This file is indexed.

/usr/share/gap/lib/domain.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#############################################################################
##
#W  domain.gd                   GAP library                  Martin Schönert
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This declares the operations for domains.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{domain}">
##  <E>Domain</E> is &GAP;'s name for structured sets.
##  The ring of Gaussian integers <M>&ZZ;[\sqrt{{-1}}]</M> is an example of a
##  domain,
##  the group <M>D_{12}</M> of symmetries of a regular hexahedron is another.
##  <P/>
##  The &GAP; library predefines some domains.
##  For example the ring of Gaussian integers is predefined as
##  <Ref Var="GaussianIntegers"/> (see&nbsp;<Ref Chap="Gaussians"/>)
##  and the field of rationals is predefined as <Ref Var="Rationals"/>
##  (see&nbsp;<Ref Chap="Rational Numbers"/>).
##  Most domains are constructed by functions,
##  which are called <E>domain constructors</E>
##  (see&nbsp;<Ref Sect="Constructing Domains"/>).
##  For example the group <M>D_{12}</M> is constructed by the construction
##  <C>Group( (1,2,3,4,5,6), (2,6)(3,5) )</C>
##  (see&nbsp;<Ref Func="Group" Label="for several generators"/>)
##  and the finite field with 16 elements is constructed by
##  <C>GaloisField( 16 )</C>
##  (see&nbsp;<Ref Func="GaloisField" Label="for field size"/>).
##  <P/>
##  The first place where you need domains in &GAP; is the obvious one.
##  Sometimes you simply want to deal with a domain.
##  For example if you want to compute the size of the group <M>D_{12}</M>,
##  you had better be able to represent this group in a way that the
##  <Ref Func="Size"/> function can understand.
##  <P/>
##  The second place where you need domains in &GAP; is when you want to
##  be able to specify that an operation or computation takes place in a
##  certain domain.
##  For example suppose you want to factor 10 in the ring of Gaussian
##  integers.
##  Saying <C>Factors( 10 )</C> will not do, because this will return the
##  factorization <C>[ 2, 5 ]</C> in the ring of integers.
##  To allow operations and computations to happen in a specific domain,
##  <Ref Func="Factors"/>, and many other functions as well,
##  accept this domain as optional first argument.
##  Thus <C>Factors( GaussianIntegers, 10 )</C> yields the desired result
##  <C>[ 1+E(4), 1-E(4), 2+E(4), 2-E(4) ]</C>.
##  (The imaginary unit <M>\sqrt{{-1}}</M> is written as <C>E(4)</C>
##  in &GAP;, see <Ref Func="E"/>.)
##  <#/GAPDoc>
##
##  <#GAPDoc Label="[2]{domain}">
##  <E>Equality</E> and <E>comparison</E> of domains are defined as follows.
##  <P/>
##  Two domains are considered <E>equal</E> if and only if the sets of their
##  elements as computed by <Ref Attr="AsSSortedList"/>) are equal.
##  Thus, in general <C>=</C> behaves as if each domain operand were replaced
##  by its set of elements.
##  Except that <C>=</C> will also sometimes, but not always,
##  work for infinite domains, for which of course &GAP; cannot compute
##  the set of elements.
##  Note that this implies that domains with different algebraic structure
##  may well be equal.
##  As a special case of this, either operand of <C>=</C> may also be a
##  proper set (see&nbsp;<Ref Sect="Sorted Lists and Sets"/>),
##  i.e., a sorted list without holes or duplicates
##  (see <Ref Attr="AsSSortedList"/>),
##  and <C>=</C> will return <K>true</K> if and only if this proper set is
##  equal to the set of elements of the argument that is a domain.
##  <P/>
##  <!-- #T These statements imply that <C>&lt;</C> and <C>=</C> -->
##  <!-- #T comparisons of <E>elements</E> in a domain are always -->
##  <!-- #T defined.  Do we really want to guarantee this? -->
##  <E>No</E> general <E>ordering</E> of arbitrary domains via <C>&lt;</C>
##  is defined in &GAP;&nbsp;4.
##  This is because a well-defined <C>&lt;</C> for domains or, more general,
##  for collections, would have to be compatible with <C>=</C> and would need
##  to be transitive and antisymmetric in order to be used to form ordered
##  sets.
##  In particular, <C>&lt;</C> would have to be independent of the algebraic
##  structure of its arguments because this holds for <C>=</C>,
##  and thus there would be hardly a situation where one could implement
##  an efficient comparison method.
##  (Note that in the case that two domains are comparable with <C>&lt;</C>,
##  the result is in general <E>not</E> compatible with the set theoretical
##  subset relation, which can be decided with <Ref Oper="IsSubset"/>.)
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsGeneralizedDomain( <D> )  . . . . . . . . . test for generalized domain
#C  IsDomain( <D> ) . . . . . . . . . . . . . . . . . . . . . test for domain
##
##  <#GAPDoc Label="IsGeneralizedDomain">
##  <ManSection>
##  <Filt Name="IsGeneralizedDomain" Arg='obj' Type='Category'/>
##  <Filt Name="IsDomain" Arg='obj' Type='Category'/>
##
##  <Description>
##  For some purposes, it is useful to deal with objects that are similar to
##  domains but that are not collections in the sense of &GAP;
##  because their elements may lie in different families;
##  such objects are called <E>generalized domains</E>.
##  An instance of generalized domains are <Q>operation domains</Q>,
##  for example any <M>G</M>-set for a permutation group <M>G</M>
##  consisting of some union of points, sets of points, sets of sets of
##  points etc., under a suitable action.
##  <P/>
##  <Ref Func="IsDomain"/> is a synonym for
##  <C>IsGeneralizedDomain and IsCollection</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsGeneralizedDomain", IsObject );

