/usr/share/gap/lib/ghom.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | #############################################################################
##
#W ghom.gd GAP library Thomas Breuer
#W Alexander Hulpke
#W Heiko Theißen
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## 1. Functions for creating group general mappings by images
## 2. Functions for creating natural homomorphisms
## 3. Functions for conjugation action
## 4. Functions for ...
##
#############################################################################
##
## 1. Functions for creating group general mappings by images
##
#############################################################################
##
#O GroupGeneralMappingByImages( <G>, <H>, <gens>, <imgs> )
##
## <#GAPDoc Label="GroupGeneralMappingByImages">
## <ManSection>
## <Oper Name="GroupGeneralMappingByImages" Arg='G, H, gens, imgs'/>
## <Oper Name="GroupGeneralMappingByImages" Arg='G, gens, imgs' Label="from group to itself"/>
## <Oper Name="GroupGeneralMappingByImagesNC" Arg='G, H, gens, imgs'/>
## <Oper Name="GroupGeneralMappingByImagesNC" Arg='G, gens, imgs' Label="from group to itself"/>
##
## <Description>
## returns a general mapping defined by extending the mapping from
## <A>gens</A> to <A>imgs</A> homomorphically. If the range <A>H</A> is not
## given the mapping will be made automatically surjective. The NC version
## does not test whether <A>gens</A> are contained in <A>G</A> or <A>imgs</A>
## are contained in <A>H</A>.
## (<Ref Func="GroupHomomorphismByImages"/> creates
## a group general mapping by images and
## tests whether it is in <Ref Func="IsMapping"/>.)
## <Example><![CDATA[
## gap> map:=GroupGeneralMappingByImages(g,h,gens,[(1,2,3),(1,2)]);
## [ (1,2,3,4), (1,2) ] -> [ (1,2,3), (1,2) ]
## gap> IsMapping(map);
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
# for future use:
#DeclareOperation( "GroupGeneralMappingByImages",
# [ IsGroup, IsGroup, IsList, IsList ] );
#DeclareOperation( "GroupGeneralMappingByImages",
# [ IsGroup, IsList, IsList ] );
DeclareOperation( "GroupGeneralMappingByImagesNC",
[ IsGroup, IsGroup, IsList, IsList ] );
DeclareOperation( "GroupGeneralMappingByImagesNC",
[ IsGroup, IsList, IsList ] );
DeclareSynonym("GroupGeneralMappingByImages",GroupGeneralMappingByImagesNC);
#############################################################################
##
#F GroupHomomorphismByImages( <G>[, <H>][[, <gens>], <imgs>] )
##
## <#GAPDoc Label="GroupHomomorphismByImages">
## <ManSection>
## <Func Name="GroupHomomorphismByImages" Arg='G, H[[, gens], imgs]'/>
##
## <Description>
## <Ref Func="GroupHomomorphismByImages"/> returns the group homomorphism
## with source <A>G</A> and range <A>H</A> that is defined by mapping the
## list <A>gens</A> of generators of <A>G</A> to the list <A>imgs</A> of
## images in <A>H</A>.
## <P/>
## If omitted, the arguments <A>gens</A> and <A>imgs</A> default to
## the <Ref Func="GeneratorsOfGroup"/> value of <A>G</A> and <A>H</A>,
## respectively. If <A>H</A> is not given the maopping is automatically
## considered as surjective.
## <P/>
## If <A>gens</A> does not generate <A>G</A> or if the mapping of the
## generators does not extend to a homomorphism
## (i.e., if mapping the generators describes only a multi-valued mapping)
## then <K>fail</K> is returned.
## <P/>
## This test can be quite expensive. If one is certain that the mapping of
## the generators extends to a homomorphism,
## one can avoid the checks by calling
## <Ref Func="GroupHomomorphismByImagesNC"/>.
## (There also is the possibility to
## construct potentially multi-valued mappings with
## <Ref Func="GroupGeneralMappingByImages"/> and to test with
## <Ref Func="IsMapping"/> whether they are indeed homomorphisms.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "GroupHomomorphismByImages" );
#############################################################################
##
#O GroupHomomorphismByImagesNC( <G>, <H>[[, <gens>], <imgs>] )
