/usr/share/gap/lib/ffe.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 | #############################################################################
##
#W ffe.gi GAP library Werner Nickel
#W & Martin Schönert
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains methods for `FFE's.
## Note that we must distinguish finite fields and fields that consist of
## `FFE's.
## (The image of the natural embedding of the field `GF(<q>)' into a field
## of rational functions is of course a finite field but its elements are
## not `FFE's since this would be a property given by their family.)
##
## Special methods for (elements of) general finite fields can be found in
## the file `fieldfin.gi'.
##
## The implementation of elements of rings `Integers mod <n>' can be found
## in the file `zmodnz.gi'.
##
#############################################################################
##
#V GALOIS_FIELDS
##
## global list of finite fields `GF( <p>^<d> )',
## the field of size $p^d$ is stored in `GALOIS_FIELDS[<p>][<d>]'.
##
InstallFlushableValue( GALOIS_FIELDS, [] );
#############################################################################
##
#M \+( <ffe>, <rat> )
#M \+( <rat>, <ffe> )
#M \*( <ffe>, <rat> )
#M \*( <rat>, <ffe> )
##
## The arithmetic operations with one operand a FFE <ffe> and the other
## a rational <rat> are defined as follows.
## Let `<one> = One( <ffe> )', and let <num> and <den> denote the numerator
## and denominator of <rat>.
## Let `<new> = (<num>\*<one>) / (<den>\*<one>)'.
## (Note that the multiplication of FFEs with positive integers is defined
## as abbreviated addition.)
## Then we have `<ffe> + <rat> = <rat> + <ffe> = <ffe> + <new>',
## and `<ffe> \* <rat> = <rat> \* <ffe> = <ffe> \* <new>'.
## As usual, difference and quotient are defined as sum and product,
## with the second argument replaced by its additive and mutliplicative
## inverse, respectively.
##
## (It would be possible to install these methods in the kernel tables,
## where the case of arithmetic operations with one operand an internally
## represented FFE and the other a rational *integer* is handled.
## But the case of noninteger rationals does probably not occur particularly
## often.)
##
InstallMethod( \+,
"for a FFE and a rational",
[ IsFFE, IsRat ],
function( ffe, rat )
rat:= (rat mod Characteristic(ffe))*One(ffe);
return ffe + rat;
end );
InstallMethod( \+,
"for a rational and a FFE",
[ IsRat, IsFFE ],
function( rat, ffe )
rat:= (rat mod Characteristic(ffe))*One(ffe);
return rat + ffe;
end );
InstallMethod( \*,
"for a FFE and a rational",
[ IsFFE, IsRat ],
function( ffe, rat )
if IsInt( rat ) then
# Avoid the recursion trap.
TryNextMethod();
fi;
# Replace the rational by an equivalent integer.
rat:= rat mod Characteristic(ffe);
return ffe * rat;
end );
InstallMethod( \*,
"for a rational and a FFE",
[ IsRat, IsFFE ],
function( rat, ffe )
if IsInt( rat ) then
# Avoid the recursion trap.
TryNextMethod();
fi;
# Replace the rational by an equivalent integer.
rat:= rat mod Characteristic(ffe);
return rat * ffe;
end );
#############################################################################
##
#M DegreeFFE( <vector> )
##
InstallOtherMethod( DegreeFFE,
"for a row vector of FFEs",
[ IsRowVector and IsFFECollection ],
function( list )
local deg, i;
#
# Those length zero vectors for which this makes sense have
# representation-specific methods
#
if Length(list) = 0 then
TryNextMethod();
fi;
deg:= DegreeFFE( list[1] );
for i in [ 2 .. Length( list ) ] do
deg:= LcmInt( deg, DegreeFFE( list[i] ) );
od;
return deg;
end );
#T list -> Lcm( List( list, DegreeFFE ) ) );
#T to be provided by the kernel!
