see <Ref Chap="Rational Numbers"/>).
## Most domains are constructed by functions,
## which are called <E>domain constructors</E>
## (see <Ref Sect="Constructing Domains"/>).
## For example the group <M>D_{12}</M> is constructed by the construction
## <C>Group( (1,2,3,4,5,6), (2,6)(3,5) )</C>
## (see <Ref Func="Group" Label="for several generators"/>)
## and the finite field with 16 elements is constructed by
## <C>GaloisField( 16 )</C>
## (see <Ref Func="GaloisField" Label="for field size"/>).
## <P/>
## The first place where you need domains in &GAP; is the obvious one.
## Sometimes you simply want to deal with a domain.
## For example if you want to compute the size of the group <M>D_{12}</M>,
## you had better be able to represent this group in a way that the
## <Ref Func="Size"/> function can understand.
## <P/>
## The second place where you need domains in &GAP; is when you want to
## be able to specify that an operation or computation takes place in a
## certain domain.
## For example suppose you want to factor 10 in the ring of Gaussian
## integers.
## Saying <C>Factors( 10 )</C> will not do, because this will return the
## factorization <C>[ 2, 5 ]</C> in the ring of integers.
## To allow operations and computations to happen in a specific domain,
## <Ref Func="Factors"/>, and many other functions as well,
## accept this domain as optional first argument.
## Thus <C>Factors( GaussianIntegers, 10 )</C> yields the desired result
## <C>[ 1+E(4), 1-E(4), 2+E(4), 2-E(4) ]</C>.
## (The imaginary unit <M>\sqrt{{-1}}</M> is written as <C>E(4)</C>
## in &GAP;, see <Ref Func="E"/>.)
## <#/GAPDoc>
##
## <#GAPDoc Label="[2]{domain}">
## <E>Equality</E> and <E>comparison</E> of domains are defined as follows.
## <P/>
## Two domains are considered <E>equal</E> if and only if the sets of their
## elements as computed by <Ref Attr="AsSSortedList"/>) are equal.
## Thus, in general <C>=</C> behaves as if each domain operand were replaced
## by its set of elements.
## Except that <C>=</C> will also sometimes, but not always,
## work for infinite domains, for which of course &GAP; cannot compute
## the set of elements.
## Note that this implies that domains with different algebraic structure
## may well be equal.
## As a special case of this, either operand of <C>=</C> may also be a
## proper set (see <Ref Sect="Sorted Lists and Sets"/>),
## i.e., a sorted list without holes or duplicates
## (see <Ref Attr="AsSSortedList"/>),
## and <C>=</C> will return <K>true</K> if and only if this proper set is
## equal to the set of elements of the argument that is a domain.
## <P/>
## <!-- #T These statements imply that <C><</C> and <C>=</C> -->
## <!-- #T comparisons of <E>elements</E> in a domain are always -->
## <!-- #T defined. Do we really want to guarantee this? -->
## <E>No</E> general <E>ordering</E> of arbitrary domains via <C><</C>
## is defined in &GAP; 4.
## This is because a well-defined <C><</C> for domains or, more general,
## for collections, would have to be compatible with <C>=</C> and would need
## to be transitive and antisymmetric in order to be used to form ordered
## sets.
## In particular, <C><</C> would have to be independent of the algebraic
## structure of its arguments because this holds for <C>=</C>,
## and thus there would be hardly a situation where one could implement
## an efficient comparison method.
## (Note that in the case that two domains are comparable with <C><</C>,
## the result is in general <E>not</E> compatible with the set theoretical
## subset relation, which can be decided with <Ref Oper="IsSubset"/>.)
## <#/GAPDoc>
##
#############################################################################
