/usr/share/gap/lib/fpmon.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 | #############################################################################
##
#W fpmon.gd GAP library Isabel Araújo
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for finitely presented monoids.
##
#############################################################################
##
#C IsElementOfFpMonoid(<elm>)
##
## <#GAPDoc Label="IsElementOfFpMonoid">
## <ManSection>
## <Filt Name="IsElementOfFpMonoid" Arg='elm' Type='Category'/>
##
## <Description>
## returns true if <A>elm</A> is an element of a finitely presented monoid.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsElementOfFpMonoid",
IsMultiplicativeElementWithOne and IsAssociativeElement);
#############################################################################
##
#C IsElementOfFpMonoidCollection(<e>)
##
## <ManSection>
## <Filt Name="IsElementOfFpMonoidCollection" Arg='e' Type='Category'/>
##
## <Description>
## Created now so that lists of things in the category IsElementOfFpMonoid
## are given the category CategoryCollections(IsElementOfFpMonoid)
## Otherwise these lists (and other collections) won't create the
## collections category. See CollectionsCategory in the manual.
##
## </Description>
## </ManSection>
##
DeclareCategoryCollections("IsElementOfFpMonoid");
#############################################################################
##
#A IsSubmonoidFpMonoid( <t> )
##
## <#GAPDoc Label="IsSubmonoidFpMonoid">
## <ManSection>
## <Attr Name="IsSubmonoidFpMonoid" Arg='t'/>
##
## <Description>
## true if <A>t</A> is a finitely presented monoid or a
## submonoid of a finitely presented monoid
## (generally speaking, such a semigroup can be constructed
## with <C>Monoid(<A>gens</A>)</C>, where <A>gens</A> is a list of elements
## of a finitely presented monoid).
## <P/>
## A submonoid of a monoid has the same identity as the monoid.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsSubmonoidFpMonoid",
IsMonoid and IsElementOfFpMonoidCollection );
#############################################################################
##
#C IsElementOfFpMonoidFamily
##
## <ManSection>
## <Filt Name="IsElementOfFpMonoidFamily" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryFamily( "IsElementOfFpMonoid" );
#############################################################################
##
#F FactorFreeMonoidByRelations( <f>, <rels> )
##
## <ManSection>
## <Func Name="FactorFreeMonoidByRelations" Arg='f, rels'/>
##
## <Description>
## <A>f</A> is a free monoid and <A>rels</A> is a list of
## pairs of elements of <A>f</A>. Returns the fp monoid which
## is the quotient of <A>f</A> by the least congruence on <A>f</A> generated by
## the pairs in <A>rels</A>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("FactorFreeMonoidByRelations");
#############################################################################
##
#O ElementOfFpMonoid( <fam>, <word> )
##
## <ManSection>
## <Oper Name="ElementOfFpMonoid" Arg='fam, word'/>
##
## <Description>
## If <A>fam</A> is the elements family of a finitely presented monoid and <A>word</A>
## is a word in the free generators underlying this finitely presented
## monoid, this operation creates the element with the representative <A>word</A>
## in the free monoid.
## </Description>
## </ManSection>
##
DeclareOperation( "ElementOfFpMonoid",
[ IsElementOfFpMonoidFamily, IsAssocWordWithOne ] );
#############################################################################
##
#O FpMonoidOfElementOfFpMonoid( <elm> )
##
## <ManSection>
## <Oper Name="FpMonoidOfElementOfFpMonoid" Arg='elm'/>
##
## <Description>
## returns the fp monoid to which <A>elm</A> belongs to
## </Description>
## </ManSection>
##
DeclareOperation( "FpMonoidOfElementOfFpMonoid",[IsElementOfFpMonoid]);
#############################################################################
##
#P IsFpMonoid(<m>)
##
## <#GAPDoc Label="IsFpMonoid">
## <ManSection>
## <Prop Name="IsFpMonoid" Arg='m'/>
##
## <Description>
## is a synonym for <C>IsSubmonoidFpMonoid(<A>m</A>)</C> and
## <C>IsWholeFamily(<A>m</A>)</C> (this is because a submonoid
## of a finitely presented monoid is not necessarily finitely presented).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsFpMonoid",IsSubmonoidFpMonoid and IsWholeFamily);
#############################################################################
##
#A FreeGeneratorsOfFpMonoid( <m> )
