/usr/share/gap/lib/factgrp.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 | #############################################################################
##
#W factgrp.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations of operations for factor group maps
##
##
## To implement new factor group methods, one does not need to deal with
## most of the following operations (which are only used to cache known
## homomorphisms and extend them to subdirect factors). Instead only methods
## for the following three operations might need to be supplied:
## If a suitable homomorphism cannot be found from the cached homomorphisms
## pool, `NaturalHomomorphismByNormalSubgroupOp(<G>,<N>)' is called to
## construct one.
## The default method for `NaturalHomomorphismByNormalSubgroupOp' then uses
## two other operations: `DoCheapActionImages' computes actions that come
## naturally from a groups representation (for example permutation action
## on orbits and blocks) and can be computed quickly. This is intended
## as a first test to avoid hard work for homomorphisms that are easy to
## get.
## If this fails, `FindActionKernel' is called which will try to find some
## action which will give a suitable homomorphism. (This can be very time
## consuming.)
## The existing methods seem to work reasonably well for permutation groups
## and pc groups, for other kinds of groups it might be necessary to
## implement completely new methods.
##
#############################################################################
##
#O DoCheapActionImages(<G>)
##
## <ManSection>
## <Oper Name="DoCheapActionImages" Arg='G'/>
##
## <Description>
## computes natural actions for <A>G</A> and stores the resulting
## <C>NaturalHomomorphismByNormalSubgroup</C>. The type of the natural actions
## varies with the representation of <A>G</A>, for permutation groups it are for
## example constituent and block homomorphisms.
## A method for <C>DoCheapActionImages</C> must register all found actions with
## <C>AddNaturalHomomorphismsPool</C> so they become available.
## </Description>
## </ManSection>
##
DeclareOperation("DoCheapActionImages",[IsGroup]);
DeclareSynonym("DoCheapOperationImages",DoCheapActionImages);
#############################################################################
##
#O FindActionKernel( <G>, <N> ) . . . . . . . . . . . . . . . . local
##
## <ManSection>
## <Oper Name="FindActionKernel" Arg='G, N'/>
##
## <Description>
## This operation tries to find a suitable action for the group <A>G</A> such
## that its kernel is <A>N</A>. This is used to construct faithful permutation
## representations for the factor group.
## </Description>
## </ManSection>
##
DeclareOperation( "FindActionKernel",[IsGroup,IsGroup]);
DeclareSynonym( "FindOperationKernel",FindActionKernel);
#############################################################################
##
#V InfoFactor
##
## <ManSection>
## <InfoClass Name="InfoFactor"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareInfoClass("InfoFactor");
#############################################################################
##
#A NaturalHomomorphismsPool(<G>)
##
## <ManSection>
## <Attr Name="NaturalHomomorphismsPool" Arg='G'/>
##
## <Description>
## The <C>NaturalHomomorphismsPool</C> is a record which contains the following
## components:
## <C>group</C> is the corresponding group.
## <C>ker</C> is a list of normal subgroups, which defines the arrangements.
## It is sorted.
## <C>ops</C> is a list which gives the best know actions for each normal
## subgroup. Its entries are either Homomorphisms from G or
## generator lists (G.generators images) or lists of integers. In the
## latter case the factor is subdirect product of the factors with
## the given numbers.
## <C>cost</C> gives the difficulty for each actions (degree of permgroup). It
## is used to check whether a new actions is better.
## <C>lock</C> is a bitlist, which indicates whether certain actions are
## locked. If this happens, a better new actions is not entered.
## This allows a computation to access the pool several times and to
## be guaranteed to be returned the same object. Usually a routine
## initially locks and finally unlocks.
## <!-- #AH probably one even would like to have a lock counter ? -->
## <C>GopDone</C> indicates whether all <C>obvious</C> actions have been tried
## already
## <C>intersects</C> is a list of all intersections that have already been
## formed.
## <C>blocksdone</C> indicates if the actions already has been improved
## using blocks
## <C>in_code</C> can be set by the code to avoid addition of new actions
## (and thus resorting)
## </Description>
## </ManSection>
##
DeclareAttribute("NaturalHomomorphismsPool",IsGroup,
"mutable");
