This file is indexed.

/usr/share/gap/lib/field.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
#############################################################################
##
#W  field.gd                    GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for division rings.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{field}">
##  <Index>fields</Index>
##  <Index>division rings</Index>
##  A <E>division ring</E> is a ring (see Chapter&nbsp;<Ref Chap="Rings"/>)
##  in which every non-zero element has an inverse.
##  The most important class of division rings are the commutative ones,
##  which are called <E>fields</E>.
##  <P/>
##  &GAP; supports finite fields
##  (see Chapter&nbsp;<Ref Chap="Finite Fields"/>) and
##  abelian number fields
##  (see Chapter&nbsp;<Ref Chap="Abelian Number Fields"/>),
##  in particular the field of rationals
##  (see Chapter&nbsp;<Ref Chap="Rational Numbers"/>).
##  <P/>
##  This chapter describes the general &GAP; functions for fields and
##  division rings.
##  <P/>
##  If a field <A>F</A> is a subfield of a commutative ring <A>C</A>,
##  <A>C</A> can be considered as a vector space over the (left) acting
##  domain <A>F</A> (see Chapter&nbsp;<Ref Chap="Vector Spaces"/>).
##  In this situation, we call <A>F</A> the <E>field of definition</E> of
##  <A>C</A>.
##  <P/>
##  Each field in &GAP; is represented as a vector space over a subfield
##  (see&nbsp;<Ref Func="IsField"/>), thus each field is in fact a
##  field extension in a natural way,
##  which is used by functions such as
##  <Ref Func="Norm"/> and <Ref Func="Trace" Label="for a field element"/>
##  (see&nbsp;<Ref Sect="Galois Action"/>).
##  <#/GAPDoc>
##


#T Note that the families of a division ring and of its left acting domain
#T may be different!!


#############################################################################
##
#P  IsField( <D> )
##
##  <#GAPDoc Label="IsField">
##  <ManSection>
##  <Prop Name="IsField" Arg='D'/>
##
##  <Description>
##  A <E>field</E> is a commutative division ring
##  (see&nbsp;<Ref Func="IsDivisionRing"/>
##  and&nbsp;<Ref Func="IsCommutative"/>).
##  <Example><![CDATA[
##  gap> IsField( GaloisField(16) );           # the field with 16 elements
##  true
##  gap> IsField( Rationals );                 # the field of rationals
##  true
##  gap> q:= QuaternionAlgebra( Rationals );;  # noncommutative division ring
##  gap> IsField( q );  IsDivisionRing( q );
##  false
##  true
##  gap> mat:= [ [ 1 ] ];;  a:= Algebra( Rationals, [ mat ] );;
##  gap> IsDivisionRing( a );   # algebra not constructed as a division ring
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "IsField", IsDivisionRing and IsCommutative );

InstallTrueMethod( IsCommutative, IsDivisionRing and IsFinite );


#############################################################################
##
#A  PrimeField( <D> )
##
##  <#GAPDoc Label="PrimeField">
##  <ManSection>
##  <Attr Name="PrimeField" Arg='D'/>
##
##  <Description>
##  The <E>prime field</E> of a division ring <A>D</A> is the smallest field
##  which is contained in <A>D</A>.
##  For example, the prime field of any field in characteristic zero
##  is isomorphic to the field of rational numbers.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrimeField", IsDivisionRing );


#############################################################################
##
#P  IsPrimeField( <D> )
##
##  <#GAPDoc Label="IsPrimeField">
##  <ManSection>
##  <Prop Name="IsPrimeField" Arg='D'/>
##
##  <Description>
##  A division ring is a prime field if it is equal to its prime field
##  (see&nbsp;<Ref Func="PrimeField"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsPrimeField", IsDivisionRing );

InstallIsomorphismMaintenance( IsPrimeField,
    IsField and IsPrimeField, IsField );


#############################################################################
##
#A  DefiningPolynomial( <F> )
##
##  <#GAPDoc Label="DefiningPolynomial">
##  <ManSection>
##  <Attr Name="DefiningPolynomial" Arg='F'/>
##
##  <Description>
##  is the defining polynomial of the field <A>F</A> as a field extension
##  over the left acting domain of <A>F</A>.
##  A root of the defining polynomial can be computed with
##  <Ref Func="RootOfDefiningPolynomial"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DefiningPolynomial", IsField );


#############################################################################
##
#A  DegreeOverPrimeField( <F> )
##
##  <#GAPDoc Label="DegreeOverPrimeField">
##  <ManSection>
##  <Attr Name="DegreeOverPrimeField" Arg='F'/>
##
##  <Description>
##  is the degree of the field <A>F</A> over its prime field
##  (see&nbsp;<Ref Func="PrimeField"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DegreeOverPrimeField", IsDivisionRing );