DeclareSynonym( "IsDomain", IsGeneralizedDomain and IsCollection );

InstallTrueMethod( IsDuplicateFree, IsDomain );


#############################################################################
##
#A  GeneratorsOfDomain( <D> )
##
##  <#GAPDoc Label="GeneratorsOfDomain">
##  <ManSection>
##  <Attr Name="GeneratorsOfDomain" Arg='D'/>
##
##  <Description>
##  For a domain <A>D</A>, <Ref Func="GeneratorsOfDomain"/> returns a list
##  containing all elements of <A>D</A>, perhaps with repetitions.
##  Note that if the domain <A>D</A> shall be generated by a list of some
##  elements w.r.t.&nbsp;the empty operational structure
##  (see&nbsp;<Ref Sect="Operational Structure of Domains"/>),
##  the only possible choice of elements is to take all elements of <A>D</A>.
##  See&nbsp;<Ref Sect="Constructing Domains"/> and
##  <Ref Sect="Changing the Structure"/> for concepts
##  of other notions of generation.
##  <P/>
##  For many domains that have <E>natural generators by construction</E>
##  (for example, the natural generators of a free group of rank two 
##  are the two generators stored as value of the attribute 
##  <Ref Attr="GeneratorsOfGroup"/>, and the natural generators of 
##  a free associative algebra are those generators stored as value of 
##  the attribute <Ref Attr="GeneratorsOfAlgebra"/>), each <E>natural</E> 
##  generator can be accessed using the <C>.</C> operator. For a domain
##  <A>D</A>, <C><A>D</A>.i</C> returns the <M>i</M>-th generator if 
##  <M>i</M> is a positive integer, and if <C>name</C> is the name of a 
##  generator of <A>D</A> then <C><A>D</A>.name</C> returns this generator. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfDomain", IsDomain );


#############################################################################
##
#F  Domain( [<Fam>, ]<generators> )
#O  DomainByGenerators( <Fam>, <generators> )
##
##  <#GAPDoc Label="Domain">
##  <ManSection>
##  <Func Name="Domain" Arg='[Fam, ]generators'/>
##  <Oper Name="DomainByGenerators" Arg='Fam, generators'/>
##
##  <Description>
##  <Ref Func="Domain"/> returns the domain consisting of the elements
##  in the homogeneous list <A>generators</A>.
##  If <A>generators</A> is empty then a family <A>Fam</A> must be entered
##  as the first argument, and the returned (empty) domain lies in the
##  collections family of <A>Fam</A>.
##  <P/>
##  <Ref Func="DomainByGenerators"/> is the operation called by
##  <Ref Func="Domain"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Domain" );
DeclareOperation( "DomainByGenerators", [ IsFamily, IsList ] );


