/usr/share/gap/lib/float.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | #############################################################################
##
#W float.gd GAP library Laurent Bartholdi
##
##
#Y Copyright (C) 2011 Laurent Bartholdi
##
## This file deals with general float functions
##
#############################################################################
##
#C Floateans
##
DeclareCategory("IsFloat", IsScalar and IsCommutativeElement and IsZDFRE);
DeclareCategory("IsFloatInterval", IsFloat and IsCollection);
DeclareCategory("IsComplexFloat", IsFloat);
DeclareCategory("IsComplexFloatInterval", IsComplexFloat and IsFloatInterval);
DeclareCategoryFamily("IsFloat");
DeclareCategoryCollections("IsFloat");
DeclareCategoryCollections("IsFloatCollection");
DeclareConstructor("NewFloat",[IsFloat,IsObject]);
DeclareOperation("MakeFloat",[IsFloat,IsObject]);
#############################################################################
BindGlobal("DECLAREFLOATCREATOR", function(arg)
DeclareConstructor("NewFloat",arg);
DeclareOperation("MakeFloat",arg);
end);
BindGlobal("INSTALLFLOATCREATOR", function(arg)
if Length(arg)=3 then
InstallMethod(NewFloat,arg[1],arg[2],arg[3]);
InstallMethod(MakeFloat,arg[1],arg[2],arg[3]);
elif Length(arg)=4 then
InstallMethod(NewFloat,arg[1],arg[2],arg[3],arg[4]);
InstallMethod(MakeFloat,arg[1],arg[2],arg[3],arg[4]);
else
Error("INSTALLFLOATCREATOR only coded for 3-argument or 4-argument version");
fi;
end);