InstallIsomorphismMaintenance( DegreeOverPrimeField,
    IsDivisionRing, IsDivisionRing );


#############################################################################
##
#A  GeneratorsOfDivisionRing( <D> )
##
##  <#GAPDoc Label="GeneratorsOfDivisionRing">
##  <ManSection>
##  <Attr Name="GeneratorsOfDivisionRing" Arg='D'/>
##
##  <Description>
##  generators with respect to addition, multiplication, and taking inverses
##  (the identity cannot be omitted ...)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfDivisionRing", IsDivisionRing );


#############################################################################
##
#A  GeneratorsOfField( <F> )
##
##  <#GAPDoc Label="GeneratorsOfField">
##  <ManSection>
##  <Attr Name="GeneratorsOfField" Arg='F'/>
##
##  <Description>
##  generators with respect to addition, multiplication, and taking
##  inverses.
##  This attribute is the same as <Ref Func="GeneratorsOfDivisionRing"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonymAttr( "GeneratorsOfField", GeneratorsOfDivisionRing );


#############################################################################
##
#A  NormalBase( <F>[, <elm>] )
##
##  <#GAPDoc Label="NormalBase">
##  <ManSection>
##  <Attr Name="NormalBase" Arg='F[, elm]'/>
##
##  <Description>
##  Let <A>F</A> be a field that is a Galois extension of its subfield
##  <C>LeftActingDomain( <A>F</A> )</C>.
##  Then <Ref Func="NormalBase"/> returns a list of elements in <A>F</A>
##  that form a normal basis of <A>F</A>, that is,
##  a vector space basis that is closed under the action of the Galois group
##  (see&nbsp;<Ref Oper="GaloisGroup" Label="of field"/>) of <A>F</A>.
##  <P/>
##  If a second argument <A>elm</A> is given,
##  it is used as a hint for the algorithm to find a normal basis with the
##  algorithm described in&nbsp;<Cite Key="Art68"/>.
##  <Example><![CDATA[
##  gap> NormalBase( CF(5) );
##  [ -E(5), -E(5)^2, -E(5)^3, -E(5)^4 ]
##  gap> NormalBase( CF(4) );
##  [ 1/2-1/2*E(4), 1/2+1/2*E(4) ]
##  gap> NormalBase( GF(3^6) );
##  [ Z(3^6)^2, Z(3^6)^6, Z(3^6)^18, Z(3^6)^54, Z(3^6)^162, Z(3^6)^486 ]
##  gap> NormalBase( GF( GF(8), 2 ) );
##  [ Z(2^6), Z(2^6)^8 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NormalBase", IsField );
DeclareOperation( "NormalBase", [ IsField, IsScalar ] );


#############################################################################
##
#A  PrimitiveElement( <D> )
##
##  <#GAPDoc Label="PrimitiveElement">
##  <ManSection>
##  <Attr Name="PrimitiveElement" Arg='D'/>
##
##  <Description>
##  is an element of <A>D</A> that generates <A>D</A> as a division ring
##  together with the left acting domain.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrimitiveElement", IsDivisionRing );


#############################################################################
##
#A  PrimitiveRoot( <F> )
##
##  <#GAPDoc Label="PrimitiveRoot">
##  <ManSection>
##  <Attr Name="PrimitiveRoot" Arg='F'/>
##
##  <Description>
##  A <E>primitive root</E> of a finite field is a generator of its
##  multiplicative group.
##  A primitive root is always a primitive element
##  (see&nbsp;<Ref Func="PrimitiveElement"/>),
##  the converse is in general not true.
##  <!-- % For example, <C>Z(9)^2</C> is a primitive element for <C>GF(9)</C> but not a -->
##  <!-- % primitive root. -->
##  <Example><![CDATA[
##  gap> f:= GF( 3^5 );
##  GF(3^5)
##  gap> PrimitiveRoot( f );
##  Z(3^5)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrimitiveRoot", IsField and IsFinite );


#############################################################################
##
#A  RootOfDefiningPolynomial( <F> )
##
##  <#GAPDoc Label="RootOfDefiningPolynomial">
##  <ManSection>
##  <Attr Name="RootOfDefiningPolynomial" Arg='F'/>
##
##  <Description>
##  is a root in the field <A>F</A> of its defining polynomial as a field
##  extension over the left acting domain of <A>F</A>.
##  The defining polynomial can be computed with
##  <Ref Func="DefiningPolynomial"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RootOfDefiningPolynomial", IsField );


