This file is indexed.

/usr/share/gap/lib/ffe.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
#############################################################################
##
#W  ffe.gi                      GAP library                     Werner Nickel
#W                                                         & Martin Schönert
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains methods for `FFE's.
##  Note that we must distinguish finite fields and fields that consist of
##  `FFE's.
##  (The image of the natural embedding of the field `GF(<q>)' into a field
##  of rational functions is of course a finite field but its elements are
##  not `FFE's since this would be a property given by their family.)
##
##  Special methods for (elements of) general finite fields can be found in
##  the file `fieldfin.gi'.
##
##  The implementation of elements of rings `Integers mod <n>' can be found
##  in the file `zmodnz.gi'.
##


#############################################################################
##
#V  GALOIS_FIELDS
##
##  global list of finite fields `GF( <p>^<d> )',
##  the field of size $p^d$ is stored in `GALOIS_FIELDS[<p>][<d>]'.
##
InstallFlushableValue( GALOIS_FIELDS, [] );


#############################################################################
##
#M  \+( <ffe>, <rat> )
#M  \+( <rat>, <ffe> )
#M  \*( <ffe>, <rat> )
#M  \*( <rat>, <ffe> )
##
##  The arithmetic operations with one operand a FFE <ffe> and the other
##  a rational <rat> are defined as follows.
##  Let `<one> = One( <ffe> )', and let <num> and <den> denote the numerator
##  and denominator of <rat>.
##  Let `<new> = (<num>\*<one>) / (<den>\*<one>)'.
##  (Note that the multiplication of FFEs with positive integers is defined
##  as abbreviated addition.)
##  Then we have `<ffe> + <rat> = <rat> + <ffe> = <ffe> + <new>',
##  and `<ffe> \* <rat> = <rat> \* <ffe> = <ffe> \* <new>'.
##  As usual, difference and quotient are defined as sum and product,
##  with the second argument replaced by its additive and mutliplicative
##  inverse, respectively.
##
##  (It would be possible to install these methods in the kernel tables,
##  where the case of arithmetic operations with one operand an internally
##  represented FFE and the other a rational *integer* is handled.
##  But the case of noninteger rationals does probably not occur particularly
##  often.)
##
InstallMethod( \+,
    "for a FFE and a rational",
    [ IsFFE, IsRat ],
    function( ffe, rat )
    rat:= (rat mod Characteristic(ffe))*One(ffe);
    return ffe + rat;
    end );

InstallMethod( \+,
    "for a rational and a FFE",
    [ IsRat, IsFFE ],
    function( rat, ffe )
    rat:= (rat mod Characteristic(ffe))*One(ffe);
    return rat + ffe;
    end );

InstallMethod( \*,
    "for a FFE and a rational",
    [ IsFFE, IsRat ],
    function( ffe, rat )
    if IsInt( rat ) then
      # Avoid the recursion trap.
      TryNextMethod();
    fi;
    # Replace the rational by an equivalent integer.
    rat:= rat mod Characteristic(ffe);
    return ffe * rat;
    end );

InstallMethod( \*,
    "for a rational and a FFE",
    [ IsRat, IsFFE ],
    function( rat, ffe )
    if IsInt( rat ) then
      # Avoid the recursion trap.
      TryNextMethod();
    fi;
    # Replace the rational by an equivalent integer.
    rat:= rat mod Characteristic(ffe);
    return rat * ffe;
    end );


#############################################################################
##
#M  DegreeFFE( <vector> )
##
InstallOtherMethod( DegreeFFE,
    "for a row vector of FFEs",
    [ IsRowVector and IsFFECollection ],
    function( list )
    local deg, i;
    
    #
    # Those length zero vectors for which this makes sense have
    # representation-specific methods
    #
    if Length(list) = 0 then
        TryNextMethod();
    fi;
    deg:= DegreeFFE( list[1] );
    for i in [ 2 .. Length( list ) ] do
      deg:= LcmInt( deg, DegreeFFE( list[i] ) );
    od;
    return deg;
    end );
#T    list -> Lcm( List( list, DegreeFFE ) ) );
#T to be provided by the kernel!


