This file is indexed.

/usr/share/gap/lib/fpsemi.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#############################################################################
##
#W  fpsemi.gi           GAP library          Andrew Solomon and Isabel Araújo
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for finitely presented semigroups.
##

#############################################################################
##
#M  ElementOfFpSemigroup( <fam>, <elm> )
##
InstallMethod( ElementOfFpSemigroup,
    "for a family of f.p. semigroup elements, and an assoc. word",
    true,
    [ IsElementOfFpSemigroupFamily, IsAssocWord ],
    0,
    function( fam, elm )
    return Objectify( fam!.defaultType, [ Immutable( elm ) ] );
    end );

#############################################################################
##
#M  UnderlyingElement( <elm> )  . . . . . . for element of f.p. semigroup
##
InstallMethod( UnderlyingElement,
    "for an element of an f.p. semigroup (default repres.)",
    true,
    [ IsElementOfFpSemigroup and IsPackedElementDefaultRep ],
    0,
    obj -> obj![1] );

#############################################################################
##
#M  FpSemigroupOfElementOfFpSemigroup( <elm> )
##
##  returns the fp semigroup to which <elm> belongs to
##
InstallMethod( FpSemigroupOfElementOfFpSemigroup,
	"for an element of an fp semigroup",
	true,
	[IsElementOfFpSemigroup],
	0,
	elm -> CollectionsFamily(FamilyObj(elm))!.wholeSemigroup);

#############################################################################
##
#M  \*( <x1>, <x2> )
##
InstallMethod( \*,
    "for two elements of a f.p. semigroup",
    IsIdenticalObj,
    [ IsElementOfFpSemigroup, IsElementOfFpSemigroup ],
    0,
    function( x1, x2 )
    return ElementOfFpSemigroup(FamilyObj(x1), 
			UnderlyingElement(x1)*UnderlyingElement(x2));
    end );

#############################################################################
##
#M  \<( <x1>, <x2> )
## 
##
InstallMethod( \<,
    "for two elements of a f.p. semigroup",
    IsIdenticalObj,
    [ IsElementOfFpSemigroup, IsElementOfFpSemigroup ],
    0,
    function( x1, x2 )
			local S, RWS;

      S := CollectionsFamily(FamilyObj(x1))!.wholeSemigroup;
      RWS := ReducedConfluentRewritingSystem(S);
      return ReducedForm(RWS, UnderlyingElement(x1)) <
          ReducedForm(RWS, UnderlyingElement(x2));

    end );

#############################################################################
##
#M  \=( <x1>, <x2> )
## 
##
InstallMethod( \=,
    "for two elements of a f.p. semigroup",
    IsIdenticalObj,
    [ IsElementOfFpSemigroup, IsElementOfFpSemigroup ],
    0,
    function( x1, x2 )
			local S, RWS; 

			# This line could be improved - find out how it's done
			# for groups
			S := CollectionsFamily(FamilyObj(x1))!.wholeSemigroup;
			RWS := ReducedConfluentRewritingSystem(S);
			return ReducedForm(RWS, UnderlyingElement(x1)) = 
					ReducedForm(RWS, UnderlyingElement(x2));
    end );

#############################################################################
##
#M  PrintObj( <elm> )
##
InstallMethod( PrintObj, "for an f.p. semigroup element",
    true, [ IsElementOfFpSemigroup], 0,
function( elm )
  PrintObj(elm![1]);
end );

#############################################################################
##
#M  String( <elm> )
##
InstallMethod( String, "for an f.p. semigroup element",
    true, [ IsElementOfFpSemigroup], 0,
function( elm )
  return String(elm![1]);
end );

#############################################################################
##
#M FpGrpMonSmgOfFpGrpMonSmgElement(<elm>)
##
InstallMethod(FpGrpMonSmgOfFpGrpMonSmgElement,
  "for an element of an fp semigroup", true,
  [IsElementOfFpSemigroup], 0,
  x -> CollectionsFamily(FamilyObj(x))!.wholeSemigroup);