#############################################################################
##
#O  AsDivisionRing( [<F>, ]<C> )
#O  AsField( [<F>, ]<C> )
##
##  <#GAPDoc Label="AsDivisionRing">
##  <ManSection>
##  <Oper Name="AsDivisionRing" Arg='[F, ]C'/>
##  <Oper Name="AsField" Arg='[F, ]C'/>
##
##  <Description>
##  If the collection <A>C</A> can be regarded as a division ring then
##  <C>AsDivisionRing( <A>C</A> )</C> is the division ring that consists of
##  the elements of <A>C</A>, viewed as a vector space over its prime field;
##  otherwise <K>fail</K> is returned.
##  <P/>
##  In the second form, if <A>F</A> is a division ring contained in <A>C</A>
##  then the returned division ring is viewed as a vector space over
##  <A>F</A>.
##  <P/>
##  <Ref Func="AsField"/> is just a synonym for <Ref Func="AsDivisionRing"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AsDivisionRing", [ IsCollection ] );
DeclareOperation( "AsDivisionRing", [ IsDivisionRing, IsCollection ] );

DeclareSynonym( "AsField", AsDivisionRing );


#############################################################################
##
#O  ClosureDivisionRing( <D>, <obj> )
##
##  <ManSection>
##  <Oper Name="ClosureDivisionRing" Arg='D, obj'/>
##
##  <Description>
##  <Ref Func="ClosureDivisionRing"/> returns the division ring generated by
##  the elements of the division ring <A>D</A> and <A>obj</A>,
##  which can be either an element or a collection of elements,
##  in particular another division ring.
##  The left acting domain of the result equals that of <A>D</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "ClosureDivisionRing", [ IsDivisionRing, IsObject ] );

DeclareSynonym( "ClosureField", ClosureDivisionRing );


#############################################################################
##
#A  Subfields( <F> )
##
##  <#GAPDoc Label="Subfields">
##  <ManSection>
##  <Attr Name="Subfields" Arg='F'/>
##
##  <Description>
##  is the set of all subfields of the field <A>F</A>.
##  <!-- or shall we allow to ask, e.g., for subfields of quaternion algebras?-->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Subfields", IsField );


#############################################################################
##
#O  FieldExtension( <F>, <poly> )
##
##  <#GAPDoc Label="FieldExtension">
##  <ManSection>
##  <Oper Name="FieldExtension" Arg='F, poly'/>
##
##  <Description>
##  is the field obtained on adjoining a root of the irreducible polynomial
##  <A>poly</A> to the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FieldExtension", [ IsField, IsUnivariatePolynomial ] );


#############################################################################
##
##  <#GAPDoc Label="[2]{field}">
##  Let <M>L > K</M> be a field extension of finite degree.
##  Then to each element <M>\alpha \in L</M>, we can associate a
##  <M>K</M>-linear mapping <M>\varphi_{\alpha}</M> on <M>L</M>,
##  and for a fixed <M>K</M>-basis of <M>L</M>,
##  we can associate to <M>\alpha</M> the matrix <M>M_{\alpha}</M>
##  (over <M>K</M>) of this mapping.
##  <P/>
##  The <E>norm</E> of <M>\alpha</M> is defined as the determinant of
##  <M>M_{\alpha}</M>,
##  the <E>trace</E> of <M>\alpha</M> is defined as the trace of
##  <M>M_{\alpha}</M>,
##  the <E>minimal polynomial</E> <M>\mu_{\alpha}</M> and the
##  <E>trace polynomial</E> <M>\chi_{\alpha}</M> of <M>\alpha</M>
##  are defined as the minimal polynomial
##  (see&nbsp;<Ref Sect="MinimalPolynomial" Label="over a field"/>)
##  and the characteristic polynomial
##  (see&nbsp;<Ref Func="CharacteristicPolynomial"/> and
##  <Ref Func="TracePolynomial"/>) of <M>M_{\alpha}</M>.
##  (Note that <M>\mu_{\alpha}</M> depends only on <M>K</M> whereas
##  <M>\chi_{\alpha}</M> depends on both <M>L</M> and <M>K</M>.)
##  <P/>
##  Thus norm and trace of <M>\alpha</M> are elements of <M>K</M>,
##  and <M>\mu_{\alpha}</M> and <M>\chi_{\alpha}</M> are polynomials over
##  <M>K</M>, <M>\chi_{\alpha}</M> being a power of <M>\mu_{\alpha}</M>,
##  and the degree of <M>\chi_{\alpha}</M> equals the degree of the field
##  extension <M>L > K</M>.
##  <P/>
##  The <E>conjugates</E> of <M>\alpha</M> in <M>L</M> are those roots of
##  <M>\chi_{\alpha}</M> (with multiplicity) that lie in <M>L</M>;
##  note that if only <M>L</M> is given, there is in general no way to access
##  the roots outside <M>L</M>.
##  <P/>
##  Analogously, the <E>Galois group</E> of the extension <M>L > K</M> is
##  defined as the group of all those field automorphisms of <M>L</M> that
##  fix <M>K</M> pointwise.
##  <P/>
##  If <M>L > K</M> is a Galois extension then the conjugates of
##  <M>\alpha</M> are all roots of <M>\chi_{\alpha}</M> (with multiplicity),
##  the set of conjugates equals the roots of <M>\mu_{\alpha}</M>,
##  the norm of <M>\alpha</M> equals the product and the trace of
##  <M>\alpha</M> equals the sum of the conjugates of <M>\alpha</M>,
##  and the Galois group in the sense of the above definition equals
##  the usual Galois group,
##  <P/>
##  Note that <C>MinimalPolynomial( <A>F</A>, <A>z</A> )</C> is a polynomial
##  <E>over</E> <A>F</A>,
##  whereas <C>Norm( <A>F</A>, <A>z</A> )</C> is the norm of the element
##  <A>z</A> <E>in</E> <A>F</A>
##  w.r.t.&nbsp;the field extension
##  <C><A>F</A> &gt; LeftActingDomain( <A>F</A> )</C>.
##  <#/GAPDoc>
##


