This file is indexed.

/usr/share/gap/lib/ffe.g is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
#############################################################################
##
#W  ffe.g                        GAP library                    Thomas Breuer
#W                                                             & Frank Celler
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file deals with internal finite field elements.
##


#############################################################################
##

#V  MAXSIZE_GF_INTERNAL . . . . . . . . . . . . maximal size of internal ffes
##
BIND_GLOBAL( "MAXSIZE_GF_INTERNAL", 2^16 );


#############################################################################
##
#V  TYPES_FFE . . . . . . . . . . . . .  list of known types of internal ffes
##
#T TYPES_FFE := WeakPointerObj( [] );
BIND_GLOBAL( "TYPES_FFE", [] );
BIND_GLOBAL( "TYPES_FFE0", [] );


#############################################################################
##
#F  TYPE_FFE( <p> ) . . . . . . . . . . . type of a ffe in characteristic <p>
##
##  <p> must be a small prime integer
##  (see also `ffe.gi').
##
##  Note that the `One' and `Zero' values of the family cannot be set
##  in `TYPE_FFE' since this would need access to `One( Z(<p>) )' and
##  `Zero( Z(<p>) )', respectively,
##  which in turn would call `TYPE_FFE' and thus would lead to an infinite
##  recursion.
##
BIND_GLOBAL( "TYPE_FFE", function ( p )
    local type, fam;
    if IsBound( TYPES_FFE[p] ) then
      return TYPES_FFE[p];
    fi;
#T     if IsBoundElmWPObj( TYPES_FFE, p ) then
#T       type:= ElmWPObj( TYPES_FFE, p );
#T       if type <> fail then
#T         return type;
#T       fi;
#T     fi;
    fam:= NewFamily( "FFEFamily",
    IS_FFE,CanEasilySortElements,CanEasilySortElements );
    SetIsUFDFamily( fam, true );
    SetCharacteristic( fam, p );
    type:= NewType( fam, IS_FFE and IsInternalRep and HasDegreeFFE);
    TYPES_FFE[p]:= type;
#T     SetElmWPObj( TYPES_FFE, p, type );
    return type;
end );


#############################################################################
##
#F  TYPE_FFE0( <p> ) . . . . . . . . .type of zero ffe in characteristic <p>
##
##  see also "ffe.gi"
##
BIND_GLOBAL( "TYPE_FFE0", function ( p )
    local type, fam;
    if IsBound( TYPES_FFE0[p] ) then
      return TYPES_FFE0[p];
    fi;
#T     if IsBoundElmWPObj( TYPES_FFE, p ) then
#T       type:= ElmWPObj( TYPES_FFE, p );
#T       if type <> fail then
#T         return type;
#T       fi;
#T     fi;
    fam:= FamilyType(TYPE_FFE(p));
    type:= NewType( fam, IS_FFE and IsInternalRep and IsZero and HasIsZero 
                   and HasDegreeFFE );
    TYPES_FFE0[p]:= type;
#T     SetElmWPObj( TYPES_FFE, p, type );
    return type;
end );


#############################################################################
##
#m  DegreeFEE( <ffe> )  . . . . . . . . . . . . . . . . . .  for internal ffe
##
InstallMethod( DegreeFFE,
    "for internal FFE",
    true,
    [ IsFFE and IsInternalRep ], 0,
    DEGREE_FFE_DEFAULT );

#############################################################################
##
#m  Characteristic( <ffe> )   . . . . . . . . . . . . . . .  for internal ffe
##
InstallMethod( Characteristic,
    "for internal FFE",
    true,
    [ IsFFE and IsInternalRep ], 0,
    CHAR_FFE_DEFAULT );


#############################################################################
##
#M  LogFFE( <ffe>, <ffe> )  . . . . . . . . . . . . . . . .  for internal ffe
##
InstallMethod( LogFFE,
    "for two internal FFEs",
    IsIdenticalObj,
    [ IsFFE and IsInternalRep, IsFFE and IsInternalRep ], 0,
    LOG_FFE_DEFAULT );