#############################################################################
##
#M  DegreeFFE( <matrix> )
##
InstallOtherMethod( DegreeFFE,
    "for a matrix of FFEs",
    [ IsMatrix and IsFFECollColl ],
    function( mat )
    local deg, i;
    deg:= DegreeFFE( mat[1] );
    for i in [ 2 .. Length( mat ) ] do
      deg:= LcmInt( deg, DegreeFFE( mat[i] ) );
    od;
    return deg;
    end );


#############################################################################
##
#M  LogFFE( <n>, <r> )  . . . . . . . . . . . .  for two FFE in a prime field
##
InstallMethod( LogFFE,
    "for two FFEs (in a prime field)",
    IsIdenticalObj,
    [ IsFFE, IsFFE ],
        function( n, r )
    if DegreeFFE( n ) = 1 and DegreeFFE( r ) = 1 then
        return LogMod( Int( n ), Int( r ), Characteristic( n ) );
    else
        TryNextMethod();
    fi;
end );


#############################################################################
##
#M  IntVecFFE( <vector> )
##
InstallMethod( IntVecFFE,
    "for a row vector of FFEs",
    [ IsRowVector and IsFFECollection ],
    v -> List( v, IntFFE ) );


#############################################################################
##
#F  FFEFamily( <p> )
##
InstallGlobalFunction( FFEFamily, function( p )
    local F;

    if MAXSIZE_GF_INTERNAL < p then

      # large characteristic
      if p in FAMS_FFE_LARGE[1] then

        F:= FAMS_FFE_LARGE[2][ PositionSorted( FAMS_FFE_LARGE[1], p ) ];

      else

        F:= NewFamily( "FFEFamily", IsFFE, 
                       CanEasilySortElements,
                       CanEasilySortElements  );
        SetCharacteristic( F, p );

        # Store the type for the representation of prime field elements
        # via residues.
        F!.typeOfZmodnZObj:= NewType( F, IsZmodpZObjLarge 
	  and IsModulusRep and IsZDFRE);
        SetDataType( F!.typeOfZmodnZObj, p );
        F!.typeOfZmodnZObj![ ZNZ_PURE_TYPE ]:= F!.typeOfZmodnZObj;
        F!.modulus:= p;

        SetOne(  F, ZmodnZObj( F, 1 ) );
        SetZero( F, ZmodnZObj( F, 0 ) );

        # The whole family is a unique factorisation domain.
        SetIsUFDFamily( F, true );

        Add( FAMS_FFE_LARGE[1], p );
        Add( FAMS_FFE_LARGE[2], F );
        SortParallel( FAMS_FFE_LARGE[1], FAMS_FFE_LARGE[2] );

      fi;

    else

      # small characteristic
      # (The list `TYPE_FFE' is used to store the types.)
      F:= FamilyType( TYPE_FFE( p ) );
      if not HasOne( F ) then

        # This family has not been accessed by `FFEFamily' before.
        SetOne(  F, One( Z(p) ) );
        SetZero( F, Zero( Z(p) ) );

      fi;

    fi;
    return F;
end );


#############################################################################
##
#M  Zero( <ffe-family> )
##
InstallOtherMethod( Zero,
    "for a family of FFEs",
    [ IsFFEFamily ],
    function( fam )
    local char;
    char:= Characteristic( fam );
    if char <= MAXSIZE_GF_INTERNAL then
      return Zero( Z( char ) );
    else
      TryNextMethod();
    fi;
    end );


#############################################################################
##
#M  One( <ffe-family> )
##
InstallOtherMethod( One,
    "for a family of FFEs",
    [ IsFFEFamily ],
    function( fam )
    local char;
    char:= Characteristic( fam );
    if char <= MAXSIZE_GF_INTERNAL then
      return One( Z( char ) );
    else
      TryNextMethod();
    fi;
end );


#############################################################################
##
#F  LargeGaloisField( <p>^<n> )
#F  LargeGaloisField( <p>, <n> )
##
#T other construction possibilities?
##
    
    
InstallMethod( LargeGaloisField, 
        [IsPosInt],
        function(q)
    local p,d;
    p := SmallestRootInt(q);
    d := LogInt(q,p);
    Assert(1, q = p^d);
    Assert(1, IsPrimeInt(p));
    return LargeGaloisField(p,d);
end);
    

InstallMethod( LargeGaloisField,
        [IsPosInt, IsPosInt],
        function(p,d)
    if not IsPrimeInt(p) then
        Error("LargeGalosField: Characteristic must be prime");
    fi;
    if d = 1 then
        return ZmodpZNC( p );
    else
        TryNextMethod();
    fi;
end );


