This file is indexed.

/usr/share/gap/lib/fpmon.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#############################################################################
##
#W  fpmon .gi               GAP library                         Isabel Araújo
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##

#############################################################################
##
##  1. methods for elements of fp monoids 
##

#############################################################################
##
#M  ElementOfFpMonoid( <fam>, <elm> )
##
InstallMethod( ElementOfFpMonoid,
	"for a family of f.p. monoid elements, and an assoc. word",
	true,
	[ IsElementOfFpMonoidFamily, IsAssocWordWithOne ],
	0,
	function( fam, elm )
		return Objectify( fam!.defaultType, [ Immutable( elm ) ] );
	end );

#############################################################################
##
#M  UnderlyingElement( <elm> )  . . . . . . for element of fp monoid 
##
InstallMethod( UnderlyingElement,
	"for an element of an fp monoid (default repres.)",
	true,
	[ IsElementOfFpMonoid and IsPackedElementDefaultRep ],
	0,
	obj -> obj![1] );

#############################################################################
##
#M  \*( <x1>, <x2> )
##
InstallMethod( \*,
	"for two elements of a fp monoid",
	IsIdenticalObj,
	[ IsElementOfFpMonoid, IsElementOfFpMonoid],
	0,
	function( x1, x2 )
		return ElementOfFpMonoid(FamilyObj(x1),
						UnderlyingElement(x1)*UnderlyingElement(x2));
	end );

#############################################################################
##
#M  \<( <x1>, <x2> )
##
## This method now uses the rws for monoids (30/01/2002)
##
InstallMethod( \<,
    "for two elements of a f.p. monoid",
    IsIdenticalObj,
    [ IsElementOfFpMonoid, IsElementOfFpMonoid],
    0,
    function( x1, x2 )
      local s,rws ;

      s := CollectionsFamily(FamilyObj(x1))!.wholeMonoid;
      rws := ReducedConfluentRewritingSystem(s);
      return ReducedForm(rws, UnderlyingElement(x1)) <
          ReducedForm(rws, UnderlyingElement(x2));

    end );

#############################################################################
##
#M  \=( <x1>, <x2> )
##
InstallMethod( \=,
    "for two elements of a f.p. monoid",
    IsIdenticalObj,
    [ IsElementOfFpMonoid, IsElementOfFpMonoid],
    0,
    function( x1, x2 )
			local m,rws;

			m := CollectionsFamily(FamilyObj(x1))!.wholeMonoid;
      rws:= ReducedConfluentRewritingSystem(m);
	
      return ReducedForm(rws, UnderlyingElement(x1)) =
          ReducedForm(rws, UnderlyingElement(x2));

    end );

#############################################################################
##
#M  One( <fam> )  . . . . . . . . . . . . . for family of fp monoid elements
##
InstallOtherMethod( One,
    "for a family of fp monoid elements",
    true,
    [ IsElementOfFpMonoidFamily ],
    0,
    fam -> ElementOfFpMonoid( fam, One( fam!.freeMonoid) ) );


#############################################################################
##
#M  One( <elm> )  . . . . . . . . . . . . . . . . . for element of fp monoid
##
InstallMethod( One, "for an fp monoid element", true, [ IsElementOfFpMonoid ],
    0, obj -> One( FamilyObj( obj ) ) );

# a^0 calls OneOp, so we have to catch this as well.
InstallMethod( OneOp, "for an fp monoid element", true, [ IsElementOfFpMonoid ],
    0, obj -> One( FamilyObj( obj ) ) );

#############################################################################
##
#M  PrintObj( <elm> )
##
InstallMethod( PrintObj, "for an fp monoid element",
  true, [ IsElementOfFpMonoid], 0,
function( elm )
  PrintObj(elm![1]);
end );

#############################################################################
##
#M  String( <elm> )
##
InstallMethod( String, "for an fp monoid element",
  true, [ IsElementOfFpMonoid], 0,
function( elm )
  return String(elm![1]);
end );