##
## <#GAPDoc Label="GroupHomomorphismByImagesNC">
## <ManSection>
## <Oper Name="GroupHomomorphismByImagesNC" Arg='G, H[[, gens], imgs]'/>
##
## <Description>
## <Ref Func="GroupHomomorphismByImagesNC"/> creates a homomorphism as
## <Ref Func="GroupHomomorphismByImages"/> does, however it does not test
## whether <A>gens</A> generates <A>G</A> and that the mapping of
## <A>gens</A> to <A>imgs</A> indeed defines a group homomorphism.
## Because these tests can be expensive it can be substantially faster than
## <Ref Func="GroupHomomorphismByImages"/>.
## Results are unpredictable if the conditions do not hold.
## <P/>
## If omitted, the arguments <A>gens</A> and <A>imgs</A> default to
## the <Ref Func="GeneratorsOfGroup"/> value of <A>G</A> and <A>H</A>,
## respectively.
## <P/>
## (For creating a possibly multi-valued mapping from <A>G</A> to <A>H</A>
## that respects multiplication and inverses,
## <Ref Func="GroupGeneralMappingByImages"/> can be used.)
## <!-- If we could guarantee that it does not matter whether we construct the-->
## <!-- homomorphism directly or whether we construct first a general mapping-->
## <!-- and ask it for being a homomorphism,-->
## <!-- then this operation would be obsolete,-->
## <!-- and <C>GroupHomomorphismByImages</C> would be allowed to return the general-->
## <!-- mapping itself after the checks.-->
## <!-- (See also the declarations of <C>AlgebraHomomorphismByImagesNC</C>,-->
## <!-- <C>AlgebraWithOneHomomorphismByImagesNC</C>,-->
## <!-- <C>LeftModuleHomomorphismByImagesNC</C>.)-->
## <P/>
## <Example><![CDATA[
## gap> gens:=[(1,2,3,4),(1,2)];
## [ (1,2,3,4), (1,2) ]
## gap> g:=Group(gens);
## Group([ (1,2,3,4), (1,2) ])
## gap> h:=Group((1,2,3),(1,2));
## Group([ (1,2,3), (1,2) ])
## gap> hom:=GroupHomomorphismByImages(g,h,gens,[(1,2),(1,3)]);
## [ (1,2,3,4), (1,2) ] -> [ (1,2), (1,3) ]
## gap> Image(hom,(1,4));
## (2,3)
## gap> map:=GroupHomomorphismByImages(g,h,gens,[(1,2,3),(1,2)]);
## fail
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "GroupHomomorphismByImagesNC",
[ IsGroup, IsGroup, IsList, IsList ] );
DeclareOperation( "GroupHomomorphismByImagesNC",
[ IsGroup, IsList, IsList ] );
#############################################################################
##
#R IsGroupGeneralMappingByImages(<map>)
##
## <#GAPDoc Label="IsGroupGeneralMappingByImages">
## <ManSection>
## <Filt Name="IsGroupGeneralMappingByImages" Arg='map'
## Type='Representation'/>
##
## <Description>
## Representation for mappings from one group to another that are defined
## by extending a mapping of group generators homomorphically.
## Instead of record components,
## the attribute <Ref Attr="MappingGeneratorsImages"/> is
## used to store generators and their images.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsGroupGeneralMappingByImages",
IsGroupGeneralMapping and IsSPGeneralMapping and IsAttributeStoringRep,
[] );
#############################################################################
##
#R IsPreimagesByAsGroupGeneralMappingByImages(<map>)
##
## <#GAPDoc Label="IsPreimagesByAsGroupGeneralMappingByImages">
## <ManSection>
## <Filt Name="IsPreimagesByAsGroupGeneralMappingByImages" Arg='map'
## Type='Representation'/>
##
## <Description>
## Representation for mappings that delegate work for preimages to a
## mapping created with <Ref Func="GroupHomomorphismByImages"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsPreimagesByAsGroupGeneralMappingByImages",
IsGroupGeneralMapping and IsSPGeneralMapping and IsAttributeStoringRep,
[ ] );
#############################################################################
##
#R IsGroupGeneralMappingByAsGroupGeneralMappingByImages(<map>)
##
## <#GAPDoc Label="IsGroupGeneralMappingByAsGroupGeneralMappingByImages">
## <ManSection>
## <Filt Name="IsGroupGeneralMappingByAsGroupGeneralMappingByImages"
## Arg='map' Type='Representation'/>
##
## <Description>
## Representation for mappings that delegate work on a
## <Ref Func="GroupHomomorphismByImages"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareRepresentation( "IsGroupGeneralMappingByAsGroupGeneralMappingByImages",
IsPreimagesByAsGroupGeneralMappingByImages, [ ] );
#############################################################################
##
#A AsGroupGeneralMappingByImages(<map>)