#############################################################################
##
##  <#GAPDoc Label="[3]{field}">
##  The default methods for field elements are as follows.
##  <Ref Func="MinimalPolynomial"/> solves a system of linear equations,
##  <Ref Func="TracePolynomial"/> computes the appropriate power of the
##  minimal
##  polynomial,
##  <Ref Func="Norm"/> and <Ref Func="Trace" Label="for a field element"/>
##  values are obtained as coefficients of the characteristic polynomial,
##  and <Ref Func="Conjugates"/> uses the factorization of the
##  characteristic polynomial.
##  <P/>
##  For elements in finite fields and cyclotomic fields, one wants to do the
##  computations in a different way since the field extensions in question
##  are Galois extensions, and the Galois groups are well-known in these
##  cases.
##  More general,
##  if a field is in the category
##  <C>IsFieldControlledByGaloisGroup</C> then
##  the default methods are the following.
##  <Ref Func="Conjugates"/> returns the sorted list of images
##  (with multiplicity) of the element under the Galois group,
##  <Ref Func="Norm"/> computes the product of the conjugates,
##  <Ref Func="Trace" Label="for a field element"/> computes the sum of the
##  conjugates,
##  <Ref Func="TracePolynomial"/> and <Ref Func="MinimalPolynomial"/> compute
##  the product of linear factors <M>x - c</M> with <M>c</M> ranging over the
##  conjugates and the set of conjugates, respectively.
##  <#/GAPDoc>
##


#############################################################################
##
#C  IsFieldControlledByGaloisGroup( <obj> )
##
##  <ManSection>
##  <Filt Name="IsFieldControlledByGaloisGroup" Arg='obj' Type='Category'/>
##
##  <Description>
##  (The meaning is explained above.)
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsFieldControlledByGaloisGroup", IsField );


#############################################################################
##
#M  IsFieldControlledByGaloisGroup( <finfield> )
##
##  For finite fields and abelian number fields
##  (independent of the representation of their elements),
##  we know the Galois group and have a method for `Conjugates' that does
##  not use `MinimalPolynomial'.
##  Currently fields created with `AlgebraicExtension' do not support this
##  approach, so we do not install the implication from
##  `IsField and IsFinite'.
##
InstallTrueMethod( IsFieldControlledByGaloisGroup,
    IsField and IsFFECollection );


#############################################################################
##
#A  Conjugates( [<L>, [<K>, ]]<z> ) . . . . . . conjugates of a field element
##
##  <#GAPDoc Label="Conjugates">
##  <ManSection>
##  <Attr Name="Conjugates" Arg='[L, [K, ]]z'/>
##
##  <Description>
##  <Ref Func="Conjugates"/> returns the list of <E>conjugates</E>
##  of the field element <A>z</A>.
##  If two fields <A>L</A> and <A>K</A> are given then the conjugates are
##  computed w.r.t.&nbsp;the field extension <A>L</A><M> > </M><A>K</A>,
##  if only one field <A>L</A> is given then
##  <C>LeftActingDomain( <A>L</A> )</C> is taken as default for the subfield
##  <A>K</A>,
##  and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
##  as default for <A>L</A>.
##  <P/>
##  The result list will contain duplicates if <A>z</A> lies in a
##  proper subfield of <A>L</A>, or of the default field of <A>z</A>,
##  respectively.
##  The result list need not be sorted.
##  <P/>
##  <Example><![CDATA[
##  gap> Norm( E(8) );  Norm( CF(8), E(8) );
##  1
##  1
##  gap> Norm( CF(8), CF(4), E(8) );
##  -E(4)
##  gap> Norm( AsField( CF(4), CF(8) ), E(8) );
##  -E(4)
##  gap> Trace( E(8) );  Trace( CF(8), CF(8), E(8) );
##  0
##  E(8)
##  gap> Conjugates( CF(8), E(8) );
##  [ E(8), E(8)^3, -E(8), -E(8)^3 ]
##  gap> Conjugates( CF(8), CF(4), E(8) );
##  [ E(8), -E(8) ]
##  gap> Conjugates( CF(16), E(8) );
##  [ E(8), E(8)^3, -E(8), -E(8)^3, E(8), E(8)^3, -E(8), -E(8)^3 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Conjugates", IsScalar );
DeclareOperation( "Conjugates", [ IsField, IsField, IsScalar ] );
DeclareOperation( "Conjugates", [ IsField, IsScalar ] );