#############################################################################
##
#M DegreeFFE( <matrix> )
##
InstallOtherMethod( DegreeFFE,
"for a matrix of FFEs",
[ IsMatrix and IsFFECollColl ],
function( mat )
local deg, i;
deg:= DegreeFFE( mat[1] );
for i in [ 2 .. Length( mat ) ] do
deg:= LcmInt( deg, DegreeFFE( mat[i] ) );
od;
return deg;
end );
#############################################################################
##
#M LogFFE( <n>, <r> ) . . . . . . . . . . . . for two FFE in a prime field
##
InstallMethod( LogFFE,
"for two FFEs (in a prime field)",
IsIdenticalObj,
[ IsFFE, IsFFE ],
function( n, r )
if DegreeFFE( n ) = 1 and DegreeFFE( r ) = 1 then
return LogMod( Int( n ), Int( r ), Characteristic( n ) );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M IntVecFFE( <vector> )
##
InstallMethod( IntVecFFE,
"for a row vector of FFEs",
[ IsRowVector and IsFFECollection ],
v -> List( v, IntFFE ) );
#############################################################################
##
#F FFEFamily( <p> )
##
InstallGlobalFunction( FFEFamily, function( p )
local F;
if MAXSIZE_GF_INTERNAL < p then
# large characteristic
if p in FAMS_FFE_LARGE[1] then
F:= FAMS_FFE_LARGE[2][ PositionSorted( FAMS_FFE_LARGE[1], p ) ];
else
F:= NewFamily( "FFEFamily", IsFFE,
CanEasilySortElements,
CanEasilySortElements );
SetCharacteristic( F, p );
# Store the type for the representation of prime field elements
# via residues.
F!.typeOfZmodnZObj:= NewType( F, IsZmodpZObjLarge
and IsModulusRep and IsZDFRE);
SetDataType( F!.typeOfZmodnZObj, p );
F!.typeOfZmodnZObj![ ZNZ_PURE_TYPE ]:= F!.typeOfZmodnZObj;
F!.modulus:= p;
SetOne( F, ZmodnZObj( F, 1 ) );
SetZero( F, ZmodnZObj( F, 0 ) );
# The whole family is a unique factorisation domain.
SetIsUFDFamily( F, true );
Add( FAMS_FFE_LARGE[1], p );
Add( FAMS_FFE_LARGE[2], F );
SortParallel( FAMS_FFE_LARGE[1], FAMS_FFE_LARGE[2] );
fi;
else
# small characteristic
# (The list `TYPE_FFE' is used to store the types.)
F:= FamilyType( TYPE_FFE( p ) );
if not HasOne( F ) then
# This family has not been accessed by `FFEFamily' before.
SetOne( F, One( Z(p) ) );
SetZero( F, Zero( Z(p) ) );
fi;
fi;
return F;
end );
#############################################################################
##
#M Zero( <ffe-family> )
##
InstallOtherMethod( Zero,
"for a family of FFEs",
[ IsFFEFamily ],
function( fam )
local char;
char:= Characteristic( fam );
if char <= MAXSIZE_GF_INTERNAL then
return Zero( Z( char ) );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M One( <ffe-family> )
##
InstallOtherMethod( One,
"for a family of FFEs",
[ IsFFEFamily ],
function( fam )
local char;
char:= Characteristic( fam );
if char <= MAXSIZE_GF_INTERNAL then
return One( Z( char ) );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#F LargeGaloisField( <p>^<n> )
#F LargeGaloisField( <p>, <n> )
##
#T other construction possibilities?
##
InstallMethod( LargeGaloisField,
[IsPosInt],
function(q)
local p,d;
p := SmallestRootInt(q);
d := LogInt(q,p);
Assert(1, q = p^d);
Assert(1, IsPrimeInt(p));
return LargeGaloisField(p,d);
end);
InstallMethod( LargeGaloisField,
[IsPosInt, IsPosInt],
function(p,d)
if not IsPrimeInt(p) then
Error("LargeGalosField: Characteristic must be prime");
fi;
if d = 1 then
return ZmodpZNC( p );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#F GaloisField( <p>^<d> ) . . . . . . . . . . create a finite field object
#F GF( <p>^<d> )
#F GaloisField( <p>, <d> )
#F GF( <p>, <d> )
#F GaloisField( <subfield>, <d> )
#F GF( <subfield>, <d> )
#F GaloisField( <p>, <pol> )
#F GF( <p>, <pol> )
#F GaloisField( <subfield>, <pol> )
#F GF( <subfield>, <pol> )