#############################################################################
##
#O FactorCosetAction( <G>, <U>[, <N>] ) action on the right cosets Ug
##
## <#GAPDoc Label="FactorCosetAction">
## <ManSection>
## <Oper Name="FactorCosetAction" Arg='G, U[, N]'/>
##
## <Description>
## This command computes the action of the group <A>G</A> on the
## right cosets of the subgroup <A>U</A>.
## If a normal subgroup <A>N</A> of <A>G</A> is given,
## it is stored as kernel of this action.
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4,5),(1,2));;u:=SylowSubgroup(g,2);;Index(g,u);
## 15
## gap> FactorCosetAction(g,u);
## <action epimorphism>
## gap> Range(last);
## Group([ (1,9,13,10,4)(2,8,14,11,5)(3,7,15,12,6),
## (1,7)(2,8)(3,9)(5,6)(10,11)(14,15) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "FactorCosetAction", [IsGroup,IsGroup] );
#############################################################################
##
#F ImproveActionDegreeByBlocks( <G>, <N> , <hom> [,forceblocks] )
#F ImproveActionDegreeByBlocks( <G>, <N> , <U> [,forceblocks] )
##
## <ManSection>
## <Func Name="ImproveActionDegreeByBlocks" Arg='G, N , hom [,forceblocks]'/>
## <Func Name="ImproveActionDegreeByBlocks" Arg='G, N , U [,forceblocks]'/>
##
## <Description>
## In the first usage, <A>N</A> is a normal subgroup of <A>G</A> and <A>hom</A> a
## homomorphism from <A>G</A> to a permutation group with kernel <A>N</A>. In the second
## usage, <A>hom</A> is taken to be the action of <A>G</A> on the cosets of <A>U</A> by right
## multiplication.
## The function tries to find another homomorphism with the same kernel but
## image group of smaller degree by looking for block systems of the image
## group. An improved result is stored in the <C>NaturalHomomorphismsPool</C>, the
## function returns the degree of this image (or the degree of the original
## image).
## If the image degree is larger than 500, only one block system is tested by
## standard. A test of all block systems is enforced by the optional boolean
## parameter <A>forceblocks</A>
## </Description>
## </ManSection>
##
DeclareGlobalFunction( "ImproveActionDegreeByBlocks" );
DeclareSynonym( "ImproveOperationDegreeByBlocks",
ImproveActionDegreeByBlocks );
#############################################################################
##
#F SmallerDegreePermutationRepresentation( <G> )
##
## <#GAPDoc Label="SmallerDegreePermutationRepresentation">
## <ManSection>
## <Func Name="SmallerDegreePermutationRepresentation" Arg='G'/>
##
## <Description>
## Let <A>G</A> be a permutation group that acts transitively
## on its moved points.
## <Ref Func="SmallerDegreePermutationRepresentation"/> tries to find a
## faithful permutation representation of smaller degree.
## The result is a group homomorphism onto a permutation group,
## in the worst case this is the identity mapping on <A>G</A>.
## <P/>
## If the <C>cheap</C> option is given, the function only tries to reduce
## to orbits or actions on blocks, otherwise also actions on cosets of
## random subgroups are tried.
## <P/>
## Note that the result is not guaranteed to be a faithful permutation
## representation of smallest degree,
## or of smallest degree among the transitive permutation representations
## of <A>G</A>.
## Using &GAP; interactively, one might be able to choose subgroups
## of small index for which the cores intersect trivially;
## in this case, the actions on the cosets of these subgroups give rise to
## an intransitive permutation representation
## the degree of which may be smaller than the original degree.
## <P/>
## The methods used might involve the use of random elements and the
## permutation representation (or even the degree of the representation) is
## not guaranteed to be the same for different calls of
## <Ref Func="SmallerDegreePermutationRepresentation"/>.
## <P/>
## If the option cheap is given less work is spent on trying to get a small
## degree representation, if the value of this option is set to the string
## "skip" the identity mapping is returned. (This is useful if a function
## called internally might try a degree reduction.)
## <P/>
## <Example><![CDATA[
## gap> image:= Image( iso );; NrMovedPoints( image );
## 24
## gap> small:= SmallerDegreePermutationRepresentation( image );;
## gap> Image( small );
## Group([ (2,3), (2,3,4), (1,2)(3,4), (1,3)(2,4) ])
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SmallerDegreePermutationRepresentation" );
#############################################################################
##
#F AddNaturalHomomorphismsPool(G,N,op[,cost[,blocksdone]])