#############################################################################
##
#A  Norm( [<L>, [<K>, ]]<z> )  . . . . . . . . . . .  norm of a field element
##
##  <#GAPDoc Label="Norm">
##  <ManSection>
##  <Attr Name="Norm" Arg='[L, [K, ]]z'/>
##
##  <Description>
##  <Ref Func="Norm"/> returns the norm of the field element <A>z</A>.
##  If two fields <A>L</A> and <A>K</A> are given then the norm is computed
##  w.r.t.&nbsp;the field extension <A>L</A><M> > </M><A>K</A>,
##  if only one field <A>L</A> is given then
##  <C>LeftActingDomain( <A>L</A> )</C> is taken as
##  default for the subfield <A>K</A>,
##  and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
##  as default for <A>L</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Norm", IsScalar );
DeclareOperation( "Norm", [ IsField, IsScalar ] );
DeclareOperation( "Norm", [ IsField, IsField, IsScalar ] );


#############################################################################
##
#A  Trace( [<L>, [<K>, ]]<z> )  . . . . . . . . . .  trace of a field element
#A  Trace( <mat> )  . . . . . . . . . . . . . . . . . . . . trace of a matrix
##
##  <#GAPDoc Label="Trace">
##  <ManSection>
##  <Heading>Traces of field elements and matrices</Heading>
##  <Attr Name="Trace" Arg='[L, [K, ]]z' Label="for a field element"/>
##  <Attr Name="Trace" Arg='mat' Label="for a matrix"/>
##
##  <Description>
##  <Ref Func="Trace" Label="for a field element"/> returns the trace of the
##  field element <A>z</A>.
##  If two fields <A>L</A> and <A>K</A> are given then the trace is computed
##  w.r.t.&nbsp;the field extension <M><A>L</A> > <A>K</A></M>,
##  if only one field <A>L</A> is given then
##  <C>LeftActingDomain( <A>L</A> )</C> is taken as
##  default for the subfield <A>K</A>,
##  and if no field is given then <C>DefaultField( <A>z</A> )</C> is taken
##  as default for <A>L</A>.
##  <P/>
##  The <E>trace of a matrix</E> is the sum of its diagonal entries.
##  Note that this is <E>not</E> compatible with the definition of
##  <Ref Func="Trace" Label="for a field element"/> for field elements,
##  so the one-argument version is not suitable when matrices shall be
##  regarded as field elements.
##  <!-- forbid <C>Trace</C> as short form for <C>TraceMat</C>?-->
##  <!-- crossref. to <C>TraceMat</C>?-->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "Trace", IsScalar );
DeclareAttribute( "Trace", IsMatrix );
DeclareOperation( "Trace", [ IsField, IsScalar ] );
DeclareOperation( "Trace", [ IsField, IsField, IsScalar ] );


#############################################################################
##
#O  TracePolynomial( <L>, <K>, <z>[, <inum>] )
##
##  <#GAPDoc Label="TracePolynomial">
##  <ManSection>
##  <Oper Name="TracePolynomial" Arg='L, K, z[, inum]'/>
##
##  <Description>
##  <Index Subkey="for field elements">characteristic polynomial</Index>
##  returns the polynomial that is the product of <M>(X - c)</M>
##  where <M>c</M> runs over the conjugates of <A>z</A>
##  in the field extension <A>L</A> over <A>K</A>.
##  The polynomial is returned as a univariate polynomial over <A>K</A>
##  in the indeterminate number <A>inum</A> (defaulting to 1).
##  <P/>
##  This polynomial is sometimes also called the
##  <E>characteristic polynomial</E> of <A>z</A> w.r.t.&nbsp;the field
##  extension <M><A>L</A> > <A>K</A></M>.
##  Therefore methods are installed for
##  <Ref Func="CharacteristicPolynomial"/>
##  that call <Ref Oper="TracePolynomial"/> in the case of field extensions.
##  <P/>
##  <Example><![CDATA[
##  gap> TracePolynomial( CF(8), Rationals, E(8) );
##  x_1^4+1
##  gap> TracePolynomial( CF(16), Rationals, E(8) );
##  x_1^8+2*x_1^4+1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TracePolynomial", [ IsField, IsField, IsScalar ] );
DeclareOperation( "TracePolynomial",
    [ IsField, IsField, IsScalar, IsPosInt ] );