##
# in Finite field calculations we often ask again and again for the same GF.
# Therefore cache the last entry.
GFCACHE:=[0,0];
InstallGlobalFunction( GaloisField, function ( arg )
local F, # the field, result
p, # characteristic
d, # degree over the prime field
d1, # degree of subfield over prime field
q, # size of field to be constructed
subfield, # left acting domain of the field under construction
B; # basis of the extension
# if necessary split the arguments
if Length( arg ) = 1 and IsPosInt( arg[1] ) then
if arg[1]=GFCACHE[1] then
return GFCACHE[2];
fi;
# `GF( p^d )'
p := SmallestRootInt( arg[1] );
d := LogInt( arg[1], p );
elif Length( arg ) = 2 then
# `GF( p, d )'
p := arg[1];
d := arg[2];
else
Error( "usage: GF( <subfield>, <extension> )" );
fi;
# if the subfield is given by a prime denoting the prime field
if IsInt( p ) and IsPrimeInt( p ) then
subfield:= p;
# if the degree of the extension is given
if IsInt( d ) and 0 < d then
# `GF( p, d )' for prime `p'
if MAXSIZE_GF_INTERNAL < p^d then
return LargeGaloisField( p, d );
fi;
# if the extension is given by an irreducible polynomial
# over the prime field
elif IsRationalFunction( d )
and IsLaurentPolynomial( d )
and DegreeFFE( CoefficientsOfLaurentPolynomial( d )[1] ) = 1 then
# `GF( p, <pol> )' for prime `p'
return FieldExtension( GaloisField( p, 1 ), d );
# if the extension is given by coefficients of an irred. polynomial
# over the prime field
elif IsHomogeneousList( d ) and DegreeFFE( d ) = 1 then
# `GF( p, <polcoeffs> )' for prime `p'
return FieldExtension( GaloisField( p, 1 ),
UnivariatePolynomial( GaloisField(p,1), d ) );
# if a basis for the extension is given
elif IsHomogeneousList( d ) then
#T The construction of a field together with a basis is obsolete.
#T One should construct the basis explicitly.
# `GF( p, <basisvectors> )' for prime `p'
F := GaloisField( GaloisField( p, 1 ), Length( d ) );
# Check that the vectors in `d' really form a basis,
# and construct the basis.
B:= Basis( F, d );
if B = fail then
Error( "<extension> is not linearly independent" );
fi;
# Note that `F' is *not* the field stored in the global list!
SetBasis( F, B );
return F;
fi;
# if the subfield is given by a finite field
elif IsField( p ) then
subfield:= p;
p:= Characteristic( subfield );
d1 := DegreeOverPrimeField(subfield);
# if the degree of the extension is given
if IsInt( d ) then
q := p^(d*d1);
if MAXSIZE_GF_INTERNAL < q then
if d1 = 1 then
return LargeGaloisField( p, d );
else
return FieldByGenerators(subfield, [Z(p,d*d1)]);
fi;
fi;
d:= d * DegreeOverPrimeField( subfield );
# if the extension is given by coefficients of an irred. polynomial
#T should be obsolete!
elif IsHomogeneousList( d )
and DegreeOverPrimeField( subfield ) mod DegreeFFE( d ) = 0 then
# `GF( subfield, <polcoeffs> )'
return FieldExtension( subfield,
UnivariatePolynomial( subfield, d ) );
# if the extension is given by an irreducible polynomial
elif IsRationalFunction( d )
and IsLaurentPolynomial( d )
and DegreeOverPrimeField( subfield ) mod
DegreeFFE( CoefficientsOfLaurentPolynomial( d )[1] ) = 0 then
# `GF( subfield, <pol> )'
return FieldExtension( subfield, d );
# if a basis for the extension is given
#T The construction of a field together with a basis is obsolete.