##
## <#GAPDoc Label="AsGroupGeneralMappingByImages">
## <ManSection>
## <Attr Name="AsGroupGeneralMappingByImages" Arg='map'/>
##
## <Description>
## If <A>map</A> is a mapping from one group to another this attribute
## returns a group general mapping that which implements the same abstract
## mapping. (Some operations can be performed more effective in this
## representation, see
## also <Ref Func="IsGroupGeneralMappingByAsGroupGeneralMappingByImages"/>.)
## <Example><![CDATA[
## gap> AsGroupGeneralMappingByImages(hom);
## [ (1,2,3,4), (1,2) ] -> [ (1,2), (1,2) ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsGroupGeneralMappingByImages", IsGroupGeneralMapping );
#############################################################################
##
#A MappingOfWhichItIsAsGGMBI(<map>)
##
## <ManSection>
## <Attr Name="MappingOfWhichItIsAsGGMBI" Arg='map'/>
##
## <Description>
## If <A>map</A> is <C>AsGroupGeneralMappingByImages(<A>map2</A>)</C> then
## <A>map2</A> is <C>MappingOfWhichItIsAsGGMBI(<A>map</A>)</C>. This attribute is used to
## transfer attribute values which were set later.
## </Description>
## </ManSection>
##
DeclareAttribute( "MappingOfWhichItIsAsGGMBI", IsGroupGeneralMapping );
InstallAttributeMethodByGroupGeneralMappingByImages :=
function( attr, value_filter )
InstallMethod( attr, "via `AsGroupGeneralMappingByImages'", true,
[ IsGroupGeneralMappingByAsGroupGeneralMappingByImages ], 0,
hom -> attr( AsGroupGeneralMappingByImages( hom ) ) );
InstallMethod( attr, "get delayed set attribute values", true,
[ HasMappingOfWhichItIsAsGGMBI ],
SUM_FLAGS-1, # we want to do this before doing any calculations
function(hom)
hom:=MappingOfWhichItIsAsGGMBI( hom );
if Tester(attr)(hom) then
return attr(hom);
else
TryNextMethod();
fi;
end);
end;
#############################################################################
##
## 2. Functions for creating natural homomorphisms
##
#############################################################################
##
#F NaturalHomomorphismByNormalSubgroup( <G>, <N> )
#F NaturalHomomorphismByNormalSubgroupNC( <G>, <N> )
##
## <#GAPDoc Label="NaturalHomomorphismByNormalSubgroup">
## <ManSection>
## <Func Name="NaturalHomomorphismByNormalSubgroup" Arg='G, N'/>
## <Func Name="NaturalHomomorphismByNormalSubgroupNC" Arg='G, N'/>
##
## <Description>
## returns a homomorphism from <A>G</A> to another group whose kernel is <A>N</A>.
## &GAP; will try to select the image group as to make computations in it
## as efficient as possible. As the factor group <M><A>G</A>/<A>N</A></M> can be identified
## with the image of <A>G</A> this permits efficient computations in the factor
## group.
## The homomorphism returned is not necessarily surjective, so
## <Ref Func="ImagesSource"/> should be used instead of
## <Ref Func="Range" Label="of a general mapping"/>
## to get a group isomorphic to the factor group.
## The <C>NC</C> variant does not check whether <A>N</A> is normal in
## <A>G</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "NaturalHomomorphismByNormalSubgroupNC", IsGroup, IsGroup,
DeclareAttribute );
DeclareSynonym( "NaturalHomomorphismByNormalSubgroupInParent",
NaturalHomomorphismByNormalSubgroupNCInParent );
DeclareSynonym( "NaturalHomomorphismByNormalSubgroupOp",
NaturalHomomorphismByNormalSubgroupNCOp );
#T Get rid of this hack when the ``in parent'' approach is cleaned!