##
#C IsGeneralizedDomain( <D> ) . . . . . . . . . test for generalized domain
#C IsDomain( <D> ) . . . . . . . . . . . . . . . . . . . . . test for domain
##
## <#GAPDoc Label="IsGeneralizedDomain">
## <ManSection>
## <Filt Name="IsGeneralizedDomain" Arg='obj' Type='Category'/>
## <Filt Name="IsDomain" Arg='obj' Type='Category'/>
##
## <Description>
## For some purposes, it is useful to deal with objects that are similar to
## domains but that are not collections in the sense of &GAP;
## because their elements may lie in different families;
## such objects are called <E>generalized domains</E>.
## An instance of generalized domains are <Q>operation domains</Q>,
## for example any <M>G</M>-set for a permutation group <M>G</M>
## consisting of some union of points, sets of points, sets of sets of
## points etc., under a suitable action.
## <P/>
## <Ref Func="IsDomain"/> is a synonym for
## <C>IsGeneralizedDomain and IsCollection</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsGeneralizedDomain", IsObject );
DeclareSynonym( "IsDomain", IsGeneralizedDomain and IsCollection );
InstallTrueMethod( IsDuplicateFree, IsDomain );
#############################################################################
##
#A GeneratorsOfDomain( <D> )
##
## <#GAPDoc Label="GeneratorsOfDomain">
## <ManSection>
## <Attr Name="GeneratorsOfDomain" Arg='D'/>
##
## <Description>
## For a domain <A>D</A>, <Ref Func="GeneratorsOfDomain"/> returns a list
## containing all elements of <A>D</A>, perhaps with repetitions.
## Note that if the domain <A>D</A> shall be generated by a list of some
## elements w.r.t. the empty operational structure
## (see <Ref Sect="Operational Structure of Domains"/>),
## the only possible choice of elements is to take all elements of <A>D</A>.
## See <Ref Sect="Constructing Domains"/> and
## <Ref Sect="Changing the Structure"/> for concepts
## of other notions of generation.
## <P/>
## For many domains that have <E>natural generators by construction</E>
## (for example, the natural generators of a free group of rank two
## are the two generators stored as value of the attribute
## <Ref Attr="GeneratorsOfGroup"/>, and the natural generators of
## a free associative algebra are those generators stored as value of
## the attribute <Ref Attr="GeneratorsOfAlgebra"/>), each <E>natural</E>
## generator can be accessed using the <C>.</C> operator. For a domain
## <A>D</A>, <C><A>D</A>.i</C> returns the <M>i</M>-th generator if
## <M>i</M> is a positive integer, and if <C>name</C> is the name of a
## generator of <A>D</A> then <C><A>D</A>.name</C> returns this generator.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfDomain", IsDomain );
#############################################################################
##
#F Domain( [<Fam>, ]<generators> )
#O DomainByGenerators( <Fam>, <generators> )
##
## <#GAPDoc Label="Domain">
## <ManSection>
## <Func Name="Domain" Arg='[Fam, ]generators'/>
## <Oper Name="DomainByGenerators" Arg='Fam, generators'/>
##
## <Description>
## <Ref Func="Domain"/> returns the domain consisting of the elements
## in the homogeneous list <A>generators</A>.
## If <A>generators</A> is empty then a family <A>Fam</A> must be entered
## as the first argument, and the returned (empty) domain lies in the
## collections family of <A>Fam</A>.
## <P/>
## <Ref Func="DomainByGenerators"/> is the operation called by
## <Ref Func="Domain"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Domain" );
DeclareOperation( "DomainByGenerators", [ IsFamily, IsList ] );
#############################################################################
##
#F Parent( <D> )
#O SetParent( <D>, <P> )
#F HasParent( <D> )