#############################################################################
##
#O Unary operations
##
## <#GAPDoc Label="FLOAT_UNARY">
## <ManSection>
## <Heading>Mathematical operations</Heading>
## <Oper Name="Cos" Arg="x"/>
## <Oper Name="Sin" Arg="x"/>
## <Oper Name="SinCos" Arg="x"/>
## <Oper Name="Tan" Arg="x"/>
## <Oper Name="Sec" Arg="x"/>
## <Oper Name="Csc" Arg="x"/>
## <Oper Name="Cot" Arg="x"/>
## <Oper Name="Asin" Arg="x"/>
## <Oper Name="Acos" Arg="x"/>
## <Oper Name="Atan" Arg="x"/>
## <Oper Name="Atan2" Arg="y x"/>
## <Oper Name="Cosh" Arg="x"/>
## <Oper Name="Sinh" Arg="x"/>
## <Oper Name="Tanh" Arg="x"/>
## <Oper Name="Sech" Arg="x"/>
## <Oper Name="Csch" Arg="x"/>
## <Oper Name="Coth" Arg="x"/>
## <Oper Name="Asinh" Arg="x"/>
## <Oper Name="Acosh" Arg="x"/>
## <Oper Name="Atanh" Arg="x"/>
## <Oper Name="Log" Arg="x"/>
## <Oper Name="Log2" Arg="x"/>
## <Oper Name="Log10" Arg="x"/>
## <Oper Name="Log1p" Arg="x"/>
## <Oper Name="Exp" Arg="x"/>
## <Oper Name="Exp2" Arg="x"/>
## <Oper Name="Exp10" Arg="x"/>
## <Oper Name="Expm1" Arg="x"/>
## <Oper Name="Cuberoot" Arg="x"/>
## <Oper Name="Square" Arg="x"/>
## <Oper Name="Hypothenuse" Arg="x y"/>
## <Oper Name="Ceil" Arg="x"/>
## <Oper Name="Floor" Arg="x"/>
## <Oper Name="Round" Arg="x"/>
## <Oper Name="Trunc" Arg="x"/>
## <Oper Name="Frac" Arg="x"/>
## <Oper Name="SignFloat" Arg="x"/>
## <Oper Name="Argument" Arg="x"/>
## <Oper Name="Erf" Arg="x"/>
## <Oper Name="Zeta" Arg="x"/>
## <Oper Name="Gamma" Arg="x"/>
## <Oper Name="ComplexI" Arg="x"/>
## <Description>
## Usual mathematical functions.
## </Description>
## </ManSection>
##
## <ManSection>
## <Oper Name="EqFloat" Arg="x y"/>
## <Returns>Whether the floateans <A>x</A> and <A>y</A> are equal</Returns>
## <Description>
## This function compares two floating-point numbers, and returns
## <K>true</K> if they are equal, and <K>false</K> otherwise; with the
## exception that <K>NaN</K> is always considered to be different from
## itself.
## </Description>
## </ManSection>
##
## <ManSection>
## <Oper Name="PrecisionFloat" Arg="x"/>
## <Returns>The precision of <A>x</A></Returns>
## <Description>
## This function returns the precision, counted in number of binary digits,
## of the floating-point number <A>x</A>.
## </Description>
## </ManSection>
##
## <ManSection>
## <Heading>Interval operations</Heading>
## <Oper Name="Sup" Arg="interval"/>
## <Oper Name="Inf" Arg="interval"/>
## <Oper Name="Mid" Arg="interval"/>
## <Oper Name="AbsoluteDiameter" Arg="interval"/>
## <Oper Name="RelativeDiameter" Arg="interval"/>
## <Oper Name="Overlaps" Arg="interval1 interval2"/>
## <Oper Name="IsDisjoint" Arg="interval1 interval2"/>
## <Oper Name="IncreaseInterval" Arg="interval delta"/>
## <Oper Name="BlowupInterval" Arg="interval ratio"/>
## <Oper Name="BisectInterval" Arg="interval"/>
## <Description>
## Most are self-explanatory.
## <C>BlowupInterval</C> returns an interval with same midpoint but
## relative diameter increased by <A>ratio</A>; <C>IncreaseInterval</C>
## returns an interval with same midpoint but absolute diameter increased
## by <A>delta</A>; <C>BisectInterval</C> returns a list of two intervals
## whose union equals <A>interval</A>.
## </Description>
## </ManSection>
##
## <ManSection>
## <Prop Name="IsPInfinity" Arg="x"/>
## <Prop Name="IsNInfinity" Arg="x"/>
## <Prop Name="IsXInfinity" Arg="x"/>
## <Prop Name="IsFinite" Arg="x" Label="float"/>
## <Prop Name="IsNaN" Arg="x"/>
## <Description>
## Returns <K>true</K> if the floating-point number <A>x</A> is
## respectively <M>+\infty</M>, <M>-\infty</M>, <M>\pm\infty</M>,
## finite, or `not a number', such as the result of <C>0.0/0.0</C>.
## </Description>
## </ManSection>
##
## <ManSection>
## <Var Name="FLOAT" Label="constants"/>
## <Description>
## This record contains useful floating-point constants: <List>
## <Mark>DECIMAL_DIG</Mark> <Item>Maximal number of useful digits;</Item>
## <Mark>DIG</Mark> <Item>Number of significant digits;</Item>
## <Mark>VIEW_DIG</Mark> <Item>Number of digits to print in short view;</Item>
## <Mark>EPSILON</Mark> <Item>Smallest number such that <M>1\neq1+\epsilon</M>;</Item>
## <Mark>MANT_DIG</Mark> <Item>Number of bits in the mantissa;</Item>
## <Mark>MAX</Mark> <Item>Maximal representable number;</Item>
## <Mark>MAX_10_EXP</Mark> <Item>Maximal decimal exponent;</Item>
## <Mark>MAX_EXP</Mark> <Item>Maximal binary exponent;</Item>
## <Mark>MIN</Mark> <Item>Minimal positive representable number;</Item>
## <Mark>MIN_10_EXP</Mark> <Item>Minimal decimal exponent;</Item>
## <Mark>MIN_EXP</Mark> <Item>Minimal exponent;</Item>
## <Mark>INFINITY</Mark> <Item>Positive infinity;</Item>
## <Mark>NINFINITY</Mark> <Item>Negative infinity;</Item>
## <Mark>NAN</Mark> <Item>Not-a-number,</Item>
## </List>
## as well as mathematical constants <C>E</C>, <C>LOG2E</C>, <C>LOG10E</C>,
## <C>LN2</C>, <C>LN10</C>, <C>PI</C>, <C>PI_2</C>, <C>PI_4</C>,
## <C>1_PI</C>, <C>2_PI</C>, <C>2_SQRTPI</C>, <C>SQRT2</C>, <C>SQRT1_2</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("Cos",IsFloat);
DeclareAttribute("Sin",IsFloat);
DeclareAttribute("Tan",IsFloat);
DeclareAttribute("Sec",IsFloat);
DeclareAttribute("Csc",IsFloat);
DeclareAttribute("Cot",IsFloat);
DeclareAttribute("Asin",IsFloat);
DeclareAttribute("Acos",IsFloat);
DeclareAttribute("Atan",IsFloat);
DeclareAttribute("Cosh",IsFloat);
DeclareAttribute("Sinh",IsFloat);
DeclareAttribute("Tanh",IsFloat);
DeclareAttribute("Sech",IsFloat);
DeclareAttribute("Csch",IsFloat);