#############################################################################
##
#M  FpMonoidOfElementOfFpMonoid( <elm> )
##
InstallMethod( FpMonoidOfElementOfFpMonoid,
	"for an fp monoid element", true,
	[IsElementOfFpMonoid], 0,
	elm -> CollectionsFamily(FamilyObj(elm))!.wholeMonoid);

#############################################################################
##
#M  FpGrpMonSmgOfFpGrpMonSmgElement( <elm> )
##
##	for an fp monoid element <elm> returns the fp monoid to which
##	<elm> belongs to 
##
InstallMethod(FpGrpMonSmgOfFpGrpMonSmgElement,
  "for an element of an fp monoid", true,
  [IsElementOfFpMonoid], 0,
  x -> CollectionsFamily(FamilyObj(x))!.wholeMonoid);


#############################################################################
##
##  2. methods for fp monoids 
##

#############################################################################
##
#M  FactorFreeMonoidByRelations(<F>,<rels>) .. Create an FpMonoid
##
##  Note: If the monoid has fewer relations than generators,
##  then the monoid is certainly infinite.
##
InstallGlobalFunction(FactorFreeMonoidByRelations,
function( F, rels )
    local s, fam, gens, r;

    # Check that the relations are all lists of length 2
    for r in rels do
      if Length(r) <> 2 then
        Error("A relation should be a list of length 2");
      fi;
    od;

    # Create a new family.
    fam := NewFamily( "FamilyElementsFpMonoid", IsElementOfFpMonoid);

    # Create the default type for the elements -
    # putting IsElementOfFpMonoid ensures that lists of these things
    # have CategoryCollections(IsElementOfFpMonoid).

    fam!.freeMonoid:= F;
    fam!.relations := Immutable( rels );

    fam!.defaultType := NewType( fam, IsElementOfFpMonoid
      and IsPackedElementDefaultRep );

    # Create the monoid
    s := Objectify(
        NewType( CollectionsFamily( fam ),
        IsMonoid and IsFpMonoid and IsAttributeStoringRep),
        rec() );

    # Mark <s> to be the 'whole monoid' of its later submonoids.
    FamilyObj( s )!.wholeMonoid:= s;
    SetOne(s,ElementOfFpMonoid(fam,One(F)));
    # Create generators of the monoid.
    gens:= List( GeneratorsOfMonoid( F ),
      s -> ElementOfFpMonoid( fam, s ) );
    SetGeneratorsOfMonoid( s, gens );

    if Length(gens) > Length(rels) then
      SetIsFinite(s, false);
    fi;
	
    return s;
end);

#############################################################################
##
#M  ViewObj( S )
##
##  View an fp  monoid S
##
InstallMethod( ViewObj,
    "for a fp monoid with generators",
    true,
    [  IsSubmonoidFpMonoid and IsWholeFamily and IsMonoid
    and HasGeneratorsOfMagma ], 0,
    function( S )
    Print( "<fp monoid on the generators ",
          FreeGeneratorsOfFpMonoid(S),">");
    end );

#############################################################################
##
#M  FreeGeneratorsOfFpMonoid( S )
##
##  Generators of the underlying free monoid 
##
InstallMethod( FreeGeneratorsOfFpMonoid,
    "for a finitely presented monoid",
    true,
    [ IsSubmonoidFpMonoid and IsWholeFamily ], 0,
    T  -> GeneratorsOfMonoid( FreeMonoidOfFpMonoid( T ) ) );

#############################################################################
##
#M  FreeMonoidOfFpMonoid( S )
##
##  Underlying free monoid of an fpmonoid 
##
InstallMethod( FreeMonoidOfFpMonoid,
    "for a finitely presented monoid",
    true,
    [ IsSubmonoidFpMonoid and IsWholeFamily ], 0,
    T -> ElementsFamily( FamilyObj( T ) )!.freeMonoid);

#############################################################################
##
#M  RelationsOfFpMonoid( F )
##
InstallOtherMethod( RelationsOfFpMonoid,    "method for a free monoid",
    true,
    [ IsFreeMonoid], 0,
    F -> [] );