##
## <ManSection>
## <Func Name="AddNaturalHomomorphismsPool" Arg='G,N,op[,cost[,blocksdone]]'/>
##
## <Description>
## This function stores a computed action of <A>G</A> with kernel <A>N</A> in the
## <C>NaturalHomomorphismsPool</C> of <A>G</A>, unless a <Q>better</Q> action is already
## known. <A>op</A> usually is a homomorphism of <A>G</A> with kernel <A>N</A>. It may also
## be a subgroup of <A>G</A>, in which case the action of <A>G</A> on its cosets is
## taken.
## If the optional parameter <A>cost</A> is not given, <A>cost</A> is taken to be the
## degree of the image representation (or 1 if the image is a pc group). This
## <A>cost</A> is stored with the action to determine later whether another
## action is <Q>better</Q>.
## The optional boolean parameter <A>blocksdone</A> indicates if set to true, that
## all block systems of the image of <A>op</A> have already been computed and the
## resulting (lower degree, but not necessarily faithful for <M>G/N</M>) actions
## have been already considered. (Otherwise such a test may be done later by
## <C>DoCheapActionImages</C>.)
## The function internally re-sorts the list of normal subgroups to permit
## binary search among them. If a new action is returns the re-sorting
## permutation applied there. If returns <K>false</K> if a <Q>better</Q> action was
## already known, it returns <Q>fail</Q> if this factor is locked.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("AddNaturalHomomorphismsPool");
#############################################################################
##
#F LockNaturalHomomorphismsPool(<G>,<N>) . . store flag to prohibit changes
##
## <ManSection>
## <Func Name="LockNaturalHomomorphismsPool" Arg='G,N'/>
##
## <Description>
## Calling this function stores a flag in the <C>NaturalHomomorphismsPool</C> of
## <A>G</A> to prohibit it to store new (even better) faithful actions for <M>G/N</M>.
## This can be used in algorithms to ensure that
## <C>NaturalHomomorphismByNormalSubgroup(<A>G</A>,<A>N</A>)</C> will always return the same
## mapping, even if in the meantime other homomorphisms are computed anew,
## which –as a side effect– obtained a better action for <M>G/N</M> which &GAP;
## normally would store.
## The locking can be reverted by <C>UnlockNaturalHomomorphismsPool(<A>G</A>,<A>N</A>)</C>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("LockNaturalHomomorphismsPool");
#############################################################################
##
#F UnlockNaturalHomomorphismsPool(<G>,<N>) . clear flag to allow changes of
##
## <ManSection>
## <Func Name="UnlockNaturalHomomorphismsPool" Arg='G,N'/>
##
## <Description>
## clears the flag set by <C>LockNaturalHomomorphismsPool(<A>G</A>,<A>N</A>)</C>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("UnlockNaturalHomomorphismsPool");
#############################################################################
##
#F KnownNaturalHomomorphismsPool(<G>,<N>) . . . check whether Hom is stored
##
## <ManSection>
## <Func Name="KnownNaturalHomomorphismsPool" Arg='G,N'/>
##
## <Description>
## This function tests whether an homomorphism for
## <C>NaturalHomomorphismByNormalSubgroup(<A>G</A>,<A>N</A>)</C> is already known (or
## computed trivially for <M>G=N</M> or <M>N=\langle1\rangle</M>).
## </Description>
## </ManSection>
##
DeclareGlobalFunction("KnownNaturalHomomorphismsPool");
#############################################################################
##
#F GetNaturalHomomorphismsPool(<G>,<N>) . . . get action for G/N if known
##
## <ManSection>
## <Func Name="GetNaturalHomomorphismsPool" Arg='G,N'/>
##
## <Description>
## returns a <C>NaturalHomomorphismByNormalSubgroup(<A>G</A>,<A>N</A>)</C> if one is
## stored already in the <C>NaturalHomomorphismsPool</C> of <A>G</A>.
## (As the homomorphism may be stored by a <Q>recipe</Q> this command can
## still take some time when called the first time.)
## </Description>
## </ManSection>
##
DeclareGlobalFunction("GetNaturalHomomorphismsPool");
#############################################################################
##
#F DegreeNaturalHomomorphismsPool(<G>,<N>) degree for action for G/N
##
## <ManSection>
## <Func Name="DegreeNaturalHomomorphismsPool" Arg='G,N'/>
##
## <Description>
## returns the cost (see <Ref Func="AddNaturalHomomorphismsPool"/>) of a stored action
## for <M>G/N</M> and fail if no such action is stored.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("DegreeNaturalHomomorphismsPool");
#############################################################################
##
#F CloseNaturalHomomorphismsPool(<G>[,<N>]) . . calc intersections of known
##
## <ManSection>
## <Func Name="CloseNaturalHomomorphismsPool" Arg='G[,N]'/>
##
## <Description>
## This command tries to build actions for (new) factor groups from the
## already known actions in the <C>NaturalHomomorphismsPool(<A>G</A>)</C> by considering
## intransitive representations for subdirect products. Any new or better
## homomorphism obtained this way is stored (see
## <Ref Func="AddNaturalHomomorphismsPool"/>).
## If the optional parameter <A>N</A> is given, only actions which have <A>N</A> in their
## kernel are considered.
## The function keeps track of already considered subdirect products, thus
## there is no overhead in calling it several times.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("CloseNaturalHomomorphismsPool");
#############################################################################
##
#F PullBackNaturalHomomorphismsPool(<hom>]) . . transfer nathoms of image
##
## <ManSection>
## <Func Name="PullBackNaturalHomomorphismsPool" Arg='hom'/>
##
## <Description>
## If <A>hom</a> is a homomorphism, this command transfers the natural
## homomorphisms of the image of <A>hom</A> to the source of <A>hom</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("PullBackNaturalHomomorphismsPool");
#############################################################################
##
#F EraseNaturalHomomorphismsPool(<G>)
##
## <ManSection>
## <Func Name="EraseNaturalHomomorphismsPool" Arg='G'/>
##
## <Description>
## This command erases all stored natural homomorphisms associated to the
## group <A>G</A>. It is used to recover memory.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("EraseNaturalHomomorphismsPool");
#############################################################################
##
#E
|