#############################################################################
##
#A  GaloisGroup( <F> )
##
##  <#GAPDoc Label="GaloisGroup:field">
##  <ManSection>
##  <Attr Name="GaloisGroup" Arg='F' Label="of field"/>
##
##  <Description>
##  The <E>Galois group</E> of a field <A>F</A> is the group of all
##  field automorphisms of <A>F</A> that fix the subfield
##  <M>K = </M><C>LeftActingDomain( <A>F</A> )</C> pointwise.
##  <P/>
##  Note that the field extension <M><A>F</A> > K</M> need <E>not</E> be
##  a Galois extension.
##  <Example><![CDATA[
##  gap> g:= GaloisGroup( AsField( GF(2^2), GF(2^12) ) );;
##  gap> Size( g );  IsCyclic( g );
##  6
##  true
##  gap> h:= GaloisGroup( CF(60) );;
##  gap> Size( h );  IsAbelian( h );
##  16
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GaloisGroup", IsField );


#############################################################################
##
#A  ComplexConjugate( <z> )
#A  RealPart( <z> )
#A  ImaginaryPart( <z> )
##
##  <#GAPDoc Label="ComplexConjugate">
##  <ManSection>
##  <Attr Name="ComplexConjugate" Arg='z'/>
##  <Attr Name="RealPart" Arg='z'/>
##  <Attr Name="ImaginaryPart" Arg='z'/>
##
##  <Description>
##  For a cyclotomic number <A>z</A>,
##  <Ref Func="ComplexConjugate"/> returns
##  <C>GaloisCyc( <A>z</A>, -1 )</C>,
##  see&nbsp;<Ref Func="GaloisCyc" Label="for a cyclotomic"/>.
##  For a quaternion <M><A>z</A> = c_1 e + c_2 i + c_3 j + c_4 k</M>,
##  <Ref Func="ComplexConjugate"/> returns
##  <M>c_1 e - c_2 i - c_3 j - c_4 k</M>,
##  see&nbsp;<Ref Func="IsQuaternion"/>.
##  <P/>
##  When <Ref Func="ComplexConjugate"/> is called with a list then the result
##  is the list of return values of <Ref Func="ComplexConjugate"/>
##  for the list entries in the corresponding positions.
##  <P/>
##  When <Ref Func="ComplexConjugate"/> is defined for an object <A>z</A>
##  then <Ref Func="RealPart"/> and <Ref Func="ImaginaryPart"/> return
##  <C>(<A>z</A> + ComplexConjugate( <A>z</A> )) / 2</C> and
##  <C>(<A>z</A> - ComplexConjugate( <A>z</A> )) / 2 i</C>, respectively,
##  where <C>i</C> denotes the corresponding imaginary unit.
##  <P/>
##  <Example><![CDATA[
##  gap> GaloisCyc( E(5) + E(5)^4, 2 );
##  E(5)^2+E(5)^3
##  gap> GaloisCyc( E(5), -1 );           # the complex conjugate
##  E(5)^4
##  gap> GaloisCyc( E(5) + E(5)^4, -1 );  # this value is real
##  E(5)+E(5)^4
##  gap> GaloisCyc( E(15) + E(15)^4, 3 );
##  E(5)+E(5)^4
##  gap> ComplexConjugate( E(7) );
##  E(7)^6
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ComplexConjugate", IsScalar );
DeclareAttribute( "ComplexConjugate", IsList );
DeclareAttribute( "RealPart", IsScalar );
DeclareAttribute( "RealPart", IsList );
DeclareAttribute( "ImaginaryPart", IsScalar );
DeclareAttribute( "ImaginaryPart", IsList );


#############################################################################
##
#O  DivisionRingByGenerators( [<F>, ]<gens> ) . . . . div. ring by generators
##
##  <#GAPDoc Label="DivisionRingByGenerators">
##  <ManSection>
##  <Oper Name="DivisionRingByGenerators" Arg='[F, ]gens'/>
##  <Oper Name="FieldByGenerators" Arg='[F, ]gens'/>
##
##  <Description>
##  Called with a field <A>F</A> and a list <A>gens</A> of scalars,
##  <Ref Func="DivisionRingByGenerators"/> returns the division ring over
##  <A>F</A> generated by <A>gens</A>.
##  The unary version returns the division ring as vector space over
##  <C>FieldOverItselfByGenerators( <A>gens</A> )</C>.
##  <P/>
##  <Ref Oper="FieldByGenerators"/> is just a synonym for 
##  <Ref Oper="DivisionRingByGenerators"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DivisionRingByGenerators",
        [ IsDivisionRing, IsCollection ] );

