/usr/share/gap/lib/domain.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | #############################################################################
##
#W domain.gi GAP library Martin Schönert
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the generic methods for domains.
##
#############################################################################
##
#M \=( <C>, <D> ) . . . . . . . . . . . . . . . . . . . for list and domain
##
## A domain is equal to the strictly sorted list of its elements.
##
InstallMethod( \=,
"for a list and a domain",
IsIdenticalObj,
[ IsCollection and IsList, IsDomain ],
function( C, D )
return IsSSortedList( C ) and AsSSortedList( D ) = C;
end );
#############################################################################
##
#M \=( <D>, <C> ) . . . . . . . . . . . . . . . . . . . for domain and list
##
## A domain is equal to the strictly sorted list of its elements.
##
InstallMethod( \=,
"for a domain and a list",
IsIdenticalObj,
[ IsDomain, IsCollection and IsList ],
function( D, C )
return IsSSortedList( C ) and AsSSortedList( D ) = C;
end );
#############################################################################
##
#M \=( <D1>, <D2> ) . . . . . . . . . . . . . . . . . . . . for two domains
##
## Two domains are equal if their elements lists are equal.
##
InstallMethod( \=,
"for two domains",
IsIdenticalObj,
[ IsDomain, IsDomain ],
function( D1, D2 )
return AsSSortedList( D1 ) = AsSSortedList( D2 );
end );
#############################################################################
##
#M \<( <C>, <D> ) . . . . . . . . . . . . . . . . . . . for list and domain
##
InstallMethod( \<,
"for a list and a domain",
IsIdenticalObj,
[ IsCollection and IsList, IsDomain ],
function( C, D )
return C < AsSSortedList( D );
end );
#############################################################################
##
#M \<( <D>, <C> ) . . . . . . . . . . . . . . . . . . . for domain and list
##
InstallMethod( \<,
"for a domain and a list",
IsIdenticalObj,
[ IsDomain, IsCollection and IsList ],
function( D, C )
return AsSSortedList( D ) < C;
end );
#############################################################################
##
#M SetParent( <D>, <P> ) . . . . . . . method to run the subset implications
##
InstallMethod( SetParent,
"method that calls 'UseSubsetRelation'",
IsIdenticalObj,
[ IsDomain, IsDomain ],
function( D, P )
UseSubsetRelation( P, D );
TryNextMethod();
end );
#############################################################################
##
#F Domain( [<Fam>, ]<generators> )
##
InstallGlobalFunction( Domain, function( arg )
if Length( arg ) = 1 and IsHomogeneousList( arg[1] )
and not IsEmpty( arg[1] ) then
return DomainByGenerators( FamilyObj( arg[1][1] ), arg[1] );
elif Length( arg ) = 2 and IsFamily( arg[1] )
and IsHomogeneousList( arg[2] )
and ( IsEmpty( arg[2] ) or
FamilyObj(arg[2]) = CollectionsFamily( arg[1] ) ) then
return DomainByGenerators( arg[1], arg[2] );
else
Error( "usage: Domain( [<Fam>, ]<generators> )" );
fi;
end );
#############################################################################
##
#M DomainByGenerators( <F>, <empty> ) . . . . . . for family and empty list
##
InstallMethod( DomainByGenerators,
"for family and empty list",
[ IsFamily, IsList and IsEmpty ],
function ( F, generators )
local D;
D := Objectify( NewType( CollectionsFamily( F ),
IsDomain and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfDomain( D, AsList( generators ) );
return D;
end );
#############################################################################
##
#M DomainByGenerators( <F>, <generators> ) . . . . for family and collection
##
InstallMethod( DomainByGenerators,
"for family and list & collection",
[ IsFamily, IsCollection and IsList ],
function ( F, generators )
local D;
if IsNotIdenticalObj( CollectionsFamily(F), FamilyObj(generators) ) then
Error( "each element in <generators> must lie in <F>" );
fi;
D := Objectify( NewType( FamilyObj( generators ),
IsDomain and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfDomain( D, AsList( generators ) );
return D;
end );
#############################################################################
##
#M DomainByGenerators( <generators> ) . . . . . . . . . . . for collection
##
InstallOtherMethod( DomainByGenerators,
"for a collection",
[ IsCollection ],
function ( generators )
local D;
D := Objectify( NewType( FamilyObj( generators ),
IsDomain and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfDomain( D, AsList( generators ) );
return D;
end );
#############################################################################
##
#M GeneratorsOfDomain( <D> )
##
## `GeneratorsOfDomain' delegates to `AsList'.
##
InstallImmediateMethod( GeneratorsOfDomain,
IsDomain and HasAsList and IsAttributeStoringRep, 0,
AsList );
InstallMethod( GeneratorsOfDomain,
"for a domain (delegate to `AsList')",
[ IsDomain ],
AsList );
