/usr/share/gap/lib/fpsemi.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | #############################################################################
##
#W fpsemi.gd GAP library Andrew Solomon and Isabel Araújo
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the declarations for finitely
## presented semigroups.
##
#############################################################################
##
#C IsElementOfFpSemigroup(<elm>)
##
## <#GAPDoc Label="IsElementOfFpSemigroup">
## <ManSection>
## <Filt Name="IsElementOfFpSemigroup" Arg='elm' Type='Category'/>
##
## <Description>
## returns true if <A>elm</A> is an element of a finitely presented semigroup.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsElementOfFpSemigroup",
IsMultiplicativeElement and IsAssociativeElement );
#############################################################################
##
#O FpSemigroupOfElementOfFpSemigroup( <elm> )
##
## <ManSection>
## <Oper Name="FpSemigroupOfElementOfFpSemigroup" Arg='elm'/>
##
## <Description>
## returns the finitely presented semigroup to which <A>elm</A> belongs to
## </Description>
## </ManSection>
##
DeclareOperation( "FpSemigroupOfElementOfFpSemigroup",
[IsElementOfFpSemigroup]);
#############################################################################
##
#C IsElementOfFpSemigroupCollection(<e>)
##
## <ManSection>
## <Filt Name="IsElementOfFpSemigroupCollection" Arg='e' Type='Category'/>
##
## <Description>
## Created now so that lists of things in the category IsElementOfFpSemigroup
## are given the category CategoryCollections(IsElementOfFpSemigroup)
## Otherwise these lists (and other collections) won't create the
## collections category. See CollectionsCategory in the manual.
## </Description>
## </ManSection>
##
DeclareCategoryCollections("IsElementOfFpSemigroup");
#############################################################################
##
#A IsSubsemigroupFpSemigroup( <t> )
##
## <#GAPDoc Label="IsSubsemigroupFpSemigroup">
## <ManSection>
## <Attr Name="IsSubsemigroupFpSemigroup" Arg='t'/>
##
## <Description>
## true if <A>t</A> is a finitely presented semigroup or a
## subsemigroup of a finitely presented semigroup
## (generally speaking, such a subsemigroup can be constructed
## with <C>Semigroup(<A>gens</A>)</C>, where <A>gens</A> is a list of elements
## of a finitely presented semigroup).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonymAttr( "IsSubsemigroupFpSemigroup",
IsSemigroup and IsElementOfFpSemigroupCollection );
#############################################################################
##
#C IsElementOfFpSemigroupFamily
##
## <ManSection>
## <Filt Name="IsElementOfFpSemigroupFamily" Arg='obj' Type='Category'/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareCategoryFamily( "IsElementOfFpSemigroup" );
#############################################################################
##
#F FactorFreeSemigroupByRelations( <f>, <rels> )
##
## <#GAPDoc Label="FactorFreeSemigroupByRelations">
## <ManSection>
## <Func Name="FactorFreeSemigroupByRelations" Arg='f, rels'/>
##
## <Description>
## for a free semigroup <A>f</A> and <A>rels</A> is a list of
## pairs of elements of <A>f</A>. Returns the finitely presented semigroup
## which is the quotient of <A>f</A> by the least congruence on <A>f</A> generated by
## the pairs in <A>rels</A>.
## <Example><![CDATA[
## gap> FactorFreeSemigroupByRelations(f,
## > [[s[1]*s[2]*s[1],s[1]],[s[2]^4,s[1]]]);
## <fp semigroup on the generators [ s1, s2, s3 ]>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("FactorFreeSemigroupByRelations");
#############################################################################
##
#O ElementOfFpSemigroup( <fam>, <w> )