##
## <#GAPDoc Label="Parent">
## <ManSection>
## <Func Name="Parent" Arg='D'/>
## <Oper Name="SetParent" Arg='D, P'/>
## <Func Name="HasParent" Arg='D'/>
##
## <Description>
## It is possible to assign to a domain <A>D</A> one other domain <A>P</A>
## containing <A>D</A> as a subset,
## in order to exploit this subset relation between <A>D</A> and <A>P</A>.
## Note that <A>P</A> need not have the same operational structure as <A>D</A>,
## for example <A>P</A> may be a magma and <A>D</A> a field.
## <P/>
## The assignment is done by calling <Ref Func="SetParent"/>,
## and <A>P</A> is called the <E>parent</E> of <A>D</A>.
## If <A>D</A> has already a parent,
## calls to <Ref Func="SetParent"/> will be ignored.
## <P/>
## If <A>D</A> has a parent <A>P</A>
## –this can be checked with <Ref Func="HasParent"/>–
## then <A>P</A> can be used to gain information about <A>D</A>.
## First, the call of <Ref Func="SetParent"/> causes
## <Ref Func="UseSubsetRelation"/> to be called.
## Second, for a domain <A>D</A> with parent,
## information relative to the parent can be stored in <A>D</A>;
## for example, there is an attribute <C>NormalizerInParent</C> for storing
## <C>Normalizer( <A>P</A>, <A>D</A> )</C> in the case that <A>D</A> is a
## group.
## (More about such parent dependent attributes can be found in
## <Ref Sect="In Parent Attributes"/>.)
## <!-- better make this part of the Reference Manual?-->
## Note that because of this relative information,
## one cannot change the parent;
## that is, one can set the parent only once,
## subsequent calls to <Ref Func="SetParent"/> for the same domain <A>D</A>
## are ignored.
## <!-- better raise a warning/error?-->
## Further note that contrary to <Ref Func="UseSubsetRelation"/>,
## also knowledge about the parent <A>P</A> might be used
## that is discovered after the <Ref Func="SetParent"/> call.
## <P/>
## A stored parent can be accessed using <Ref Func="Parent"/>.
## If <A>D</A> has no parent then <Ref Func="Parent"/> returns <A>D</A>
## itself, and <Ref Func="HasParent"/> will return <K>false</K>
## also after a call to <Ref Func="Parent"/>.
## So <Ref Func="Parent"/> is <E>not</E> an attribute,
## the underlying attribute to store the parent is <C>ParentAttr</C>.
## <!-- add a cross-ref. to section about attributes -->
## <P/>
## Certain functions that return domains with parent already set,
## for example <Ref Func="Subgroup"/>,
## are described in Section <Ref Sect="Constructing Subdomains"/>.
## Whenever a function has this property,
## the &GAP; Reference Manual states this explicitly.
## Note that these functions <E>do not guarantee</E> a certain parent,
## for example <Ref Func="DerivedSubgroup"/> for a perfect
## group <M>G</M> may return <M>G</M> itself, and if <M>G</M> had already a
## parent then this is not replaced by <M>G</M>.
## As a rule of thumb, &GAP; avoids to set a domain as its own parent,
## which is consistent with the behaviour of <Ref Func="Parent"/>,
## at least until a parent is set explicitly with <Ref Func="SetParent"/>.
## <P/>
## <Example><![CDATA[
## gap> g:= Group( (1,2,3), (1,2) );; h:= Group( (1,2) );;
## gap> HasParent( g ); HasParent( h );
## false
## false
## gap> SetParent( h, g );
## gap> Parent( g ); Parent( h );
## Group([ (1,2,3), (1,2) ])
## Group([ (1,2,3), (1,2) ])
## gap> HasParent( g ); HasParent( h );
## false
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ParentAttr", IsDomain );
DeclareSynonym( "SetParent", SetParentAttr );
DeclareSynonym( "HasParent", HasParentAttr );
BIND_GLOBAL( "Parent", function( S )
if HasParent( S ) then
return ParentAttr( S );
else
return S;
fi;
end );
#############################################################################
##
#F InstallAccessToGenerators( <required>, <infotext>, <generators> )
##
## <ManSection>
## <Func Name="InstallAccessToGenerators" Arg='required, infotext, generators'/>
##
## <Description>
## A free structure <M>F</M> has natural generators by construction.
## For example, the natural generators of a free group of rank two are the
## two generators stored as value of the attribute <C>GeneratorsOfGroup</C>,
## and the natural generators of a free associative algebra are those
## generators stored as value of the attribute <C>GeneratorsOfAlgebra</C>.
## Note that semigroup generators are <E>not</E> considered as natural.
## <P/>
## Each natural generator of <M>F</M> can be accessed using the <C>.</C> operator.
## <M>F.i</M> returns the <M>i</M>-th generator if <M>i</M> is a positive integer,
## and if <A>name</A> is the name of a generator of <M>F</M> then <M>F.<A>name</A></M> returns
## this generator.
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "InstallAccessToGenerators" );