#############################################################################
##
#M AsList( <D> ) . . . . . . . . . . . . . . . list of elements of a domain
#M Enumerator( <D> ) . . . . . . . . . . . . . list of elements of a domain
##
## A domain contains no duplicates, so the sorted list can be taken for both
## `AsList' and `Enumerator' if it is already known.
## Note, however, that `AsSSortedList' resp. `EnumeratorSorted' cannot be the
## default method of `AsList' resp. `Enumerator' for domains,
## since `EnumeratorSorted' is allowed to call `Enumerator'.
##
## If domain generators of <D> are stored then `AsList' and `Enumerator'
## may return a duplicate-free list of domain generators.
##
InstallImmediateMethod( AsList,
IsDomain and HasAsSSortedList and IsAttributeStoringRep,
0,
AsSSortedList );
InstallImmediateMethod( Enumerator,
IsDomain and HasEnumeratorSorted and IsAttributeStoringRep,
0,
EnumeratorSorted );
InstallMethod( AsList,
"for a domain with stored domain generators",
[ IsDomain and HasGeneratorsOfDomain ],
D -> DuplicateFreeList( GeneratorsOfDomain( D ) ) );
InstallMethod( Enumerator,
"for a domain with stored domain generators",
[ IsDomain and HasGeneratorsOfDomain ],
D -> DuplicateFreeList( GeneratorsOfDomain( D ) ) );
#############################################################################
##
#M EnumeratorSorted( <D> ) . . . . . . . . . . . set of elements of a domain
##
InstallMethod( EnumeratorSorted,
"for a domain",
[ IsDomain ],
D -> EnumeratorSorted( Enumerator( D ) ));
#############################################################################
##
#M \in( <elm>, <D> ) . . . . . . . . . . . . . . membership test for domains
##
## The default method for domain membership tests computes the set of
## elements of the domain with the function 'Enumerator' and tests whether
## <elm> lies in this set.
##
InstallMethod( \in,
"for a domain, and an element",
IsElmsColls,
[ IsObject, IsDomain ],
function( elm, D )
return elm in Enumerator( D );
end );
#############################################################################
##
#M Representative( <D> ) . . . . . . . . . . . . representative of a domain
##
InstallMethod( Representative,
"for a domain with known elements list",
[ IsDomain and HasAsList ],
RepresentativeFromGenerators( AsList ) );
InstallMethod( Representative,
"for a domain with known domain generators",
[ IsDomain and HasGeneratorsOfDomain ],
RepresentativeFromGenerators( GeneratorsOfDomain ) );
#############################################################################
##
#M Size( <D> ) . . . . . . . . . . . . . . . . . . . . for a trivial domain
##
InstallMethod( Size,
"for a trivial domain",
[ IsDomain and IsTrivial ],
D -> 1 );
#############################################################################
##
#M IsSubset( <D>, <E> ) . . . . . . . . . . . . . . . . for <E> with parent
##
InstallMethod( IsSubset,
"test whether domain is parent of the other",
IsIdenticalObj,
[ IsDomain, IsDomain and HasParent ],
SUM_FLAGS, # should be done before everything else
function ( D, E )
if not IsIdenticalObj( D, Parent( E ) ) then
TryNextMethod();
fi;
return true;
end );
InstallMethod( CanComputeIsSubset,
"default for domains: no unless identical",
[ IsDomain, IsDomain ],
function( a, b )
return IsIdenticalObj( a, b )
or ( HasParent( b ) and CanComputeIsSubset( a, Parent( b ) ) );
end );
#############################################################################
##
#M Intersection2( <D1>, <D2> )
##
## We cannot install this for arbitrary collections since the intersection
## must be duplicate free (and sorted in the case of a list).
##
InstallMethod( Intersection2,
"whole family and domain",
IsIdenticalObj,
[ IsCollection and IsWholeFamily, IsDomain ],
SUM_FLAGS, # this is better than everything else
function( D1, D2 )
return D2;
end );
InstallMethod( Intersection2,
"domain and whole family",
IsIdenticalObj,
[ IsDomain, IsCollection and IsWholeFamily ],
SUM_FLAGS, # this is better than everything else
function( D1, D2 )
return D1;
end );
#############################################################################
##
#F InstallAccessToGenerators( <required>, <infotext>, <generators> )
##
InstallGlobalFunction( InstallAccessToGenerators,
function( required, infotext, generators )
InstallMethod( \.,
Concatenation( "generators of a ", infotext ),
true,
[ required and Tester( generators ), IsPosInt ], 0,
function( D, n )
local gens, nr, names;
# Get the appropriate generators and the component name string.
gens:= generators( D );
n:= NameRNam( n );
# If the component name stands for an integer,
# return the generator at this position.
nr:= Int( n );
if IsPosInt( nr ) then
if nr <= Length( gens ) then
return gens[ nr ];
else
Error("Generator number ", nr, " does not exist\n");
fi;
fi;
# I the component name is the name itself,
# return the corresponding generator.
names:= ElementsFamily( FamilyObj( D ) );
if IsBound( names!.names ) then
names:= names!.names;
nr:= Position( names, n );
if nr <> fail then
return gens[ nr ];
fi;
fi;
# Give up.
TryNextMethod();
end );
end );
#############################################################################
##
#E
|