elif IsHomogeneousList( d ) then
# `GF( <subfield>, <basisvectors> )'
F := GaloisField( subfield, Length( d ) );
# Check that the vectors in `d' really form a basis,
# and construct the basis.
B:= Basis( F, d );
if B = fail then
Error( "<extension> is not linearly independent" );
fi;
# Note that `F' is *not* the field stored in the global list!
SetBasis( F, B );
return F;
# Otherwise we don't know how to handle the extension.
else
Error( "<extension> must be a <deg>, <bas>, or <pol>" );
fi;
# Otherwise we don't know how to handle the subfield.
else
Error( "<subfield> must be a prime or a finite field" );
fi;
# If this place is reached,
# `p' is the characteristic, `d' is the degree of the extension,
# and `p^d' is less than or equal to `MAXSIZE_GF_INTERNAL'.
if IsInt( subfield ) then
# The standard field is required. Look whether it is already stored.
if not IsBound( GALOIS_FIELDS[p] ) then
GALOIS_FIELDS[p]:= [];
elif IsBound( GALOIS_FIELDS[p][d] ) then
if Length(arg)=1 then
GFCACHE:=[arg[1],GALOIS_FIELDS[p][d]];
fi;
return GALOIS_FIELDS[p][d];
fi;
# Construct the finite field object.
if d = 1 then
F:= FieldOverItselfByGenerators( [ Z(p) ] );
else
F:= FieldByGenerators( FieldOverItselfByGenerators( [ Z(p) ] ),
[ Z(p^d) ] );
fi;
# Store the standard field.
GALOIS_FIELDS[p][d]:= F;
else
# Construct the finite field object.
F:= FieldByGenerators( subfield, [ Z(p^d) ] );
fi;
# Return the finite field.
return F;
end );
#############################################################################
##
#M FieldExtension( <subfield>, <poly> )
##
InstallOtherMethod( FieldExtension,
"for a field of FFEs, and a univ. Laurent polynomial",
#T CollPoly
[ IsField and IsFFECollection, IsLaurentPolynomial ],
function( F, poly )
local coeffs, p, d, z, r, one, zero, E;
coeffs:= CoefficientsOfLaurentPolynomial( poly );
coeffs:= ShiftedCoeffs( coeffs[1], coeffs[2] );
p:= Characteristic( F );
d:= ( Length( coeffs ) - 1 ) * DegreeOverPrimeField( F );
if MAXSIZE_GF_INTERNAL < p^d then
TryNextMethod();
fi;
# Compute a root of the defining polynomial.
z := Z( p^d );
r := z;
one:= One( r );
zero:= Zero( r );
while r <> one and ValuePol( coeffs, r ) <> zero do
r := r * z;
od;
if DegreeFFE( r ) < Length( coeffs ) - 1 then
Error( "<poly> must be irreducible" );
fi;
# We must not call `AsField' here because then the standard `GF(p^d)'
# would be returned whenever `F' is equal to `GF(p)'.
E:= FieldByGenerators( F, [ z ] );
SetDefiningPolynomial( E, poly );
SetRootOfDefiningPolynomial( E, r );
if r = z or Order( r ) = Size( E ) - 1 then
SetPrimitiveRoot( E, r );
else
SetPrimitiveRoot( E, z );
fi;
return E;
end );
#############################################################################
##
#M DefiningPolynomial( <F> ) . . . . . . . . . . for standard finite fields
##
InstallMethod( DefiningPolynomial,
"for a field of FFEs",
[ IsField and IsFFECollection ],
function( F )
local root;
if HasRootOfDefiningPolynomial( F ) then
# We must choose a compatible polynomial.
return MinimalPolynomial( LeftActingDomain( F ),
RootOfDefiningPolynomial( F ) );
fi;
# Choose a primitive polynomial, and store a root.
root:= Z( Size( F ) );
SetRootOfDefiningPolynomial( F, root );
if IsPrimeField( LeftActingDomain( F ) ) then
return ConwayPolynomial( Characteristic( F ),
DegreeOverPrimeField( F ) );
else
return MinimalPolynomial( LeftActingDomain( F ), root );
fi;
end );
#############################################################################
##
#M RootOfDefiningPolynomial( <F> ) . . . . . . . for standard finite fields
##
InstallMethod( RootOfDefiningPolynomial,
"for a small field of FFEs",
[ IsField and IsFFECollection ],
function( F )
local coeffs, p, d, z, r, one, zero;
coeffs:= CoefficientsOfLaurentPolynomial( DefiningPolynomial( F ) );