#############################################################################
##
#F  Parent( <D> )
#O  SetParent( <D>, <P> )
#F  HasParent( <D> )
##
##  <#GAPDoc Label="Parent">
##  <ManSection>
##  <Func Name="Parent" Arg='D'/>
##  <Oper Name="SetParent" Arg='D, P'/>
##  <Func Name="HasParent" Arg='D'/>
##
##  <Description>
##  It is possible to assign to a domain <A>D</A> one other domain <A>P</A>
##  containing <A>D</A> as a subset,
##  in order to exploit this subset relation between <A>D</A> and <A>P</A>.
##  Note that <A>P</A> need not have the same operational structure as <A>D</A>,
##  for example <A>P</A> may be a magma and <A>D</A> a field.
##  <P/>
##  The assignment is done by calling <Ref Func="SetParent"/>,
##  and <A>P</A> is called the <E>parent</E> of <A>D</A>.
##  If <A>D</A> has already a parent,
##  calls to <Ref Func="SetParent"/> will be ignored.
##  <P/>
##  If <A>D</A> has a parent <A>P</A>
##  &ndash;this can be checked with <Ref Func="HasParent"/>&ndash;
##  then <A>P</A> can be used to gain information about <A>D</A>.
##  First, the call of <Ref Func="SetParent"/> causes
##  <Ref Func="UseSubsetRelation"/> to be called.
##  Second, for a domain <A>D</A> with parent,
##  information relative to the parent can be stored in <A>D</A>;
##  for example, there is an attribute <C>NormalizerInParent</C> for storing
##  <C>Normalizer( <A>P</A>, <A>D</A> )</C> in the case that <A>D</A> is a
##  group.
##  (More about such parent dependent attributes can be found in
##  <Ref Sect="In Parent Attributes"/>.)
##  <!-- better make this part of the Reference Manual?-->
##  Note that because of this relative information,
##  one cannot change the parent;
##  that is, one can set the parent only once,
##  subsequent calls to <Ref Func="SetParent"/> for the same domain <A>D</A>
##  are ignored.
##  <!-- better raise a warning/error?-->
##  Further note that contrary to <Ref Func="UseSubsetRelation"/>,
##  also knowledge about the parent <A>P</A> might be used
##  that is discovered after the <Ref Func="SetParent"/> call.
##  <P/>
##  A stored parent can be accessed using <Ref Func="Parent"/>.
##  If <A>D</A> has no parent then <Ref Func="Parent"/> returns <A>D</A>
##  itself, and <Ref Func="HasParent"/> will return <K>false</K>
##  also after a call to <Ref Func="Parent"/>.
##  So <Ref Func="Parent"/> is <E>not</E> an attribute,
##  the underlying attribute to store the parent is <C>ParentAttr</C>.
##  <!-- add a cross-ref. to section about attributes -->
##  <P/>
##  Certain functions that return domains with parent already set,
##  for example <Ref Func="Subgroup"/>,
##  are described in Section&nbsp;<Ref Sect="Constructing Subdomains"/>.
##  Whenever a function has this property,
##  the &GAP; Reference Manual states this explicitly.
##  Note that these functions <E>do not guarantee</E> a certain parent,
##  for example <Ref Func="DerivedSubgroup"/> for a perfect
##  group <M>G</M> may return <M>G</M> itself, and if <M>G</M> had already a
##  parent then this is not replaced by <M>G</M>.
##  As a rule of thumb, &GAP; avoids to set a domain as its own parent,
##  which is consistent with the behaviour of <Ref Func="Parent"/>,
##  at least until a parent is set explicitly with <Ref Func="SetParent"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> g:= Group( (1,2,3), (1,2) );; h:= Group( (1,2) );;
##  gap> HasParent( g );  HasParent( h );
##  false
##  false
##  gap> SetParent( h, g );
##  gap> Parent( g );  Parent( h );
##  Group([ (1,2,3), (1,2) ])
##  Group([ (1,2,3), (1,2) ])
##  gap> HasParent( g );  HasParent( h );
##  false
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ParentAttr", IsDomain );