DeclareAttribute("Coth",IsFloat);
DeclareAttribute("Asinh",IsFloat);
DeclareAttribute("Acosh",IsFloat);
DeclareAttribute("Atanh",IsFloat);
DeclareOperation("Log",[IsFloat]);
DeclareAttribute("Log2",IsFloat);
DeclareAttribute("Log10",IsFloat);
DeclareAttribute("Log1p",IsFloat);
DeclareAttribute("Exp",IsFloat);
DeclareAttribute("Exp2",IsFloat);
DeclareAttribute("Exp10",IsFloat);
DeclareAttribute("Expm1",IsFloat);
DeclareAttribute("CubeRoot",IsFloat);
DeclareAttribute("Square",IsFloat);
DeclareAttribute("Ceil",IsFloat);
DeclareAttribute("Floor",IsFloat);
DeclareAttribute("Round",IsFloat);
DeclareAttribute("Trunc",IsFloat);
DeclareOperation("Atan2", [IsFloat,IsFloat]);
DeclareAttribute("FrExp", IsFloat);
DeclareOperation("LdExp", [IsFloat,IsInt]);
DeclareAttribute("Argument", IsFloat);
DeclareAttribute("AbsoluteValue", IsFloat);
#DeclareAttribute("Norm", IsFloat); #already defined
DeclareOperation("Hypothenuse", [IsFloat,IsFloat]);
DeclareAttribute("Frac",IsFloat);
DeclareAttribute("SinCos",IsFloat);
DeclareAttribute("Erf",IsFloat);
DeclareAttribute("Zeta",IsFloat);
DeclareAttribute("Gamma",IsFloat);
DeclareAttribute("ComplexI",IsFloat);
DeclareAttribute("PrecisionFloat",IsFloat);
DeclareAttribute("SignFloat",IsFloat);
DeclareAttribute("Sup", IsFloat);
DeclareAttribute("Inf", IsFloat);
DeclareAttribute("Mid", IsFloat);
DeclareAttribute("AbsoluteDiameter", IsFloat);
DeclareAttribute("RelativeDiameter", IsFloat);
#DeclareOperation("Diameter", IsFloat);
DeclareOperation("Overlaps", [IsFloat,IsFloat]);
DeclareOperation("IsDisjoint", [IsFloat,IsFloat]);
DeclareOperation("EqFloat", [IsFloat,IsFloat]);
DeclareOperation("IncreaseInterval", [IsFloat,IsFloat]);
DeclareOperation("BlowupInterval", [IsFloat,IsFloat]);
DeclareOperation("BisectInterval", [IsFloat,IsFloat]);
DeclareProperty("IsPInfinity", IsFloat);
DeclareProperty("IsNInfinity", IsFloat);
DeclareProperty("IsXInfinity", IsFloat);
DeclareProperty("IsFinite", IsFloat);
DeclareProperty("IsNaN", IsFloat);
#############################################################################
#############################################################################
# roots
#############################################################################
#! document (LB)
#############################################################################
#############################################################################
##
#O Constructor
##
## <#GAPDoc Label="Float">
## <ManSection>
## <Oper Name="Float" Arg="obj"/>
## <Oper Name="NewFloat" Arg="filter, obj"/>
## <Oper Name="MakeFloat" Arg="sample obj, obj"/>
## <Returns>A new floating-point number, based on <A>obj</A></Returns>
## <Description>
## This function creates a new floating-point number.
##
## <P/> If <A>obj</A> is a rational number, the created number is created
## with sufficient precision so that the number can (usually) be converted
## back to the original number (see <Ref Oper="Rat" BookName="ref"/> and
## <Ref Oper="Rat"/>). For an integer, the precision, if unspecified, is
## chosen sufficient so that <C>Int(Float(obj))=obj</C> always holds, but
## at least 64 bits.
##
## <P/> <A>obj</A> may also be a string, which may be of the form
## <C>"3.14e0"</C> or <C>".314e1"</C> or <C>".314@1"</C> etc.
##
## <P/> An option may be passed to specify, it bits, a desired precision.
## The format is <C>Float("3.14":PrecisionFloat:=1000)</C> to create
## a 1000-bit approximation of <M>3.14</M>.
##
## <P/> In particular, if <A>obj</A> is already a floating-point number,
## then <C>Float(obj:PrecisionFloat:=prec)</C> creates a copy of
## <A>obj</A> with a new precision.
## prec
## </Description>
## </ManSection>
##
## <ManSection>
## <Oper Name="Rat" Arg="f" Label="for floats"/>
## <Returns>A rational approximation to <A>f</A></Returns>
## <Description>
## This command constructs a rational approximation to the
## floating-point number <A>f</A>. Of course, it is not guaranteed to
## return the original rational number <A>f</A> was created from, though
## it returns the most `reasonable' one given the precision of
## <A>f</A>.
##
## <P/> Two options control the precision of the rational approximation:
## In the form <C>Rat(f:maxdenom:=md,maxpartial:=mp)</C>, the rational
## returned is such that the denominator is at most <A>md</A> and the
## partials in its continued fraction expansion are at most <A>mp</A>.
## The default values are <C>maxpartial:=10000</C> and
## <C>maxdenom:=2^(precision/2)</C>.
## </Description>
## </ManSection>
##
## <ManSection>
## <Func Name="SetFloats" Arg="rec [bits] [install]"/>
## <Description>
## Installs a new interface to floating-point numbers in &GAP;, optionally
## with a desired precision <A>bits</A> in binary digits. The last
## optional argument <A>install</A> is a boolean value; if false, it
## only installs the eager handler and the precision for the floateans,
## without making them the default.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("Float");
DeclareGlobalFunction("SetFloats");
#############################################################################
DeclareOperation("Cyc", [IsFloat, IsPosInt]);
DeclareOperation("Cyc", [IsFloat]);
# these variables are read-write
FLOAT := fail; # record holding all float information
# MAX_FLOAT_LITERAL_CACHE_SIZE := 1000; # this could be set to avoid saturating the cache, in case some code evaluates lots of function expressions
#############################################################################
##
#E
|