#############################################################################
##
#F  GaloisField( <p>^<d> )  . . . . . . . . . .  create a finite field object
#F  GF( <p>^<d> )
#F  GaloisField( <p>, <d> )
#F  GF( <p>, <d> )
#F  GaloisField( <subfield>, <d> )
#F  GF( <subfield>, <d> )
#F  GaloisField( <p>, <pol> )
#F  GF( <p>, <pol> )
#F  GaloisField( <subfield>, <pol> )
#F  GF( <subfield>, <pol> )
##

# in Finite field calculations we often ask again and again for the same GF.
# Therefore cache the last entry.
GFCACHE:=[0,0];

InstallGlobalFunction( GaloisField, function ( arg )
    local F,         # the field, result
          p,         # characteristic
          d,         # degree over the prime field
          d1,        # degree of subfield over prime field
          q,         # size of field to be constructed
          subfield,  # left acting domain of the field under construction
          B;         # basis of the extension

    # if necessary split the arguments
    if Length( arg ) = 1 and IsPosInt( arg[1] ) then

        if arg[1]=GFCACHE[1] then
          return GFCACHE[2];
        fi;

        # `GF( p^d )'
        p := SmallestRootInt( arg[1] );
        d := LogInt( arg[1], p );

    elif Length( arg ) = 2 then

        # `GF( p, d )'
        p := arg[1];
        d := arg[2];

    else
        Error( "usage: GF( <subfield>, <extension> )" );
    fi;

    # if the subfield is given by a prime denoting the prime field
    if IsInt( p ) and IsPrimeInt( p ) then

      subfield:= p;

      # if the degree of the extension is given
      if   IsInt( d ) and 0 < d then

        # `GF( p, d )' for prime `p'
        if MAXSIZE_GF_INTERNAL < p^d then
          return LargeGaloisField( p, d );
        fi;

      # if the extension is given by an irreducible polynomial
      # over the prime field
      elif     IsRationalFunction( d )
           and IsLaurentPolynomial( d )
           and DegreeFFE( CoefficientsOfLaurentPolynomial( d )[1] ) = 1 then

        # `GF( p, <pol> )' for prime `p'
        return FieldExtension( GaloisField( p, 1 ), d );

      # if the extension is given by coefficients of an irred. polynomial
      # over the prime field
      elif IsHomogeneousList( d )  and DegreeFFE( d ) = 1  then

        # `GF( p, <polcoeffs> )' for prime `p'
        return FieldExtension( GaloisField( p, 1 ),
                               UnivariatePolynomial( GaloisField(p,1), d ) );

      # if a basis for the extension is given
      elif IsHomogeneousList( d ) then

#T The construction of a field together with a basis is obsolete.
#T One should construct the basis explicitly.
        # `GF( p, <basisvectors> )' for prime `p'
        F := GaloisField( GaloisField( p, 1 ), Length( d ) );

        # Check that the vectors in `d' really form a basis,
        # and construct the basis.
        B:= Basis( F, d );
        if B = fail then
          Error( "<extension> is not linearly independent" );
        fi;

        # Note that `F' is *not* the field stored in the global list!
        SetBasis( F, B );
        return F;

      fi;

    # if the subfield is given by a finite field
    elif IsField( p ) then

      subfield:= p;
      p:= Characteristic( subfield );
      
      d1 := DegreeOverPrimeField(subfield);
      # if the degree of the extension is given
      if   IsInt( d )  then
          q := p^(d*d1);
          if MAXSIZE_GF_INTERNAL < q then
              if d1 = 1 then
                  return LargeGaloisField( p, d );
              else
                  return FieldByGenerators(subfield, [Z(p,d*d1)]);
              fi;
          fi;

        d:= d * DegreeOverPrimeField( subfield );

      # if the extension is given by coefficients of an irred. polynomial
#T should be obsolete!
      elif     IsHomogeneousList( d )
           and DegreeOverPrimeField( subfield ) mod DegreeFFE( d ) = 0 then

        # `GF( subfield, <polcoeffs> )'
        return FieldExtension( subfield,
                               UnivariatePolynomial( subfield, d ) );


      # if the extension is given by an irreducible polynomial
      elif     IsRationalFunction( d )
           and IsLaurentPolynomial( d )
           and DegreeOverPrimeField( subfield ) mod
               DegreeFFE( CoefficientsOfLaurentPolynomial( d )[1] ) = 0 then

        # `GF( subfield, <pol> )'
        return FieldExtension( subfield, d );

      # if a basis for the extension is given
#T The construction of a field together with a basis is obsolete.
      elif IsHomogeneousList( d ) then