#############################################################################
##
#M  IntFFE( <ffe> ) . . . . . . . . . . . . . . . . . . . .  for internal ffe
##
InstallMethod( IntFFE,
    "for internal FFE",
    true,
    [ IsFFE and IsInternalRep ], 0,
    INT_FFE_DEFAULT );


#############################################################################
##
#m  \*( <ffe>, <int> )  . . . . . . . . . . . . . for ffe and (large) integer
##
##  Note that the multiplication of internally represented FFEs with small
##  integers is handled by the kernel.
##
InstallOtherMethod( \*,
    "internal ffe * (large) integer",
    true,
    [ IsFFE and IsInternalRep, IsInt ], 0,
    function( ffe, int )
    local char;
    char:= Characteristic( ffe );
    if IsSmallIntRep( char ) then
      return ffe * ( int mod char );
    else
      return PROD_INT_OBJ( int, ffe );
    fi;
end );
        

#############################################################################
##
#O  SUM_FFE_LARGE
#O  DIFF_FFE_LARGE
#O  PROD_FFE_LARGE
#O  QUO_FFE_LARGE
#O  LOG_FFE_LARGE
##
##  If the {\GAP} kernel cannot handle the addition, multiplication etc.
##  of internally represented FFEs then it delegates to the library without
##  checking the characteristic; therefore this check must be done here.
##  (Note that `LogFFE' is an operation for which the kernel does not know
##  a table of methods, so the check for equal characteristic is done by
##  the method selection.
#T  Note that `LogFFEHandler' would not need to call `LOG_FFE_DEFAULT';
#T  if the two arguments <z>, <r> are represented w.r.t. incompatible fields
#T  then either <z> can be represented in the field of <r> or the logarithm
#T  does not exist.
##
    
DeclareOperation("SUM_FFE_LARGE", [IsFFE and IsInternalRep,
        IsFFE and IsInternalRep]);

InstallOtherMethod(SUM_FFE_LARGE,  [IsFFE,
        IsFFE],
        function( x, y )
    if Characteristic( x ) <> Characteristic( y ) then
      Error( "<x> and <y> have different characteristic" );
  fi;
  TryNextMethod();
end);

DeclareOperation("DIFF_FFE_LARGE", [IsFFE and IsInternalRep,
        IsFFE and IsInternalRep]);

InstallOtherMethod(DIFF_FFE_LARGE,  [IsFFE,
        IsFFE],
        function( x, y )
    if Characteristic( x ) <> Characteristic( y ) then
      Error( "<x> and <y> have different characteristic" );
  fi;
  TryNextMethod();
end);

DeclareOperation("PROD_FFE_LARGE", [IsFFE and IsInternalRep,
        IsFFE and IsInternalRep]);

InstallOtherMethod(PROD_FFE_LARGE,  [IsFFE,
        IsFFE ],
        function( x, y )
    if Characteristic( x ) <> Characteristic( y ) then
      Error( "<x> and <y> have different characteristic" );
  fi;
  TryNextMethod();
end);

DeclareOperation("QUO_FFE_LARGE", [IsFFE,
        IsFFE]);

InstallOtherMethod(QUO_FFE_LARGE,  [IsFFE and IsInternalRep,
        IsFFE and IsInternalRep],
        function( x, y )
    if Characteristic( x ) <> Characteristic( y ) then
      Error( "<x> and <y> have different characteristic" );
  fi;
  TryNextMethod();
end);


BIND_GLOBAL( "LOG_FFE_LARGE", function( x, y )
    Error( "not supported yet -- this should never happen" );
end );

#############################################################################
##
#O  ZOp -- operation to compute Z for large values of q
##

DeclareOperation("ZOp", [IsPosInt]);

#############################################################################
##

#E