##
## <#GAPDoc Label="ElementOfFpSemigroup">
## <ManSection>
## <Oper Name="ElementOfFpSemigroup" Arg='fam, w'/>
##
## <Description>
## for a family <A>fam</A> of elements of a finitely presented semigroup and
## a word <A>w</A> in the free generators underlying this finitely presented
## semigroup, this operation creates the element of the finitely
## presented semigroup with the representative <A>w</A> in the free semigroup.
## <Example><![CDATA[
## gap> fam := FamilyObj( GeneratorsOfSemigroup(s)[1] );;
## gap> ge := ElementOfFpSemigroup( fam, a*b );
## a*b
## gap> ge in f;
## false
## gap> ge in s;
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ElementOfFpSemigroup",
[ IsElementOfFpSemigroupFamily, IsAssocWord ] );
#############################################################################
##
#P IsFpSemigroup(<s>)
##
## <#GAPDoc Label="IsFpSemigroup">
## <ManSection>
## <Prop Name="IsFpSemigroup" Arg='s'/>
##
## <Description>
## is a synonym for <C>IsSubsemigroupFpSemigroup(<A>s</A>)</C> and
## <C>IsWholeFamily(<A>s</A>)</C> (this is because a subsemigroup
## of a finitely presented semigroup is not necessarily finitely presented).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareSynonym( "IsFpSemigroup",IsSubsemigroupFpSemigroup and IsWholeFamily);
#############################################################################
##
#A FreeGeneratorsOfFpSemigroup( <s> )
##
## <#GAPDoc Label="FreeGeneratorsOfFpSemigroup">
## <ManSection>
## <Attr Name="FreeGeneratorsOfFpSemigroup" Arg='s'/>
##
## <Description>
## returns the underlying free generators corresponding to the
## generators of the finitely presented semigroup <A>s</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("FreeGeneratorsOfFpSemigroup", IsFpSemigroup );
#############################################################################
##
#A FreeSemigroupOfFpSemigroup( <s> )
##
## <#GAPDoc Label="FreeSemigroupOfFpSemigroup">
## <ManSection>
## <Attr Name="FreeSemigroupOfFpSemigroup" Arg='s'/>
##
## <Description>
## returns the underlying free semigroup for the finitely presented
## semigroup <A>s</A>, ie, the free semigroup over which <A>s</A> is defined
## as a quotient
## (this is the free semigroup generated by the free generators provided
## by <C>FreeGeneratorsOfFpSemigroup(<A>s</A>)</C>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("FreeSemigroupOfFpSemigroup", IsFpSemigroup);
############################################################################
##
#A RelationsOfFpSemigroup(<s>)
##
## <#GAPDoc Label="RelationsOfFpSemigroup">
## <ManSection>
## <Attr Name="RelationsOfFpSemigroup" Arg='s'/>
##
## <Description>
## returns the relations of the finitely presented semigroup <A>s</A> as
## pairs of words in the free generators provided by
## <C>FreeGeneratorsOfFpSemigroup(<A>s</A>)</C>.
## <Example><![CDATA[
## gap> f := FreeSemigroup( "a" , "b" );;
## gap> a := GeneratorsOfSemigroup( f )[ 1 ];;
## gap> b := GeneratorsOfSemigroup( f )[ 2 ];;
## gap> s := f / [ [ a^3 , a ] , [ b^3 , b ] , [ a*b , b*a ] ];
## <fp semigroup on the generators [ a, b ]>
## gap> Size( s );
## 8
## gap> fs := FreeSemigroupOfFpSemigroup( s );;
## gap> f = fs;
## true
## gap> FreeGeneratorsOfFpSemigroup( s );
## [ a, b ]
## gap> RelationsOfFpSemigroup( s );
## [ [ a^3, a ], [ b^3, b ], [ a*b, b*a ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("RelationsOfFpSemigroup",IsFpSemigroup);
############################################################################
##
#A IsomorphismFpSemigroup( <s> )
##
## <#GAPDoc Label="IsomorphismFpSemigroup">
## <ManSection>
## <Attr Name="IsomorphismFpSemigroup" Arg='s'/>
##
## <Description>
## for a semigroup <A>s</A> returns an isomorphism from <A>s</A> to a
## finitely presented semigroup
## <Example><![CDATA[
## gap> f := FreeGroup(2);;
## gap> g := f/[f.1^4,f.2^5];
## <fp group on the generators [ f1, f2 ]>
## gap> phi := IsomorphismFpSemigroup(g);
## MappingByFunction( <fp group on the generators
## [ f1, f2 ]>, <fp semigroup on the generators
## [ <identity ...>, f1^-1, f1, f2^-1, f2
## ]>, function( x ) ... end, function( x ) ... end )
## gap> s := Range(phi);
## <fp semigroup on the generators [ <identity ...>, f1^-1, f1, f2^-1,
## f2 ]>
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute("IsomorphismFpSemigroup",IsSemigroup);
############################################################################
##
#O FpGrpMonSmgOfFpGrpMonSmgElement( <elm> )
##
## <#GAPDoc Label="FpGrpMonSmgOfFpGrpMonSmgElement">
## <ManSection>
## <Oper Name="FpGrpMonSmgOfFpGrpMonSmgElement" Arg='elm'/>
##
## <Description>
## returns the finitely presented group, monoid or semigroup to which
## <A>elm</A> belongs
## <Example><![CDATA[
## gap> f := FreeSemigroup("a","b");;
## gap> a := GeneratorsOfSemigroup( f )[ 1 ];;
## gap> b := GeneratorsOfSemigroup( f )[ 2 ];;
## gap> s := f / [ [ a^2 , a*b ] ];;
## gap> IsFpSemigroup( s );
## true
## gap> t := Semigroup( [ GeneratorsOfSemigroup( s )[ 1 ] ]);
## <semigroup with 1 generator>
## gap> IsSubsemigroupFpSemigroup( t );
## true
## gap> IsElementOfFpSemigroup( GeneratorsOfSemigroup( t )[ 1 ] );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("FpGrpMonSmgOfFpGrpMonSmgElement",[IsMultiplicativeElement]);
#############################################################################
##
#E
|