# Maybe the call to `DefiningPolynomial' has caused that a root is bound.
if HasRootOfDefiningPolynomial( F ) then
return RootOfDefiningPolynomial( F );
fi;
coeffs:= ShiftedCoeffs( coeffs[1], coeffs[2] );
p:= Characteristic( F );
d:= ( Length( coeffs ) - 1 ) * DegreeOverPrimeField( F );
if Length( coeffs ) = 2 then
return - coeffs[1] / coeffs[2];
elif MAXSIZE_GF_INTERNAL < p^d then
TryNextMethod();
fi;
# Compute a root of the defining polynomial.
z := Z( p^d );
r := z;
one:= One( r );
zero:= Zero( r );
while r <> one and ValuePol( coeffs, r ) <> zero do
r := r * z;
od;
if DegreeFFE( r ) < Length( coeffs ) - 1 then
Error( "<poly> must be irreducible" );
fi;
# Return the root.
return r;
end );
#############################################################################
##
#M ViewObj( <F> ) . . . . . . . . . . . . . . . . . . view a field of `FFE's
#M PrintObj( <F> ) . . . . . . . . . . . . . . . . . print a field of `FFE's
#M String( <F> ) . . . . . . . . . . a string representing a field of `FFE's
#M ViewString( <F> ) . . . . . a short string representing a field of `FFE's
##
GAPInfo.tmpGFstring := function( F )
if IsPrimeField( F ) then
return Concatenation( "GF(", String(Characteristic( F )), ")" );
elif IsPrimeField( LeftActingDomain( F ) ) then
return Concatenation( "GF(", String(Characteristic( F )),
"^", String(DegreeOverPrimeField( F )), ")" );
elif F = LeftActingDomain( F ) then
return Concatenation( "FieldOverItselfByGenerators( ",
String(GeneratorsOfField( F )), " )" );
else
return Concatenation( "AsField( ", String(LeftActingDomain( F )),
", GF(", String(Characteristic( F )),
"^", String(DegreeOverPrimeField( F )), ") )" );
fi;
end;
InstallMethod( String, "for a field of FFEs",
[ IsField and IsFFECollection ], 10, GAPInfo.tmpGFstring );
InstallMethod( ViewString, "for a field of FFEs",
[ IsField and IsFFECollection ], 10, GAPInfo.tmpGFstring );
Unbind(GAPInfo.tmpGFstring);
InstallMethod( ViewObj, "for a field of FFEs",
[ IsField and IsFFECollection ], 10, function( F )
Print( ViewString(F) );
end );
InstallMethod( PrintObj, "for a field of FFEs",
[ IsField and IsFFECollection ], 10, function( F )
Print( ViewString(F) );
end );
#############################################################################
##
#M \in( <z> ,<F> ) . . . . . . . . test if an object lies in a finite field
##
InstallMethod( \in,
"for a FFE, and a field of FFEs",
IsElmsColls,
[ IsFFE, IsField and IsFFECollection ],
function ( z, F )
return DegreeOverPrimeField( F ) mod DegreeFFE( z ) = 0;
end );
#############################################################################
##
#M Intersection( <F>, <G> ) . . . . . . . intersection of two finite fields
##
InstallMethod( Intersection2,
"for two fields of FFEs",
IsIdenticalObj,
[ IsField and IsFFECollection, IsField and IsFFECollection ],
function ( F, G )
return GF( Characteristic( F ), GcdInt( DegreeOverPrimeField( F ),
DegreeOverPrimeField( G ) ) );
end );
#############################################################################
##
#M Conjugates( <L>, <K>, <z> ) . . . . conjugates of a finite field element
##
InstallMethod( Conjugates,
"for two fields of FFEs, and a FFE",
IsCollsXElms,
[ IsField and IsFinite and IsFFECollection,
IsField and IsFinite and IsFFECollection, IsFFE ],
function( L, K, z )
local cnjs, # conjugates of <z> in <L>/<K>, result
ord, # order of the subfield <K>
deg, # degree of <L> over <K>
i; # loop variable
if DegreeOverPrimeField( L ) mod DegreeFFE(z) <> 0 then
Error( "<z> must lie in <L>" );
fi;