DeclareSynonym( "SetParent", SetParentAttr );
DeclareSynonym( "HasParent", HasParentAttr );
BIND_GLOBAL( "Parent", function( S )
    if HasParent( S ) then
        return ParentAttr( S );
    else
        return S;
    fi;
end );


#############################################################################
##
#F  InstallAccessToGenerators( <required>, <infotext>, <generators> )
##
##  <ManSection>
##  <Func Name="InstallAccessToGenerators" Arg='required, infotext, generators'/>
##
##  <Description>
##  A free structure <M>F</M> has natural generators by construction.
##  For example, the natural generators of a free group of rank two are the
##  two generators stored as value of the attribute <C>GeneratorsOfGroup</C>,
##  and the natural generators of a free associative algebra are those
##  generators stored as value of the attribute <C>GeneratorsOfAlgebra</C>.
##  Note that semigroup generators are <E>not</E> considered as natural.
##  <P/>
##  Each natural generator of <M>F</M> can be accessed using the <C>.</C> operator.
##  <M>F.i</M> returns the <M>i</M>-th generator if <M>i</M> is a positive integer,
##  and if <A>name</A> is the name of a generator of <M>F</M> then <M>F.<A>name</A></M> returns
##  this generator.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "InstallAccessToGenerators" );


#############################################################################
##
#F  InParentFOA( <name>, <super>, <sub>, <AorP> ) . dispatcher, oper and attr
##
##  <#GAPDoc Label="InParentFOA">
##  <ManSection>
##  <Func Name="InParentFOA" Arg='name, super, sub, AorP'/>
##
##  <Description>
##  This section describes how you can add  new <Q>in parent attributes</Q>
##  (see&nbsp;<Ref Sect="Constructing Subdomains"/>
##  and <Ref Sect="Parents"/>).
##  As an example, we describe how 
##  <Ref Func="Index" Label="for a group and its subgroup"/>
##  and its related functions are implemented.
##  <P/>
##  There are two operations 
##  <Ref Func="Index" Label="for a group and its subgroup"/> and
##  <C>IndexOp</C>,
##  and an attribute <C>IndexInParent</C>.
##  They are created together as shown below,
##  and after they have been created,
##  methods need be installed only for <C>IndexOp</C>.
##  In the creation process, <C>IndexInParent</C>
##  already gets one default method installed
##  (in addition to the usual system getter of each attribute,
##  see&nbsp;<Ref Sect="Attributes"/>),
##  namely <C>D -> IndexOp( Parent( D ), D )</C>.
##  <P/>
##  The operation <Ref Func="Index" Label="for a group and its subgroup"/> 
##  proceeds as follows.
##  <List>
##  <Item>
##    If it is called with the two arguments <A>super</A> and <A>sub</A>,
##    and if <C>HasParent( <A>sub</A> )</C> and
##    <C>IsIdenticalObj( <A>super</A>, Parent( <A>sub</A> ) )</C>
##    are <K>true</K>, <C>IndexInParent</C> is called
##    with argument <A>sub</A>, and the result is returned.
##  </Item>
##  <Item>
##    Otherwise, <C>IndexOp</C> is called with the same arguments that
##    <Ref Func="Index" Label="for a group and its subgroup"/> was called with,
##    and the result is returned.
##  </Item>
##  </List>
##  (Note that it is in principle possible to install even
##  <Ref Func="Index" Label="for a group and its subgroup"/> 
##  and <C>IndexOp</C> methods
##  for a number of arguments different from two,
##  with <Ref Func="InstallOtherMethod"/>,
##  see <Ref Sect="Creating Attributes and Properties"/>).
##  <P/>
##  The call of <Ref Func="InParentFOA"/> declares the operations and the
##  attribute as described above,
##  with names <A>name</A>, <A>name</A><C>Op</C>,
##  and <A>name</A><C>InParent</C>.
##  <A>super-req</A> and <A>sub-req</A> specify the required filters for the
##  first and second argument of the operation <A>name</A><C>Op</C>,
##  which are needed to create this operation with
##  <Ref Func="DeclareOperation"/>.
##  <A>sub-req</A> is also the required filter for the corresponding
##  attribute <A>name</A><C>InParent</C>;
##  note that <Ref Func="HasParent"/> is <E>not</E> required
##  for the argument <A>U</A> of <A>name</A><C>InParent</C>,
##  because even without a parent stored,
##  <C>Parent( <A>U</A> )</C> is legal, meaning <A>U</A> itself
##  (see&nbsp;<Ref Sect="Parents"/>).
##  The fourth argument must be <Ref Func="DeclareProperty"/>
##  if <A>name</A><C>InParent</C> takes only boolean values (for example in
##  the case <C>IsNormalInParent</C>),
##  and <Ref Func="DeclareAttribute"/> otherwise.
##  <P/>
##  For example, to set up the three objects
##  <Ref Func="Index" Label="for a group and its subgroup"/>, <C>IndexOp</C>,
##  and <C>IndexInParent</C> together,
##  the declaration file <F>lib/domain.gd</F> contains the following line of
##  code.
##  <Log><![CDATA[
##  InParentFOA( "Index", IsGroup, IsGroup, DeclareAttribute );
##  ]]></Log>
##  <P/>
##  Note that no methods need be installed for
##  <Ref Func="Index" Label="for a group and its subgroup"/> 
##  and <C>IndexInParent</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
BIND_GLOBAL( "InParentFOA", function( name, superreq, subreq, DeclareAorP )
    local str, oper, attr, func;