InstallMethod( RelationsOfFpMonoid,
    "for finitely presented monoid",
    true,
    [ IsSubmonoidFpMonoid and IsWholeFamily ], 0,
    S -> ElementsFamily( FamilyObj( S ) )!.relations );

#############################################################################
##
#M  HomomorphismFactorSemigroup(<F>, <C> )
##
##  for a free monoid and congruence
##
InstallOtherMethod(HomomorphismFactorSemigroup,
    "for a free monoid and a congruence",
    true,
    [ IsFreeMonoid, IsMagmaCongruence ],
    0,
function(s, c)
  local
    fp;     # the monoid under construction

  if not s = Source(c) then
    TryNextMethod();
  fi;
  fp := FactorFreeMonoidByRelations(s, GeneratingPairsOfMagmaCongruence(c));
  return MagmaHomomorphismByFunctionNC(s, fp,
    x->ElementOfFpMonoid(ElementsFamily(FamilyObj(fp)),x) );
end);

#############################################################################
##
#M  HomomorphismFactorSemigroup(<F>, <C> )
##
##  for fp monoid and congruence
##
InstallMethod(HomomorphismFactorSemigroup,
    "for an fp monoid and a congruence",
    true,
    [ IsFpMonoid, IsSemigroupCongruence ],
    0,
function(s, c)
  local
    srels,  # the relations of c
    frels,  # srels converted into pairs of words in the free monoid 
    fp;     # the monoid under construction

  if not s = Source(c) then
    TryNextMethod();
  fi;

  # make the relations, relations of the free monoid 
  srels := GeneratingPairsOfMagmaCongruence(c);
  frels := List(srels, x->[UnderlyingElement(x[1]),UnderlyingElement(x[2])]);

  fp := FactorFreeMonoidByRelations(FreeMonoidOfFpMonoid(s),
    Concatenation(frels, RelationsOfFpMonoid(s)));
  return MagmaHomomorphismByFunctionNC(s, fp,
    x->ElementOfFpMonoid(ElementsFamily(FamilyObj(fp)),UnderlyingElement(x)) );

end);

#############################################################################
##
#M  NaturalHomomorphismByGenerators( S )
##
BindGlobal("FreeMonoidNatHomByGeneratorsNC",
function(f, s)
 return MagmaHomomorphismByFunctionNC(f, s,
    function(w)
      local
        i,      # loop var
        prodt,  # product in the target monoid 
        gens,   # generators of the target monoid 
        v;      # ext rep as <gen>, <exp> pairs

      if Length(w) = 0 then
        return One(Representative(s));
      fi;

      gens := GeneratorsOfMonoid(s);
      v := ExtRepOfObj(w);
      prodt := gens[v[1]]^v[2];
      for i in [2 .. Length(v)/2] do
        prodt := prodt*gens[v[2*i-1]]^v[2*i];
      od;
      return prodt;

    end);
end);

InstallMethod( NaturalHomomorphismByGenerators,
    "for a free monoid and monoid",
    true,
    [  IsFreeMonoid, IsMonoid and HasGeneratorsOfMagmaWithOne], 0,
function(f, s)

  if Size(GeneratorsOfMagmaWithOne(f)) <> Size(GeneratorsOfMagmaWithOne(s)) then
    Error("Monoid must have the same rank.");
  fi;

  return FreeMonoidNatHomByGeneratorsNC(f, s);

end);


InstallMethod( NaturalHomomorphismByGenerators,
    "for an fp monoid and monoid",
    true,
    [  IsFpMonoid, IsMonoid and HasGeneratorsOfMonoid], 0,
function(f, s)
  local
      psi; # the homom from the free monoid 

  if Size(GeneratorsOfMonoid(f)) <> Size(GeneratorsOfMonoid(s)) then
    Error("Monoids must have the same rank.");
  fi;

  psi := FreeMonoidNatHomByGeneratorsNC(FreeMonoidOfFpMonoid(f), s);