        # `GF( <subfield>, <basisvectors> )'
        F := GaloisField( subfield, Length( d ) );

        # Check that the vectors in `d' really form a basis,
        # and construct the basis.
        B:= Basis( F, d );
        if B = fail then
          Error( "<extension> is not linearly independent" );
        fi;

        # Note that `F' is *not* the field stored in the global list!
        SetBasis( F, B );
        return F;

      # Otherwise we don't know how to handle the extension.
      else
        Error( "<extension> must be a <deg>, <bas>, or <pol>" );
      fi;

    # Otherwise we don't know how to handle the subfield.
    else
      Error( "<subfield> must be a prime or a finite field" );
    fi;

    # If this place is reached,
    # `p' is the characteristic, `d' is the degree of the extension,
    # and `p^d' is less than or equal to `MAXSIZE_GF_INTERNAL'.

    if IsInt( subfield ) then

      # The standard field is required.  Look whether it is already stored.
      if not IsBound( GALOIS_FIELDS[p] ) then
        GALOIS_FIELDS[p]:= [];
      elif IsBound( GALOIS_FIELDS[p][d] ) then
        if Length(arg)=1 then
          GFCACHE:=[arg[1],GALOIS_FIELDS[p][d]];
        fi;
        return GALOIS_FIELDS[p][d];
      fi;

      # Construct the finite field object.
      if d = 1 then
        F:= FieldOverItselfByGenerators( [ Z(p) ] );
      else
        F:= FieldByGenerators( FieldOverItselfByGenerators( [ Z(p) ] ),
                               [ Z(p^d) ] );
      fi;

      # Store the standard field.
      GALOIS_FIELDS[p][d]:= F;

    else

      # Construct the finite field object.
      F:= FieldByGenerators( subfield, [ Z(p^d) ] );

    fi;

    # Return the finite field.
    return F;
end );


#############################################################################
##
#M  FieldExtension( <subfield>, <poly> )
##
InstallOtherMethod( FieldExtension,
    "for a field of FFEs, and a univ. Laurent polynomial",
#T CollPoly
    [ IsField and IsFFECollection, IsLaurentPolynomial ],
    function( F, poly )

    local coeffs, p, d, z, r, one, zero, E;

    coeffs:= CoefficientsOfLaurentPolynomial( poly );
    coeffs:= ShiftedCoeffs( coeffs[1], coeffs[2] );
    p:= Characteristic( F );
    d:= ( Length( coeffs ) - 1 ) * DegreeOverPrimeField( F );

    if MAXSIZE_GF_INTERNAL < p^d then
      TryNextMethod();
    fi;

    # Compute a root of the defining polynomial.
    z := Z( p^d );
    r := z;
    one:= One( r );
    zero:= Zero( r );
    while r <> one and ValuePol( coeffs, r ) <> zero do
      r := r * z;
    od;
    if DegreeFFE( r ) < Length( coeffs ) - 1  then
      Error( "<poly> must be irreducible" );
    fi;

    # We must not call `AsField' here because then the standard `GF(p^d)'
    # would be returned whenever `F' is equal to `GF(p)'.
    E:= FieldByGenerators( F, [ z ] );
    SetDefiningPolynomial( E, poly );
    SetRootOfDefiningPolynomial( E, r );
    if r = z or Order( r ) = Size( E ) - 1  then
      SetPrimitiveRoot( E, r );
    else
      SetPrimitiveRoot( E, z );
    fi;

    return E;
    end );


#############################################################################
##
#M  DefiningPolynomial( <F> ) . . . . . . . . . .  for standard finite fields
##
InstallMethod( DefiningPolynomial,
    "for a field of FFEs",
    [ IsField and IsFFECollection ],
    function( F )
    local root;

    if HasRootOfDefiningPolynomial( F ) then
      # We must choose a compatible polynomial.
      return MinimalPolynomial( LeftActingDomain( F ),
                                RootOfDefiningPolynomial( F ) );
    fi;

    # Choose a primitive polynomial, and store a root.
    root:= Z( Size( F ) );
    SetRootOfDefiningPolynomial( F, root );
    if IsPrimeField( LeftActingDomain( F ) ) then
      return ConwayPolynomial( Characteristic( F ),
                               DegreeOverPrimeField( F ) );
    else
      return MinimalPolynomial( LeftActingDomain( F ), root );
    fi;
    end );