# Get the order of `K' and the dimension of `L' as a `K'-vector space.
ord := Size( K );
deg := DegreeOverPrimeField( L ) / DegreeOverPrimeField( K );
# compute the conjugates $\set_{i=0}^{d-1}{z^(q^i)}$
cnjs := [];
for i in [0..deg-1] do
Add( cnjs, z );
z := z^ord;
od;
# return the conjugates
return cnjs;
end );
#############################################################################
##
#F Norm( <L>, <K>, <z> ) . . . . . . . . . norm of a finite field element
##
InstallMethod( Norm,
"for two fields of FFEs, and a FFE",
IsCollsXElms,
[ IsField and IsFinite and IsFFECollection,
IsField and IsFinite and IsFFECollection, IsFFE ],
function( L, K, z )
if DegreeOverPrimeField( L ) mod DegreeFFE(z) <> 0 then
Error( "<z> must lie in <L>" );
fi;
# Let $|K| = q$, $|L| = q^d$.
# The norm of $z$ is
# $\prod_{i=0}^{d-1} (z^{q^i}) = z^{\sum_{i=0}^{d-1} q^i}
# = z^{\frac{q^d-1}{q-1}$.
return z ^ ( ( Size(L) - 1 ) / ( Size(K) - 1 ) );
end );
#############################################################################
##
#M Trace( <L>, <K>, <z> ) . . . . . . . . . trace of a finite field element
##
InstallMethod( Trace,
"for two fields of FFEs, and a FFE",
IsCollsXElms,
[ IsField and IsFinite and IsFFECollection,
IsField and IsFinite and IsFFECollection, IsFFE ],
function( L, K, z )
local trc, # trace of <z> in <L>/<K>, result
ord, # order of the subfield <K>
deg, # degree of <L> over <K>
i; # loop variable
if DegreeOverPrimeField( L ) mod DegreeFFE(z) <> 0 then
Error( "<z> must lie in <L>" );
fi;
# Get the order of `K' and the dimension of `L' as a `K'-vector space.
ord := Size( K );
deg := DegreeOverPrimeField( L ) / DegreeOverPrimeField( K );
# $trc = \sum_{i=0}^{deg-1}{ z^(ord^i) }$
trc := 0;
for i in [0..deg-1] do
trc := trc + z;
z := z^ord;
od;
# return the trace
return trc;
end );
#############################################################################
##
#M Order( <z> ) . . . . . . . . . . . . . . order of a finite field element
##
InstallMethod( Order,
"for an internal FFE",
[ IsFFE and IsInternalRep ],
function ( z )
local ord, # order of <z>, result
chr, # characteristic of <F> (and <z>)
deg; # degree of <z> over the primefield
# compute the order
if IsZero( z ) then
ord := 0;
else
chr := Characteristic( z );
deg := DegreeFFE( z );
ord := (chr^deg-1) / GcdInt( chr^deg-1, LogFFE( z, Z(chr^deg) ) );
fi;
# return the order
return ord;
end );
InstallMethod( Order,
"for a general FFE",
[IsFFE],
function(z)
local p, d, ord, facs, f, i, o;
p := Characteristic(z);
d := DegreeFFE(z);
ord := p^d-1;
facs := Collected(FactorsInt(ord));
for f in facs do
for i in [1..f[2]] do
o := ord/f[1];
if not IsOne(z^o) then
break;
fi;
ord := o;
od;
od;
return ord;
end);
#############################################################################
##
#M SquareRoots( <F>, <z> )
##
InstallMethod( SquareRoots,
"for a field of FFEs, and a FFE",
IsCollsElms,
[ IsField, IsFFE ],
function( F, z )
local r;
if IsZero( z ) then
return [ z ];
elif Characteristic( z ) = 2 then
# unique square root for each element
r:= PrimitiveRoot( F );
return [ r ^ ( LogFFE( z, r ) / 2 mod ( Size( F )-1 ) ) ];
else
# either two solutions in `F' or no solution
r:= PrimitiveRoot( F );
z:= LogFFE( z, r ) / 2;
if IsInt( z ) then
z:= r ^ z;
return Set( [ z, -z ] );
else
return [];
fi;
fi;
end );
#############################################################################