  # check that the relations hold
  if Length(
      Filtered(RelationsOfFpMonoid(f), x->x[1]^psi <> x[2]^psi))>0 then
    return fail;
  fi;

  # now create the homomorphism from the fp mon 
  return MagmaHomomorphismByFunctionNC(f, s, e->UnderlyingElement(e)^psi);
end);

######################################################################
##
#M	IsomorphismFpSemigroup(<S>)
##
InstallMethod(IsomorphismFpSemigroup,
	"for an fp monoid", true,
	[  IsFpMonoid ],0,
function(s)

local fm,						# free monoid underlying s
			fs,						# free semigroup
                        gensfreemon,    # generators of fm
			freesmggens,	# generators of fs
			idgen,				# the generator of fs corresponding to the identity
			rels,					# relations of the fp monoid s
			rel,					# a relation from rels
			smgrels,			# the fp monoid relations rewritten for semigroups
			smgrel,				# a relation from smgrels
			i,						# loop variable
			smg,					# the fp semigroup
			gens,					# generators of smg
			id,						# identity of fm
			isomfun,			# the isomorphism
			nat,					# homomorphism from fm to s
			invfun,				# the inverse of isomfun
			monword2smgword,	
			smgword2monword;

  ################################################
  # monword2smgword
  # Change a word in the free monoid into a word
  # in the free semigroup. 
  ################################################
  monword2smgword := function(id, w)
    local wlist,    # external rep of the word
					i;				# loop variable

    wlist := ShallowCopy(ExtRepOfObj(w));

    if Length(wlist) = 0 then # it is the identity
      return id;
    fi;

		# have to increment the generators by one to shift
		# past the identity generator
		for i in [1..1/2*(Length(wlist))] do
			wlist[2*i-1] := wlist[2*i-1]+1;
		od;
	
    return ObjByExtRep(FamilyObj(id), wlist);
  end;

  ################################################
  # smgword2monword
  # Change a word in the free semigroup into a word
  # in the free monoid. 
  ################################################
	smgword2monword := function(id,w)
		local wlist;		# external rep of the word
	
		wlist := ExtRepOfObj(w); 
	
		if Length(wlist)=0 or (wlist=[1,1]) then # it is the identity
			return id;
		fi;
		
		# have to decrease each entry by one because
		# of the identity generator
		

		return ObjByExtRep(FamilyObj(id),wlist);
	end;
		

	#################
	# function proper

	# first we create the fp semigroup

	# get the free monoid underlying the given fp monoid
	fm := FreeMonoidOfFpMonoid(s);
	# build the free semigroup
        gensfreemon := List(GeneratorsOfSemigroup( fm ),String);
	fs := FreeSemigroup(gensfreemon);

	freesmggens := GeneratorsOfSemigroup(fs);
	idgen := freesmggens[1];

	# now the relations that make idgen an identity
	smgrels := [[idgen*idgen,idgen]];
	for i in [2..Length(freesmggens)] do
		Add(smgrels, [idgen*freesmggens[i],freesmggens[i]]);
		Add(smgrels, [freesmggens[i]*idgen,freesmggens[i]]);
	od;

	# now we have to rewrite each of the fp monoid relations
	# in terms of words in fs 
	rels := RelationsOfFpMonoid(s);
	for rel in rels do
		smgrel := [monword2smgword(idgen,rel[1]),monword2smgword(idgen,rel[2])];
		Add(smgrels,smgrel);	
	od;

	# finally create the fp semigroup
	smg := FactorFreeSemigroupByRelations(fs,smgrels);
	gens := GeneratorsOfSemigroup(smg);

	isomfun := x -> ElementOfFpSemigroup( FamilyObj(gens[1] ),
                  monword2smgword( idgen, UnderlyingElement(x)));

	id := One(fm);
	nat := NaturalHomomorphismByGenerators(fm,s);
	invfun := x-> Image( nat,smgword2monword(id,UnderlyingElement(x))); 

	return MagmaIsomorphismByFunctionsNC(s,smg,isomfun,invfun);

end);