#############################################################################
##
#M  RootOfDefiningPolynomial( <F> ) . . . . . . .  for standard finite fields
##
InstallMethod( RootOfDefiningPolynomial,
    "for a small field of FFEs",
    [ IsField and IsFFECollection ],
    function( F )
    local coeffs, p, d, z, r, one, zero;

    coeffs:= CoefficientsOfLaurentPolynomial( DefiningPolynomial( F ) );

    # Maybe the call to `DefiningPolynomial' has caused that a root is bound.
    if HasRootOfDefiningPolynomial( F ) then
      return RootOfDefiningPolynomial( F );
    fi;

    coeffs:= ShiftedCoeffs( coeffs[1], coeffs[2] );
    p:= Characteristic( F );
    d:= ( Length( coeffs ) - 1 ) * DegreeOverPrimeField( F );

    if Length( coeffs ) = 2 then
      return - coeffs[1] / coeffs[2];
    elif MAXSIZE_GF_INTERNAL < p^d then
      TryNextMethod();
    fi;

    # Compute a root of the defining polynomial.
    z := Z( p^d );
    r := z;
    one:= One( r );
    zero:= Zero( r );
    while r <> one and ValuePol( coeffs, r ) <> zero do
      r := r * z;
    od;
    if DegreeFFE( r ) < Length( coeffs ) - 1  then
      Error( "<poly> must be irreducible" );
    fi;

    # Return the root.
    return r;
    end );


#############################################################################
##
#M  ViewObj( <F> ) . . . . . . . . . . . . . . . . . . view a field of `FFE's
#M  PrintObj( <F> ) . . . . . . . . . . . . . . . . . print a field of `FFE's
#M  String( <F> ) . . . . . . . . . . a string representing a field of `FFE's
#M  ViewString( <F> ) . . . . . a short string representing a field of `FFE's
##

GAPInfo.tmpGFstring := function( F )
    if IsPrimeField( F ) then
      return Concatenation( "GF(", String(Characteristic( F )), ")" );
    elif IsPrimeField( LeftActingDomain( F ) ) then
      return Concatenation( "GF(", String(Characteristic( F )),
                    "^", String(DegreeOverPrimeField( F )), ")" );
    elif F = LeftActingDomain( F ) then
      return Concatenation( "FieldOverItselfByGenerators( ",
             String(GeneratorsOfField( F )), " )" );
    else
      return Concatenation( "AsField( ", String(LeftActingDomain( F )),
             ", GF(", String(Characteristic( F )),
                      "^", String(DegreeOverPrimeField( F )), ") )" );
    fi;
end;
InstallMethod( String, "for a field of FFEs",
        [ IsField and IsFFECollection ], 10, GAPInfo.tmpGFstring );

InstallMethod( ViewString, "for a field of FFEs",
        [ IsField and IsFFECollection ], 10, GAPInfo.tmpGFstring );
Unbind(GAPInfo.tmpGFstring);
InstallMethod( ViewObj, "for a field of FFEs",
        [ IsField and IsFFECollection ], 10, function( F )
    Print( ViewString(F) );
end );

InstallMethod( PrintObj, "for a field of FFEs",
        [ IsField and IsFFECollection ], 10, function( F )
    Print( ViewString(F) );
end );
    


#############################################################################
##
#M  \in( <z> ,<F> ) . . . . . . . .  test if an object lies in a finite field
##
InstallMethod( \in,
    "for a FFE, and a field of FFEs",
    IsElmsColls,
    [ IsFFE, IsField and IsFFECollection ],
    function ( z, F )
    return DegreeOverPrimeField( F ) mod DegreeFFE( z ) = 0;
    end );


#############################################################################
##
#M  Intersection( <F>, <G> )  . . . . . . . intersection of two finite fields
##
InstallMethod( Intersection2,
    "for two fields of FFEs",
    IsIdenticalObj,
    [ IsField and IsFFECollection, IsField and IsFFECollection ],
    function ( F, G )
    return GF( Characteristic( F ), GcdInt( DegreeOverPrimeField( F ),
                                            DegreeOverPrimeField( G ) ) );
    end );