#############################################################################
##
#M  FactorFreeSemigroupByRelations(<F>,<rels>) .. Create an FpSemigroup
##
##  Note: If the semigroup has fewer relations than generators, 
##  then the semigroup is certainly infinite.
##
InstallGlobalFunction( FactorFreeSemigroupByRelations, 
function( F, rels )

    local S, fam, gens, r;

		# Check that the relations are all lists of length 2
		for r in rels do
			if Length(r) <> 2 then
				Error("A relation should be a list of length 2");
			fi;
		od;

    # Create a new family.
    fam := NewFamily( "FamilyElementsFpSemigroup", IsElementOfFpSemigroup );

    # Create the default type for the elements - 
		# putting IsElementOfFpSemigroup ensures that lists of these things
		# have CategoryCollections(IsElementOfFpSemigroup).

    fam!.freeSemigroup := F;
    fam!.relations := Immutable( rels );

    fam!.defaultType := NewType( fam, IsElementOfFpSemigroup 
			and IsPackedElementDefaultRep );

    # Create the semigroup.
    S := Objectify(
        NewType( CollectionsFamily( fam ),
        IsSemigroup and IsFpSemigroup and IsAttributeStoringRep),
        rec() );

    # Mark <S> to be the 'whole semigroup' of its later subsemigroups.
    FamilyObj( S )!.wholeSemigroup := S;

    # Create generators of the semigroup.
    gens:= List( GeneratorsOfSemigroup( F ),
      s -> ElementOfFpSemigroup( fam, s ) );
    SetGeneratorsOfSemigroup( S, gens );

		if Length(gens) > Length(rels) then
			SetIsFinite(S, false);
		fi;

    return S;
end);

#############################################################################
##
#M  HomomorphismFactorSemigroup(<F>, <C> ) 
##
##  for free semigroup and congruence 
##
InstallMethod(HomomorphismFactorSemigroup, 
    "for a free semigroup and a congruence",
    true,
    [ IsFreeSemigroup, IsSemigroupCongruence ],
    0,
function(s, c)
	local
		fp;			# the semigroup under construction

	if not s = Source(c) then
		TryNextMethod();
	fi;
	fp := FactorFreeSemigroupByRelations(s, GeneratingPairsOfMagmaCongruence(c));
	return MagmaHomomorphismByFunctionNC(s, fp, 
		x->ElementOfFpSemigroup(ElementsFamily(FamilyObj(fp)),x) );
	
end);

#############################################################################
##
#M  HomomorphismFactorSemigroup(<F>, <C> ) 
##
##  for fp semigroup and congruence 
##
InstallMethod(HomomorphismFactorSemigroup, 
    "for an fp semigroup and a congruence",
    true,
    [ IsFpSemigroup, IsSemigroupCongruence ],
    0,
function(s, c)
	local
		srels,	# the relations of c
		frels, 	# srels converted into pairs of words in the free semigroup
		fp;			# the semigroup under construction

	if not s = Source(c) then
		TryNextMethod();
	fi;

	# make the relations, relations of the free semigroup
	srels := GeneratingPairsOfMagmaCongruence(c);
	frels := List(srels, x->[UnderlyingElement(x[1]),UnderlyingElement(x[2])]);

	fp := FactorFreeSemigroupByRelations(FreeSemigroupOfFpSemigroup(s), 
		Concatenation(frels, RelationsOfFpSemigroup(s)));
	return MagmaHomomorphismByFunctionNC(s, fp, 
		x->ElementOfFpSemigroup(ElementsFamily(FamilyObj(fp)),UnderlyingElement(x)) );
	
end);

#############################################################################
##
#M  FreeSemigroupOfFpSemigroup( S ) 
##
##  Underlying free semigroup of an fp semigroup
##
InstallMethod( FreeSemigroupOfFpSemigroup,
    "for a finitely presented semigroup",
    true,
    [ IsSubsemigroupFpSemigroup and IsWholeFamily ], 0,
    T -> ElementsFamily( FamilyObj( T ) )!.freeSemigroup );

#############################################################################
##
#M  Size( <G> ) . . . . . . . . . . . . . . . . . . .  for a free semigroup
##
InstallMethod( Size,
    "for a free semigroup",
    true,
    [ IsFreeSemigroup ], 0,
    function( G )
    if IsTrivial( G ) then
      return 1;
    else
      return infinity;
    fi;
    end );