DeclareSynonym( "FieldByGenerators", DivisionRingByGenerators );


#############################################################################
##
#O  FieldOverItselfByGenerators( [ <z>, ... ] )
##
##  <#GAPDoc Label="FieldOverItselfByGenerators">
##  <ManSection>
##  <Oper Name="FieldOverItselfByGenerators" Arg='[ z, ... ]'/>
##
##  <Description>
##  This  operation is  needed for  the  call of
##  <Ref Func="Field" Label="for several generators"/> or
##  <Ref Oper="FieldByGenerators"/> without explicitly given subfield,
##  in order to construct a left acting domain for such a field.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "FieldOverItselfByGenerators", [ IsCollection ] );


#############################################################################
##
#O  DefaultFieldByGenerators( [ <z>, ... ] )  . . default field by generators
##
##  <#GAPDoc Label="DefaultFieldByGenerators">
##  <ManSection>
##  <Oper Name="DefaultFieldByGenerators" Arg='[ z, ... ]'/>
##
##  <Description>
##  returns the default field containing the elements <A>z</A>, <M>\ldots</M>.
##  This field may be bigger than the smallest field containing these
##  elements.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DefaultFieldByGenerators", [ IsCollection ] );


#############################################################################
##
#F  Field( <z>, ... ) . . . . . . . . . field generated by a list of elements
#F  Field( [<F>, ]<list> )
##
##  <#GAPDoc Label="Field">
##  <ManSection>
##  <Func Name="Field" Arg='z, ...' Label="for several generators"/>
##  <Func Name="Field" Arg='[F, ]list'
##   Label="for (a field and) a list of generators"/>
##
##  <Description>
##  <Ref Func="Field" Label="for several generators"/> returns the smallest
##  field <M>K</M> that contains all the elements <M><A>z</A>, \ldots</M>,
##  or the smallest field <M>K</M> that contains all elements in the list
##  <A>list</A>.
##  If no subfield <A>F</A> is given, <M>K</M> is constructed as a field over
##  itself, i.e. the left acting domain of <M>K</M> is <M>K</M>.
##  Called with a field <A>F</A> and a list <A>list</A>,
##  <Ref Func="Field" Label="for (a field and) a list of generators"/>
##  constructs the field generated by <A>F</A> and the elements in
##  <A>list</A>, as a vector space over <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Field" );
#T why not `DivisionRing', and `Field' as a (more or less) synonym?


#############################################################################
##
#F  DefaultField( <z>, ... )  . . . . . default field containing a collection
#F  DefaultField( <list> )
##
##  <#GAPDoc Label="DefaultField">
##  <ManSection>
##  <Func Name="DefaultField" Arg='z, ...' Label="for several generators"/>
##  <Func Name="DefaultField" Arg='list' Label="for a list of generators"/>
##
##  <Description>
##  <Ref Func="DefaultField" Label="for several generators"/> returns a field
##  <M>K</M> that contains all the elements <M><A>z</A>, \ldots</M>,
##  or a field <M>K</M> that contains all elements in the list <A>list</A>.
##  <P/>
##  This field need not be the smallest field in which the elements lie,
##  cf.&nbsp;<Ref Func="Field" Label="for several generators"/>.
##  For example, for elements from cyclotomic fields
##  <Ref Func="DefaultField" Label="for several generators"/> returns
##  the smallest cyclotomic field in which the elements lie,
##  but the elements may lie in a smaller number field
##  which is not a cyclotomic field.
##  <Example><![CDATA[
##  gap> Field( Z(4) );  Field( [ Z(4), Z(8) ] );  # finite fields
##  GF(2^2)
##  GF(2^6)
##  gap> Field( E(9) );  Field( CF(4), [ E(9) ] ); # abelian number fields
##  CF(9)
##  AsField( GaussianRationals, CF(36) )
##  gap> f1:= Field( EB(5) );  f2:= DefaultField( EB(5) );
##  NF(5,[ 1, 4 ])
##  CF(5)
##  gap> f1 = f2;  IsSubset( f2, f1 );
##  false
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DefaultField" );


#############################################################################
##
#F  Subfield( <F>, <gens> ) . . . . . . . subfield of <F> generated by <gens>
#F  SubfieldNC( <F>, <gens> )
##
##  <#GAPDoc Label="Subfield">
##  <ManSection>
##  <Func Name="Subfield" Arg='F, gens'/>
##  <Func Name="SubfieldNC" Arg='F, gens'/>
##
##  <Description>
##  Constructs the subfield of <A>F</A> generated by <A>gens</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Subfield" );
DeclareGlobalFunction( "SubfieldNC" );