#############################################################################
##
#M  Conjugates( <L>, <K>, <z> )  . . . . conjugates of a finite field element
##
InstallMethod( Conjugates,
    "for two fields of FFEs, and a FFE",
    IsCollsXElms,
    [ IsField and IsFinite and IsFFECollection,
      IsField and IsFinite and IsFFECollection, IsFFE ],
    function( L, K, z )
    local   cnjs,       # conjugates of <z> in <L>/<K>, result
            ord,        # order of the subfield <K>
            deg,        # degree of <L> over <K>
            i;          # loop variable

    if DegreeOverPrimeField( L ) mod DegreeFFE(z) <> 0  then
      Error( "<z> must lie in <L>" );
    fi;

    # Get the order of `K' and the dimension of `L' as a `K'-vector space.
    ord := Size( K );
    deg := DegreeOverPrimeField( L ) / DegreeOverPrimeField( K );

    # compute the conjugates $\set_{i=0}^{d-1}{z^(q^i)}$
    cnjs := [];
    for i  in [0..deg-1]  do
        Add( cnjs, z );
        z := z^ord;
    od;

    # return the conjugates
    return cnjs;
    end );


#############################################################################
##
#F  Norm( <L>, <K>, <z> )   . . . . . . . . .  norm of a finite field element
##
InstallMethod( Norm,
    "for two fields of FFEs, and a FFE",
    IsCollsXElms,
    [ IsField and IsFinite and IsFFECollection,
      IsField and IsFinite and IsFFECollection, IsFFE ],
    function( L, K, z )

    if DegreeOverPrimeField( L ) mod DegreeFFE(z) <> 0  then
      Error( "<z> must lie in <L>" );
    fi;

    # Let $|K| = q$, $|L| = q^d$.
    # The norm of $z$ is
    # $\prod_{i=0}^{d-1} (z^{q^i}) = z^{\sum_{i=0}^{d-1} q^i}
    #                              = z^{\frac{q^d-1}{q-1}$.
    return z ^ ( ( Size(L) - 1 ) / ( Size(K) - 1 ) );
    end );


#############################################################################
##
#M  Trace( <L>, <K>, <z> )  . . . . . . . . . trace of a finite field element
##
InstallMethod( Trace,
    "for two fields of FFEs, and a FFE",
    IsCollsXElms,
    [ IsField and IsFinite and IsFFECollection,
      IsField and IsFinite and IsFFECollection, IsFFE ],
    function( L, K, z )
    local   trc,        # trace of <z> in <L>/<K>, result
            ord,        # order of the subfield <K>
            deg,        # degree of <L> over <K>
            i;          # loop variable

    if DegreeOverPrimeField( L ) mod DegreeFFE(z) <> 0  then
      Error( "<z> must lie in <L>" );
    fi;

    # Get the order of `K' and the dimension of `L' as a `K'-vector space.
    ord := Size( K );
    deg := DegreeOverPrimeField( L ) / DegreeOverPrimeField( K );

    # $trc = \sum_{i=0}^{deg-1}{ z^(ord^i) }$
    trc := 0;
    for i  in [0..deg-1]  do
        trc := trc + z;
        z := z^ord;
    od;

    # return the trace
    return trc;
    end );


#############################################################################
##
#M  Order( <z> )  . . . . . . . . . . . . . . order of a finite field element
##
InstallMethod( Order,
    "for an internal FFE",
    [ IsFFE and IsInternalRep ],
    function ( z )
    local   ord,        # order of <z>, result
            chr,        # characteristic of <F> (and <z>)
            deg;        # degree of <z> over the primefield

    # compute the order
    if IsZero( z )   then
        ord := 0;
    else
        chr := Characteristic( z );
        deg := DegreeFFE( z );
        ord := (chr^deg-1) / GcdInt( chr^deg-1, LogFFE( z, Z(chr^deg) ) );
    fi;

    # return the order
    return ord;
end );

InstallMethod( Order,
        "for a general FFE",
        [IsFFE],
        function(z)
    local   p,  d,  ord,  facs,  f,  i,  o;
    p := Characteristic(z);
    d := DegreeFFE(z);
    ord := p^d-1;
    facs := Collected(FactorsInt(ord));
    for f in facs do
        for i in [1..f[2]] do
            o := ord/f[1];
            if not IsOne(z^o) then
                break;
            fi;
            ord := o;
        od;
    od;
    return ord;
end);

#############################################################################
##
#M  SquareRoots( <F>, <z> )
##
InstallMethod( SquareRoots,
    "for a field of FFEs, and a FFE",
    IsCollsElms,
    [ IsField, IsFFE ],
    function( F, z )
    local r;
    if IsZero( z ) then
      return [ z ];
    elif Characteristic( z ) = 2 then