##
## <ManSection>
## <Attr Name="FreeGeneratorsOfFpMonoid" Arg='m'/>
##
## <Description>
## returns the underlying free generators corresponding to the
## generators of the finitely presented monoid <A>m</A>.
## </Description>
## </ManSection>
##
DeclareAttribute("FreeGeneratorsOfFpMonoid", IsFpMonoid);
#############################################################################
##
#A FreeMonoidOfFpMonoid( <m> )
##
## <ManSection>
## <Attr Name="FreeMonoidOfFpMonoid" Arg='m'/>
##
## <Description>
## returns the underlying free monoid for the finitely presented
## monoid <A>m</A>, ie, the free monoid over which <A>m</A> is defined
## as a quotient
## (this is the free monoid generated by the free generators provided
## by <C>FreeGeneratorsOfFpMonoid(<A>m</A>)</C>).
## </Description>
## </ManSection>
##
DeclareAttribute("FreeMonoidOfFpMonoid", IsFpMonoid);
############################################################################
##
#A RelationsOfFpMonoid(<m>)
##
## <ManSection>
## <Attr Name="RelationsOfFpMonoid" Arg='m'/>
##
## <Description>
## returns the relations of the finitely presented monoid <A>m</A> as
## pairs of words in the free generators provided by
## <C>FreeGeneratorsOfFpMonoid(<A>m</A>)</C>.
## </Description>
## </ManSection>
##
DeclareAttribute("RelationsOfFpMonoid",IsFpMonoid);
############################################################################
##
#A IsomorphismFpMonoid(<m>)
##
## <ManSection>
## <Attr Name="IsomorphismFpMonoid" Arg='m'/>
##
## <Description>
## for a monoid <A>m</A> returns an isomorphism from <A>m</A> to an fp monoid.
## If the option <tt>relations</tt> is given, it must be a list of relations
## given by words in the free group. The monoid then is created with these
## relations (plus the ``inverse'' relations <A>x\cdot x^{-1}=1</A>). No
## particular choice of generators or relations is guaranteed.
## </Description>
## </ManSection>
##
DeclareAttribute("IsomorphismFpMonoid",IsMonoid);
############################################################################
##
#F IsomorphismFpMonoidInversesFirst(<G>)
##
## <ManSection>
## <Func Name="IsomorphismFpMonoid" Arg='G'/>
##
## <Description>
## for a finitely presented group <A>G</A> this function
## returns an isomorphism from <A>G</A> to an fp monoid <A>M</A>. The
## generators of <A>M</A> are chosen to correspond to the generators of
## <A>G</A> in the sequence <A>x_1^{-1},x_1,x_2^{-1},x_2,\ldots</A>.
## If the option <tt>relations</tt> is given, it must be a list of relations
## given by words in the free group. The monoid then is created with these
## relations (plus the ``inverse'' relations <A>x\cdot x^{-1}=1</A>).
## </Description>
## </ManSection>
##
DeclareGlobalFunction("IsomorphismFpMonoidInversesFirst");
############################################################################
##
#F IsomorphismFpMonoidGeneratorsFirst(<G>)
##
## <ManSection>
## <Func Name="IsomorphismFpMonoid" Arg='G'/>
##
## <Description>
## for a finitely presented group <A>G</A> this function
## returns an isomorphism from <A>G</A> to an fp monoid <A>M</A>. The
## generators of <A>M</A> are chosen to correspond to the generators of
## <A>G</A> in the sequence <A>x_1,x_1^{-1},x_2,x_2^{-1},\ldots</A>.
## If the option <tt>relations</tt> is given, it must be a list of relations
## given by words in the free group. The monoid then is created with these
## relations (plus the ``inverse'' relations <A>x\cdot x^{-1}=1</A>).
## </Description>
## </ManSection>
##
DeclareGlobalFunction("IsomorphismFpMonoidGeneratorsFirst");
#############################################################################
##
#E
|