#############################################################################
##
#A  FrobeniusAutomorphism( <F> )  .  Frobenius automorphism of a finite field
##
##  <#GAPDoc Label="FrobeniusAutomorphism">
##  <ManSection>
##  <Attr Name="FrobeniusAutomorphism" Arg='F'/>
##
##  <Description>
##  <Index Subkey="Frobenius, field">homomorphisms</Index>
##  <Index Subkey="Frobenius">field homomorphisms</Index>
##  <Index Key="CompositionMapping" Subkey="for Frobenius automorphisms">
##  <C>CompositionMapping</C></Index>
##  returns the Frobenius automorphism of the finite field <A>F</A>
##  as a field homomorphism (see&nbsp;<Ref Sect="Ring Homomorphisms"/>).
##  <P/>
##  <Index>Frobenius automorphism</Index>
##  The <E>Frobenius automorphism</E> <M>f</M> of a finite field <M>F</M> of
##  characteristic <M>p</M> is the function that takes each element <M>z</M>
##  of <M>F</M> to its <M>p</M>-th power.
##  Each field automorphism of <M>F</M> is a power of <M>f</M>.
##  Thus <M>f</M> is a generator for the Galois group of <M>F</M> relative to
##  the prime field of <M>F</M>,
##  and an appropriate power of <M>f</M> is a generator of the Galois group
##  of <M>F</M> over a subfield
##  (see&nbsp;<Ref Oper="GaloisGroup" Label="of field"/>).
##  <P/>
##  <Example><![CDATA[
##  gap> f := GF(16);
##  GF(2^4)
##  gap> x := FrobeniusAutomorphism( f );
##  FrobeniusAutomorphism( GF(2^4) )
##  gap> Z(16) ^ x;
##  Z(2^4)^2
##  gap> x^2;
##  FrobeniusAutomorphism( GF(2^4) )^2
##  ]]></Example>
##  <P/>
##  <Index Key="Image" Subkey="for Frobenius automorphisms"><C>Image</C>
##  </Index>
##  The image of an element <M>z</M> under the <M>i</M>-th power of <M>f</M>
##  is computed as the <M>p^i</M>-th power of <M>z</M>.
##  The product of the <M>i</M>-th power and the <M>j</M>-th power of
##  <M>f</M> is the <M>k</M>-th power of <M>f</M>, where <M>k</M> is
##  <M>i j \bmod </M> <C>Size(<A>F</A>)</C><M>-1</M>.
##  The zeroth power of <M>f</M> is <C>IdentityMapping( <A>F</A> )</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FrobeniusAutomorphism", IsField );


#############################################################################
##
#F  IsFieldElementsSpace( <V> )
##
##  <ManSection>
##  <Func Name="IsFieldElementsSpace" Arg='V'/>
##
##  <Description>
##  If an <M>F</M>-vector space <A>V</A> is in the filter <C>IsFieldElementsSpace</C> then
##  this expresses that <A>V</A> consists of elements in a field, and that <A>V</A> is
##  handled via the mechanism of nice bases (see&nbsp;<Ref ???="..."/>) in the following way.
##  Let <M>K</M> be the default field generated by the vector space generators of
##  <A>V</A>.
##  Then the <C>NiceFreeLeftModuleInfo</C> value of <A>V</A> is an <M>F</M>-basis <M>B</M> of <M>K</M>,
##  and the <C>NiceVector</C> value of <M>v \in <A>V</A></M> is defined as
##  <C>Coefficients</C><M>( B, v )</M>.
##  <P/>
##  So it is assumed that methods for computing a basis for the
##  <M>F</M>-vector space <M>K</M> are known;
##  for example, one can compute a Lenstra basis (see&nbsp;<Ref ???="..."/>) if <M>K</M> is an
##  abelian number field,
##  and take successive powers of a primitive root if <M>K</M> is a finite field
##  (see&nbsp;<Ref ???="..."/>).
##  </Description>
##  </ManSection>
##
DeclareHandlingByNiceBasis( "IsFieldElementsSpace",
    "for free left modules of field elements" );


#############################################################################
##
#O  NthRoot( <F>, <a>, <n> )
##
##  <ManSection>
##  <Oper Name="NthRoot" Arg='F, a, n'/>
##
##  <Description>
##  returns one <A>n</A>th root of <A>a</A> if such a root exists in <A>F</A>
##  and returns <K>fail</K> otherwise.
##  </Description>
##  </ManSection>
##
DeclareOperation( "NthRoot", [ IsField, IsScalar, IsPosInt ] );


#############################################################################
##
#E