##
#M NthRoot( <F>, <z>, <n> )
##
InstallMethod( NthRoot, "for a field of FFEs, and a FFE", IsCollsElmsX,
[ IsField, IsFFE,IsPosInt ],
function( F, a,n )
local z,qm;
if IsOne(a) or IsZero(a) or n=1 then
return a;
fi;
z:=PrimitiveRoot(F);
qm:=Size(F)-1;
a:=LogFFE(a,z)/n;
if 1<GcdInt(DenominatorRat(a),qm) then
return fail;
fi;
return z^(a mod qm);
end);
#############################################################################
##
#M Int( <z> ) . . . . . . . . . convert a finite field element to an integer
##
InstallMethod( Int,
"for an FFE",
[ IsFFE ],
IntFFE );
#############################################################################
##
#M IntFFESymm( <z> )
##
InstallMethod(IntFFESymm,"FFE",true,[ IsFFE ],0,
function(z)
local i,p;
p:=Characteristic(z);
i:=IntFFE(z);
if 2*i>p then
return i-p;
else
return i;
fi;
end);
#############################################################################
##
#M IntFFESymm( <vector> )
##
InstallOtherMethod(IntFFESymm,"vector",true,
[IsRowVector and IsFFECollection ],0,
v -> List( v, IntFFESymm ) );
#############################################################################
##
#M String( <ffe> ) . . . . . . convert a finite field element into a string
##
InstallMethod(String,"for an internal FFE",true,[IsFFE and IsInternalRep],0,
function ( ffe )
local str, log,deg,char;
char:=Characteristic(ffe);
if IsZero( ffe ) then
str := Concatenation("0*Z(",String(char),")");
else
str := Concatenation("Z(",String(char));
deg:=DegreeFFE(ffe);
if deg <> 1 then
str := Concatenation(str,"^",String(deg));
fi;
str := Concatenation(str,")");
log:= LogFFE(ffe,Z( char ^ deg ));
if log <> 1 then
str := Concatenation(str,"^",String(log));
fi;
fi;
ConvertToStringRep( str );
return str;
end );
InstallMethod(ViewString, "for an internal FFE delegating to String",
[IsFFE and IsInternalRep], String );
InstallMethod(DisplayString, "for an internal FFE via String",
[IsFFE and IsInternalRep], ffe -> Concatenation( String(ffe), "\n") );
#############################################################################
##
#M FieldOverItselfByGenerators( <elms> )
##
InstallMethod( FieldOverItselfByGenerators,
"for a collection of FFEs",
[ IsFFECollection ],
function( elms )
local F, d, q;
F:= Objectify( NewType( FamilyObj( elms ),
IsField and IsAttributeStoringRep ),
rec() );
d:= DegreeFFE( elms );
q:= Characteristic( F )^d;
SetLeftActingDomain( F, F );
SetIsPrimeField( F, d = 1 );
SetIsFinite( F, true );
SetSize( F, q );
SetGeneratorsOfDivisionRing( F, elms );
SetGeneratorsOfRing( F, elms );
SetDegreeOverPrimeField( F, d );
SetDimension( F, 1 );
if q <= MAXSIZE_GF_INTERNAL then
SetPrimitiveRoot( F, Z(q) );
fi;
return F;
end );
#############################################################################
##
#M FieldByGenerators( <F>, <elms> ) . . . . . . . . . . field by generators
##
InstallMethod( FieldByGenerators,
"for two coll. of FFEs, the first a field",
IsIdenticalObj,
[ IsFFECollection and IsField, IsFFECollection ],
function( subfield, gens )
local F, d, subd, q, z;
F := Objectify( NewType( FamilyObj( gens ),
IsField and IsAttributeStoringRep ),
rec() );
d:= DegreeFFE( gens );
subd:= DegreeOverPrimeField( subfield );
if d mod subd <> 0 then
d:= LcmInt( d, subd );
gens:= Concatenation( gens, GeneratorsOfDivisionRing( subfield ) );
fi;
q:= Characteristic( subfield )^d;
SetLeftActingDomain( F, subfield );