      # unique square root for each element
      r:= PrimitiveRoot( F );
      return [ r ^ ( LogFFE( z, r ) / 2 mod ( Size( F )-1 ) ) ];

    else

      # either two solutions in `F' or no solution
      r:= PrimitiveRoot( F );
      z:= LogFFE( z, r ) / 2;
      if IsInt( z ) then
        z:= r ^ z;
        return Set( [ z, -z ] );
      else
        return [];
      fi;

    fi;
    end );


#############################################################################
##
#M  NthRoot( <F>, <z>, <n> )
##
InstallMethod( NthRoot, "for a field of FFEs, and a FFE", IsCollsElmsX,
    [ IsField, IsFFE,IsPosInt ],
function( F, a,n )
local z,qm;
  if IsOne(a) or IsZero(a) or n=1 then
    return a;
  fi;
  z:=PrimitiveRoot(F);
  qm:=Size(F)-1;
  a:=LogFFE(a,z)/n;
  if 1<GcdInt(DenominatorRat(a),qm) then
    return fail;
  fi;
  return z^(a mod qm);
end);


#############################################################################
##
#M  Int( <z> ) . . . . . . . . . convert a finite field element to an integer
##
InstallMethod( Int,
    "for an FFE",
    [ IsFFE ],
    IntFFE );


#############################################################################
##
#M  IntFFESymm( <z> ) 
##
InstallMethod(IntFFESymm,"FFE",true,[ IsFFE ],0,
function(z)
local i,p;
  p:=Characteristic(z);
  i:=IntFFE(z);
  if 2*i>p then
    return i-p;
  else
    return i;
  fi;
end);


#############################################################################
##
#M  IntFFESymm( <vector> )
##
InstallOtherMethod(IntFFESymm,"vector",true,
  [IsRowVector and IsFFECollection ],0,
    v -> List( v, IntFFESymm ) );

#############################################################################
##
#M  String( <ffe> ) . . . . . .  convert a finite field element into a string
##
InstallMethod(String,"for an internal FFE",true,[IsFFE and IsInternalRep],0,
function ( ffe )
local   str, log,deg,char;
  char:=Characteristic(ffe);
  if   IsZero( ffe )  then
    str := Concatenation("0*Z(",String(char),")");
  else
    str := Concatenation("Z(",String(char));
    deg:=DegreeFFE(ffe);
    if deg <> 1  then
      str := Concatenation(str,"^",String(deg));
    fi;
    str := Concatenation(str,")");
    log:= LogFFE(ffe,Z( char ^ deg ));
    if log <> 1 then
      str := Concatenation(str,"^",String(log));
    fi;
  fi;
  ConvertToStringRep( str );
  return str;
end );

InstallMethod(ViewString, "for an internal FFE delegating to String",
  [IsFFE and IsInternalRep], String );

InstallMethod(DisplayString, "for an internal FFE via String",
  [IsFFE and IsInternalRep], ffe -> Concatenation( String(ffe), "\n") );


#############################################################################
##
#M  FieldOverItselfByGenerators( <elms> )
##
InstallMethod( FieldOverItselfByGenerators,
    "for a collection of FFEs",
    [ IsFFECollection ],
    function( elms )

    local F, d, q;

    F:= Objectify( NewType( FamilyObj( elms ),
                            IsField and IsAttributeStoringRep ),
                   rec() );
    d:= DegreeFFE( elms );
    q:= Characteristic( F )^d;

    SetLeftActingDomain( F, F );
    SetIsPrimeField( F, d = 1 );
    SetIsFinite( F, true );
    SetSize( F, q );
    SetGeneratorsOfDivisionRing( F, elms );
    SetGeneratorsOfRing( F, elms );
    SetDegreeOverPrimeField( F, d );
    SetDimension( F, 1 );

    if q <= MAXSIZE_GF_INTERNAL then
      SetPrimitiveRoot( F, Z(q) );
    fi;

    return F;
    end );


#############################################################################
##
#M  FieldByGenerators( <F>, <elms> )  . . . . . . . . . . field by generators
##
InstallMethod( FieldByGenerators,
    "for two coll. of FFEs, the first a field",
    IsIdenticalObj,
    [ IsFFECollection and IsField, IsFFECollection ],
    function( subfield, gens )

    local F, d, subd, q, z;