#############################################################################
##
#F InParentFOA( <name>, <super>, <sub>, <AorP> ) . dispatcher, oper and attr
##
## <#GAPDoc Label="InParentFOA">
## <ManSection>
## <Func Name="InParentFOA" Arg='name, super, sub, AorP'/>
##
## <Description>
## This section describes how you can add new <Q>in parent attributes</Q>
## (see <Ref Sect="Constructing Subdomains"/>
## and <Ref Sect="Parents"/>).
## As an example, we describe how
## <Ref Func="Index" Label="for a group and its subgroup"/>
## and its related functions are implemented.
## <P/>
## There are two operations
## <Ref Func="Index" Label="for a group and its subgroup"/> and
## <C>IndexOp</C>,
## and an attribute <C>IndexInParent</C>.
## They are created together as shown below,
## and after they have been created,
## methods need be installed only for <C>IndexOp</C>.
## In the creation process, <C>IndexInParent</C>
## already gets one default method installed
## (in addition to the usual system getter of each attribute,
## see <Ref Sect="Attributes"/>),
## namely <C>D -> IndexOp( Parent( D ), D )</C>.
## <P/>
## The operation <Ref Func="Index" Label="for a group and its subgroup"/>
## proceeds as follows.
## <List>
## <Item>
## If it is called with the two arguments <A>super</A> and <A>sub</A>,
## and if <C>HasParent( <A>sub</A> )</C> and
## <C>IsIdenticalObj( <A>super</A>, Parent( <A>sub</A> ) )</C>
## are <K>true</K>, <C>IndexInParent</C> is called
## with argument <A>sub</A>, and the result is returned.
## </Item>
## <Item>
## Otherwise, <C>IndexOp</C> is called with the same arguments that
## <Ref Func="Index" Label="for a group and its subgroup"/> was called with,
## and the result is returned.
## </Item>
## </List>
## (Note that it is in principle possible to install even
## <Ref Func="Index" Label="for a group and its subgroup"/>
## and <C>IndexOp</C> methods
## for a number of arguments different from two,
## with <Ref Func="InstallOtherMethod"/>,
## see <Ref Sect="Creating Attributes and Properties"/>).
## <P/>
## The call of <Ref Func="InParentFOA"/> declares the operations and the
## attribute as described above,
## with names <A>name</A>, <A>name</A><C>Op</C>,
## and <A>name</A><C>InParent</C>.
## <A>super-req</A> and <A>sub-req</A> specify the required filters for the
## first and second argument of the operation <A>name</A><C>Op</C>,
## which are needed to create this operation with
## <Ref Func="DeclareOperation"/>.
## <A>sub-req</A> is also the required filter for the corresponding
## attribute <A>name</A><C>InParent</C>;
## note that <Ref Func="HasParent"/> is <E>not</E> required
## for the argument <A>U</A> of <A>name</A><C>InParent</C>,
## because even without a parent stored,
## <C>Parent( <A>U</A> )</C> is legal, meaning <A>U</A> itself
## (see <Ref Sect="Parents"/>).
## The fourth argument must be <Ref Func="DeclareProperty"/>
## if <A>name</A><C>InParent</C> takes only boolean values (for example in
## the case <C>IsNormalInParent</C>),
## and <Ref Func="DeclareAttribute"/> otherwise.
## <P/>
## For example, to set up the three objects
## <Ref Func="Index" Label="for a group and its subgroup"/>, <C>IndexOp</C>,
## and <C>IndexInParent</C> together,
## the declaration file <F>lib/domain.gd</F> contains the following line of
## code.
## <Log><![CDATA[
## InParentFOA( "Index", IsGroup, IsGroup, DeclareAttribute );
## ]]></Log>
## <P/>
## Note that no methods need be installed for
## <Ref Func="Index" Label="for a group and its subgroup"/>
## and <C>IndexInParent</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
BIND_GLOBAL( "InParentFOA", function( name, superreq, subreq, DeclareAorP )
local str, oper, attr, func;
# Create the two-argument operation.
str:= SHALLOW_COPY_OBJ( name );
APPEND_LIST_INTR( str, "Op" );
DeclareOperation( str, [ superreq, subreq ] );
oper:= VALUE_GLOBAL( str );
# Declare the attribute or property
# (for cases where the first argument is the parent of the second).
str:= SHALLOW_COPY_OBJ( name );
APPEND_LIST_INTR( str, "InParent" );
DeclareAorP( str, subreq );
attr:= VALUE_GLOBAL( str );
# Create the wrapper operation that mainly calls the operation,
# but also checks resp. sets the attribute if the first argument
# is identical with the parent of the second.
DeclareOperation( name, [ superreq, subreq ] );
func:= VALUE_GLOBAL( name );
# Install the methods for the wrapper that calls the operation.
str:= "try to exploit the in-parent attribute ";
APPEND_LIST_INTR( str, name );
APPEND_LIST_INTR( str, "InParent" );
InstallMethod( func,
str,
[ superreq, subreq ],
function( super, sub )
local value;
if HasParent( sub ) and IsIdenticalObj( super, Parent( sub ) ) then
value:= attr( sub );
else
value:= oper( super, sub );
fi;
return value;
end );
# Install the method for the attribute that calls the operation.
str:= "method that calls the two-argument operation ";
APPEND_LIST_INTR( str, name );
APPEND_LIST_INTR( str, "Op" );
InstallMethod( attr, str, [ subreq and HasParent ],
D -> oper( Parent( D ), D ) );
end );
#############################################################################
##
#F RepresentativeFromGenerators( <GeneratorsOfStruct> )
##
## <ManSection>
## <Func Name="RepresentativeFromGenerators" Arg='GeneratorsOfStruct'/>
##
## <Description>
## We can get a representative of a domain by taking an element of a
## suitable generators list, so the problem is to specify the generators.
## </Description>
## </ManSection>
##
BIND_GLOBAL( "RepresentativeFromGenerators", function( GeneratorsOfStruct )
return function( D )
D:= GeneratorsOfStruct( D );
if IsEmpty( D ) then
TryNextMethod();
fi;
return Representative( D );
end;
end );
#############################################################################
##
#E
|