/usr/share/gap/lib/fitfree.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | #############################################################################
##
#W fitfree.gd GAP library Alexander Hulpke
##
##
#Y Copyright (C) 2012 The GAP Group
##
## This file contains functions using the trivial-fitting paradigm.
##
BindGlobal("OVERRIDENICE",Maximum(NICE_FLAGS,
RankFilter(WITH_HIDDEN_IMPS_FLAGS(FLAGS_FILTER(IsMatrixGroup
and IsFinite)))));
#############################################################################
##
#F CanComputeFittingFree( <grp> ) . . . . . TF approach is possible
##
## <#GAPDoc Label="CanComputeFittingFree">
## <ManSection>
## <Func Name="CanComputeFittingFree" Arg='grp'/>
##
## <Description>
## This filter indicates whether algorithms using the TF-paradigm (Trivial
## Fitting) can be used for a group, that is whether a method for
## <Ref Func="FittingFreeLiftSetup"/> is available for <A>grp</A>.
## Note that this filter may change its value from <K>false</K> to
## <K>true</K>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareFilter( "CanComputeFittingFree" );
# to satisfy method installation requirements
InstallTrueMethod(IsFinite,CanComputeFittingFree);
InstallTrueMethod(IsGroup,CanComputeFittingFree);
InstallTrueMethod(CanComputeFittingFree, IsPermGroup);
#############################################################################
##
#A FittingFreeLiftSetup( <G> )
##
## <#GAPDoc Label="FittingFreeLiftSetup">
## <ManSection>
## <Attr Name="FittingFreeLiftSetup" Arg='G'/>
##
## <Description>
## for a finite group <A>G</A>, this returns a record with the following
## components:
## <C>radical</C> The solvable radical <M>Rad(G)</M>.
## <C>pcgs</C> A pcgs for <M>Rad(G)</M> that refines a
## <M>G</M>-normal series
## with elementary abelian factors.
## <C>depths</C>
## A list of indices in the pcgs, indicating the <M>G</M>-normal subgroups in
## the series for the pcgs, including an entry for the trivial subgroup.
## <C>pcisom</C> An effective isomorphism from a supergroup of <M>Rad(G)</M> to a pc group
## <C>factorhom</C> A epimorphism from <M>G</M> onto <M>G/Rad(G)</M>,
## the image group being
## represented in a way that decomposition into generators will work
## efficiently. In particular, it is possible to use
## <Ref Func="PreImagesRepresentative"/> to take the pre-image of elements
## in the image. For a subgroup <M>U\le G</M>, it is possible to apply
## <Ref Func="RestrictedMapping"> to the homomorphism to obtain a
## corresponding homomorphism for <M>U</M>.
##
## The redundancy amongst the components is deliberate, as the redundant
## objects can be created at minimal extra cost and not doing so risks the
## creation of duplicate objects by user code later on.
## The record may hold other components that are germane to the recognition
## setup. These components may not be modified by user code.
DeclareAttribute("FittingFreeLiftSetup",IsGroup);
#############################################################################
##
#F FittingFreeSubgroupSetup( <G>, <U> )