    F := Objectify( NewType( FamilyObj( gens ),
                             IsField and IsAttributeStoringRep ),
                    rec() );

    d:= DegreeFFE( gens );
    subd:= DegreeOverPrimeField( subfield );
    if d mod subd <> 0 then
      d:= LcmInt( d, subd );
      gens:= Concatenation( gens, GeneratorsOfDivisionRing( subfield ) );
    fi;

    q:= Characteristic( subfield )^d;

    SetLeftActingDomain( F, subfield );
    SetIsPrimeField( F, d = 1 );
    SetIsFinite( F, true );
    SetSize( F, q );
    SetDegreeOverPrimeField( F, d );
    SetDimension( F, d / DegreeOverPrimeField( subfield ) );

    if q <= MAXSIZE_GF_INTERNAL then
      z:= Z(q);
      SetPrimitiveRoot( F, z );
      gens:= [ z ];
#    elif d <> 1 then
#      Error( "sorry, large non-prime fields are not yet implemented" );
    fi;

    SetGeneratorsOfDivisionRing( F, gens );
    SetGeneratorsOfRing( F, gens );

    return F;
    end );


#############################################################################
##
#M  DefaultFieldByGenerators( <z> ) . . . . . . default field containing ffes
#M  DefaultFieldByGenerators( <F>, <elms> ) . . default field containing ffes
##
InstallMethod( DefaultFieldByGenerators,
    "for a collection of FFEs that is a list",
    [ IsFFECollection and IsList ],
    gens -> GF( Characteristic( gens ), DegreeFFE( gens ) ) );

InstallOtherMethod( DefaultFieldByGenerators,
    "for a finite field, and a collection of FFEs that is a list",
    IsIdenticalObj,
    [ IsField and IsFinite, IsFFECollection and IsList ],
    function( F, gens )
    return GF( F, DegreeFFE( gens ) );
    end );


#############################################################################
##
#M  RingByGenerators( <elms> )  . . . . . . . . . . . . .  for FFE collection
#M  RingWithOneByGenerators( <elms> ) . . . . . . . . . .  for FFE collection
#M  DefaultRingByGenerators( <z> )  . . . . . .  default ring containing FFEs
#M  FLMLORByGenerators( <F>, <elms> ) . . . . . . . . . .  for FFE collection
#M  FLMLORWithOneByGenerators( <F>, <elms> )  . . . . . .  for FFE collection
##
##  In all these cases, the result is either zero or in fact a field,
##  so we may delegate to `GF'.
##
RingFromFFE := function( gens )
    local F;

    F:= GF( Characteristic( gens ), DegreeFFE( gens ) );
    if ForAll( gens, IsZero ) then
      F:= TrivialSubalgebra( F );
    fi;
    return F;
end;

InstallMethod( RingByGenerators,
    "for a collection of FFE",
    [ IsFFECollection ],
    RingFromFFE );

InstallMethod( RingWithOneByGenerators,
    "for a collection of FFE",
    [ IsFFECollection ],
    RingFromFFE );

InstallMethod( DefaultRingByGenerators,
    "for a collection of FFE",
    [ IsFFECollection and IsList ],
    RingFromFFE );


FLMLORFromFFE := function( F, elms )
    if ForAll( elms, IsZero ) then
      return TrivialSubalgebra( F );
    else
      return GF( Characteristic( F ),
                 Lcm( DegreeFFE( elms ), DegreeOverPrimeField( F ) ) );
    fi;
end;

InstallMethod( FLMLORByGenerators,
    "for a field, and a collection of FFE",
    IsIdenticalObj,
    [ IsField and IsFFECollection, IsFFECollection ], 0,
    FLMLORFromFFE );

InstallMethod( FLMLORWithOneByGenerators,
    "for a field, and a collection of FFE",
    IsIdenticalObj,
    [ IsField and IsFFECollection, IsFFECollection ], 0,
    FLMLORFromFFE );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <ffelist> )
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
    "for a collection of FFEs",
    [ IsFFECollection ],
    ffelist -> ForAll( ffelist, x -> not IsZero( x ) ) );


#############################################################################
##
#M  AsInternalFFE( <internal ffe> )
##
InstallMethod( AsInternalFFE, [IsFFE and IsInternalRep],
        x->x);

#############################################################################
##
#M  AsInternalFFE( <non-ffe> )
##
InstallOtherMethod( AsInternalFFE, [IsObject], 
        function(x)
    if not IsFFE(x) then
        return fail;
    else
        TryNextMethod();
    fi;
end);



#############################################################################
##
#E