#############################################################################
##
#M  FreeGeneratorsOfFpSemigroup( S )  
##  
##  Generators of the underlying free semigroup
##
InstallMethod( FreeGeneratorsOfFpSemigroup,
    "for a finitely presented semigroup",
    true,
    [ IsSubsemigroupFpSemigroup and IsWholeFamily ], 0,
    T  -> GeneratorsOfSemigroup( FreeSemigroupOfFpSemigroup( T ) ) );


#############################################################################
##
#M  ViewObj( S )  
##  
##  View a semigroup S
##
InstallMethod( ViewObj,
    "for a free semigroup with generators",
    true,
    [ IsSemigroup and IsFreeSemigroup and HasGeneratorsOfMagma ], 0,
    function( S )
    Print( "<free semigroup on the generators ",GeneratorsOfSemigroup(S),">");
    end );


InstallMethod( ViewObj,
    "for a fp semigroup with generators",
    true,
    [  IsSubsemigroupFpSemigroup and IsWholeFamily and IsSemigroup
    and HasGeneratorsOfMagma ], 0,
    function( S )
    Print( "<fp semigroup on the generators ",
          FreeGeneratorsOfFpSemigroup(S),">");
    end );


#############################################################################
##
#M  RelationsOfFpSemigroup( F )
##
InstallOtherMethod( RelationsOfFpSemigroup,
    "method for a free semigroup",
    true,
    [ IsFreeSemigroup ], 0,
    F -> [] );

InstallMethod( RelationsOfFpSemigroup,
    "for finitely presented semigroup",
    true,
    [ IsSubsemigroupFpSemigroup and IsWholeFamily ], 0,
    S -> ElementsFamily( FamilyObj( S ) )!.relations );

############################################################################
##
#O  NaturalHomomorphismByGenerators( <f>, <s> )
##
##  returns a mapping from the free semigroup <f> with <n> generators to the
##  semigroup <s> with <n> generators, which maps the ith generator to the 
##  ith generator.
##
BindGlobal("FreeSemigroupNatHomByGeneratorsNC",
function(f, s)
 return MagmaHomomorphismByFunctionNC(f, s,
    function(w)
      local
        i, 			# loop var
        prodt,	# product in the target semigroup
        gens,		# generators of the target semigroup
        v;			# ext rep as <gen>, <exp> pairs

			if Length(w) = 0 then
				return One(Representative(s));
			fi;

      gens := GeneratorsOfSemigroup(s);
      v := ExtRepOfObj(w);
      prodt := gens[v[1]]^v[2]; 
      for i in [2 .. Length(v)/2] do
        prodt := prodt*gens[v[2*i-1]]^v[2*i];
      od;
      return prodt;

    end);
end);

InstallMethod( NaturalHomomorphismByGenerators,
    "for a free semigroup and semigroup",
    true,
    [  IsFreeSemigroup, IsSemigroup and HasGeneratorsOfMagma], 0,
function(f, s)

	if Size(GeneratorsOfMagma(f)) <> Size(GeneratorsOfMagma(s)) then
		Error("Semigroups must have the same rank.");
	fi;

	return FreeSemigroupNatHomByGeneratorsNC(f, s);

end);


InstallMethod( NaturalHomomorphismByGenerators,
    "for an fp semigroup and semigroup",
    true,
    [  IsFpSemigroup, IsSemigroup and HasGeneratorsOfSemigroup], 0,
function(f, s)
	local 
			psi; # the homom from the free semi

	if Size(GeneratorsOfSemigroup(f)) <> Size(GeneratorsOfSemigroup(s)) then
		Error("Semigroups must have the same rank.");
	fi;

	psi := FreeSemigroupNatHomByGeneratorsNC(FreeSemigroupOfFpSemigroup(f), s);

	# check that the relations hold
	if Length(
			Filtered(RelationsOfFpSemigroup(f), x->x[1]^psi <> x[2]^psi))>0 then
		return fail;
	fi;

	# now create the homomorphism from the fp semi	
	return MagmaHomomorphismByFunctionNC(f, s, e->UnderlyingElement(e)^psi);
end);



#############################################################################
##
#E