SetIsPrimeField( F, d = 1 );
SetIsFinite( F, true );
SetSize( F, q );
SetDegreeOverPrimeField( F, d );
SetDimension( F, d / DegreeOverPrimeField( subfield ) );
if q <= MAXSIZE_GF_INTERNAL then
z:= Z(q);
SetPrimitiveRoot( F, z );
gens:= [ z ];
# elif d <> 1 then
# Error( "sorry, large non-prime fields are not yet implemented" );
fi;
SetGeneratorsOfDivisionRing( F, gens );
SetGeneratorsOfRing( F, gens );
return F;
end );
#############################################################################
##
#M DefaultFieldByGenerators( <z> ) . . . . . . default field containing ffes
#M DefaultFieldByGenerators( <F>, <elms> ) . . default field containing ffes
##
InstallMethod( DefaultFieldByGenerators,
"for a collection of FFEs that is a list",
[ IsFFECollection and IsList ],
gens -> GF( Characteristic( gens ), DegreeFFE( gens ) ) );
InstallOtherMethod( DefaultFieldByGenerators,
"for a finite field, and a collection of FFEs that is a list",
IsIdenticalObj,
[ IsField and IsFinite, IsFFECollection and IsList ],
function( F, gens )
return GF( F, DegreeFFE( gens ) );
end );
#############################################################################
##
#M RingByGenerators( <elms> ) . . . . . . . . . . . . . for FFE collection
#M RingWithOneByGenerators( <elms> ) . . . . . . . . . . for FFE collection
#M DefaultRingByGenerators( <z> ) . . . . . . default ring containing FFEs
#M FLMLORByGenerators( <F>, <elms> ) . . . . . . . . . . for FFE collection
#M FLMLORWithOneByGenerators( <F>, <elms> ) . . . . . . for FFE collection
##
## In all these cases, the result is either zero or in fact a field,
## so we may delegate to `GF'.
##
RingFromFFE := function( gens )
local F;
F:= GF( Characteristic( gens ), DegreeFFE( gens ) );
if ForAll( gens, IsZero ) then
F:= TrivialSubalgebra( F );
fi;
return F;
end;
InstallMethod( RingByGenerators,
"for a collection of FFE",
[ IsFFECollection ],
RingFromFFE );
InstallMethod( RingWithOneByGenerators,
"for a collection of FFE",
[ IsFFECollection ],
RingFromFFE );
InstallMethod( DefaultRingByGenerators,
"for a collection of FFE",
[ IsFFECollection and IsList ],
RingFromFFE );
FLMLORFromFFE := function( F, elms )
if ForAll( elms, IsZero ) then
return TrivialSubalgebra( F );
else
return GF( Characteristic( F ),
Lcm( DegreeFFE( elms ), DegreeOverPrimeField( F ) ) );
fi;
end;
InstallMethod( FLMLORByGenerators,
"for a field, and a collection of FFE",
IsIdenticalObj,
[ IsField and IsFFECollection, IsFFECollection ], 0,
FLMLORFromFFE );
InstallMethod( FLMLORWithOneByGenerators,
"for a field, and a collection of FFE",
IsIdenticalObj,
[ IsField and IsFFECollection, IsFFECollection ], 0,
FLMLORFromFFE );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <ffelist> )
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
"for a collection of FFEs",
[ IsFFECollection ],
ffelist -> ForAll( ffelist, x -> not IsZero( x ) ) );
#############################################################################
##
#M AsInternalFFE( <internal ffe> )
##
InstallMethod( AsInternalFFE, [IsFFE and IsInternalRep],
x->x);
#############################################################################
##
#M AsInternalFFE( <non-ffe> )
##
InstallOtherMethod( AsInternalFFE, [IsObject],
function(x)
if not IsFFE(x) then
return fail;
else
TryNextMethod();
fi;
end);
#############################################################################
##
#E
|