##
## <#GAPDoc Label="FittingFreeSubgroupSetup">
## <ManSection>
## <Attr Name="FittingFreeSubgroupSetup" Arg='G,U'/>
##
## <Description>
## for a subgroup <A>U</A> of a finite group <A>G</A>, for which
## <Ref Func="FittingFreeLiftSetup"> has been computed, this function
## computes a compatible setup for <A>U</A>. (This information is cached in
## <A>U</A>
## for further calculation later.)
## It returns a record with the following
## components:
## <C>parentffs</C> The record returned by
## <Ref Func="FittingFreeLiftSetup"> for <G>.
## <C>rest</C> A restriction of
## the <C>factorhom</C> for <A>G</A> to <A>U</A>, defined on generators of
## <A>U</A>.
## <C>ker</C> The kernel of this map.
## <C>pcgs</C> A pcgs for this kernel.
## <C>serdepths</C>
## For each depth step in the pcgs for the radical of <G>, as stored in
## <C>parentffs</C>, this indicates the index in <C>pcgs</C> for <A>U</A>,
## at which this depth is achieved.
##
## The record may hold other components that are germane to the recognition
## setup. These components may not be modified by user code.
DeclareGlobalFunction("FittingFreeSubgroupSetup");
# This attribute is used for groups treated by constructive recognition and
# a composition tree. It is declared in the library such that the function
# FittingFreeSubgroupSetup can maintain it.
DeclareAttribute("RecogDecompinfoHomomorphism",IsMapping,"mutable");
#############################################################################
##
#F SubgroupByFittingFreeData( <G>, <gens>, <imgs>, <ipcgs> )
##
## <#GAPDoc Label="SubgroupByFittingFreeData">
## <ManSection>
## <Attr Name="SubgroupByFittingFreeData" Arg='G,U'/>
##
## <Description>
## For a finite group <A>G</A>, for which
## <Ref Func="FittingFreeLiftSetup"> <A>ffs</A> has been computed,
## this function returns a subgroup <A>U</A> build from data compatible with
## <A>ffs</A>: <A>U</A> is the subgroup generated by <A>gens</A> and
## <A>ipcgs</A>.
## <A>ipcgs</A> is an induced Pcgs for <M>U\cap Rad(G)</M>, with respect to
## the Pcgs stored in <A>ffs</A>. <A>imgs</A> are images of <A>gens</A>
## under <A>ffs<C>.factorhom</C></A>.
DeclareGlobalFunction("SubgroupByFittingFreeData");
# Utility function: function(pcgs,gens,ignoredepths)
# for forming an induced modulo pcgs after correction on the lowest level
# We will be in the situation that an IGS has been corrected only on the
# lowest level, i.e. the inly obstacle to being an IGS is on the lowest
# level. Thus the situation is that of a vector space and we do not need to
# consider commutators and powers, but simply do a Gaussian elimination.
DeclareGlobalFunction("TFMakeInducedPcgsModulo");
# Utility function: Orbit algorithms when acting with a GPCGS
DeclareGlobalFunction("OrbitsRepsAndStabsVectorsMultistage");
DeclareGlobalFunction("OrbitMinimumMultistage");
# utility function: Evaluate the homomorphism to radical factor ``by hand''.
DeclareGlobalFunction("TFEvalRFHom");
#############################################################################
##
#F FittingFreeElementarySeries( <G>, [<A>, <wholesocle>])
##
## <#GAPDoc Label="FittingFreeElementarySeries">
## <ManSection>
## <Attr Name="FittingFreeElementarySeries" Arg='G,A,wholesocle'/>
##
## <Description>
## For a finite group <A>G</A>, for which
## <Ref Func="FittingFreeLiftSetup"> <A>ffs</A> has been computed,
## this function returns a subgroup series with elementary factors, each
## invariant under action by <A>A</A> if given,
## compatible with radical, socle factor and pker.
## If <A>wholesocle</A> is given and set to true the socles are not split
## up according to isomorphism types, but are kept whole.
DeclareGlobalFunction("FittingFreeElementarySeries");
#############################################################################
##
#A DirectFactorsFittingFreeSocle( <G> )
##
## <#GAPDoc Label="DirectFactorsFittingFreeSocle">
## <ManSection>
## <Attr Name="DirectFactorsFittingFreeSocle" Arg='G'/>
##
## <Description>
## for a finite fitting-free group <A>G</A>, this function retuns a list of
## the direct factors of the socle of <A>G</A>. If <A>G</A> is not
## fitting-free then <K>fail</K> is returned.
DeclareAttribute("DirectFactorsFittingFreeSocle",IsGroup);
#############################################################################
##
#F HallViaRadical( <G>, <pi> )
##
DeclareGlobalFunction("HallViaRadical");
|