    # Create the two-argument operation.
    str:= SHALLOW_COPY_OBJ( name );
    APPEND_LIST_INTR( str, "Op" );
    DeclareOperation( str, [ superreq, subreq ] );
    oper:= VALUE_GLOBAL( str );

    # Declare the attribute or property
    # (for cases where the first argument is the parent of the second).
    str:= SHALLOW_COPY_OBJ( name );
    APPEND_LIST_INTR( str, "InParent" );
    DeclareAorP( str, subreq );
    attr:= VALUE_GLOBAL( str );

    # Create the wrapper operation that mainly calls the operation,
    # but also checks resp. sets the attribute if the first argument
    # is identical with the parent of the second.
    DeclareOperation( name, [ superreq, subreq ] );
    func:= VALUE_GLOBAL( name );

    # Install the methods for the wrapper that calls the operation.
    str:= "try to exploit the in-parent attribute ";
    APPEND_LIST_INTR( str, name );
    APPEND_LIST_INTR( str, "InParent" );
    InstallMethod( func,
        str,
        [ superreq, subreq ],
        function( super, sub )
        local value;
        if HasParent( sub ) and IsIdenticalObj( super, Parent( sub ) ) then
          value:= attr( sub );
        else
          value:= oper( super, sub );
        fi;
        return value;
        end );

    # Install the method for the attribute that calls the operation.
    str:= "method that calls the two-argument operation ";
    APPEND_LIST_INTR( str, name );
    APPEND_LIST_INTR( str, "Op" );
    InstallMethod( attr, str, [ subreq and HasParent ],
            D -> oper( Parent( D ), D ) );
end );


#############################################################################
##
#F  RepresentativeFromGenerators( <GeneratorsOfStruct> )
##
##  <ManSection>
##  <Func Name="RepresentativeFromGenerators" Arg='GeneratorsOfStruct'/>
##
##  <Description>
##  We can get a representative of a domain by taking an element of a
##  suitable generators list, so the problem is to specify the generators.
##  </Description>
##  </ManSection>
##
BIND_GLOBAL( "RepresentativeFromGenerators", function( GeneratorsOfStruct )
    return function( D )
           D:= GeneratorsOfStruct( D );
           if IsEmpty( D ) then
             TryNextMethod();
           fi;
           return Representative( D );
           end;
end );


#############################################################################
##
#E