BindGlobal( "NaturalHomomorphismByNormalSubgroupNCOrig",
NaturalHomomorphismByNormalSubgroupNC );
#T Get rid of this hack when the ``in parent'' approach is cleaned!
MakeReadWriteGlobal( "NaturalHomomorphismByNormalSubgroupNC" );
UnbindGlobal( "NaturalHomomorphismByNormalSubgroupNC" );
BindGlobal( "NaturalHomomorphismByNormalSubgroupNC",
function( G, N )
local hom;
hom:= NaturalHomomorphismByNormalSubgroupNCOrig( G, N );
SetIsMapping( hom, true );
return hom;
end );
#T Get rid of this hack when the ``in parent'' approach is cleaned!
DeclareGlobalFunction( "NaturalHomomorphismByNormalSubgroup" );
#############################################################################
##
## 3. Functions for conjugation action
##
#############################################################################
##
#O ConjugatorIsomorphism( <G>, <g> )
##
## <#GAPDoc Label="ConjugatorIsomorphism">
## <ManSection>
## <Oper Name="ConjugatorIsomorphism" Arg='G, g'/>
##
## <Description>
## Let <A>G</A> be a group, and <A>g</A> an element in the same family as
## the elements of <A>G</A>.
## <Ref Func="ConjugatorIsomorphism"/> returns the isomorphism from <A>G</A>
## to <C><A>G</A>^<A>g</A></C> defined by <M>h \mapsto h^{<A>g</A>}</M>
## for all <M>h \in <A>G</A></M>.
## <P/>
## If <A>g</A> normalizes <A>G</A> then <Ref Func="ConjugatorIsomorphism"/>
## does the same as <Ref Func="ConjugatorAutomorphismNC"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ConjugatorIsomorphism",
[ IsGroup, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#F ConjugatorAutomorphism( <G>, <g> )
#O ConjugatorAutomorphismNC( <G>, <g> )
##
## <#GAPDoc Label="ConjugatorAutomorphism">
## <ManSection>
## <Func Name="ConjugatorAutomorphism" Arg='G, g'/>
## <Oper Name="ConjugatorAutomorphismNC" Arg='G, g'/>
##
## <Description>
## Let <A>G</A> be a group, and <A>g</A> an element in the same family as
## the elements of <A>G</A> such that <A>g</A> normalizes <A>G</A>.
## <Ref Func="ConjugatorAutomorphism"/> returns the automorphism of <A>G</A>
## defined by <M>h \mapsto h^{<A>g</A>}</M> for all <M>h \in <A>G</A></M>.
## <P/>
## If conjugation by <A>g</A> does <E>not</E> leave <A>G</A> invariant,
## <Ref Func="ConjugatorAutomorphism"/> returns <K>fail</K>;
## in this case,
## the isomorphism from <A>G</A> to <C><A>G</A>^<A>g</A></C> induced by
## conjugation with <A>g</A> can be constructed with
## <Ref Func="ConjugatorIsomorphism"/>.
## <P/>
## <Ref Oper="ConjugatorAutomorphismNC"/> does the same as
## <Ref Func="ConjugatorAutomorphism"/>,
## except that the check is omitted whether <A>g</A> normalizes <A>G</A>
## and it is assumed that <A>g</A> is chosen to be in <A>G</A> if possible.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "ConjugatorAutomorphism" );
DeclareOperation( "ConjugatorAutomorphismNC",
[ IsGroup, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#F InnerAutomorphism( <G>, <g> )
#O InnerAutomorphismNC( <G>, <g> )
##
## <#GAPDoc Label="InnerAutomorphism">
## <ManSection>
## <Func Name="InnerAutomorphism" Arg='G, g'/>
## <Oper Name="InnerAutomorphismNC" Arg='G, g'/>
##
## <Description>
## Let <A>G</A> be a group, and <M><A>g</A> \in <A>G</A></M>.
## <Ref Func="InnerAutomorphism"/> returns the automorphism of <A>G</A>
## defined by <M>h \mapsto h^{<A>g</A>}</M> for all <M>h \in <A>G</A></M>.
## <P/>
## If <A>g</A> is <E>not</E> an element of <A>G</A>,
## <Ref Func="InnerAutomorphism"/> returns <K>fail</K>;
## in this case,
## the isomorphism from <A>G</A> to <C><A>G</A>^<A>g</A></C> induced by
## conjugation with <A>g</A> can be constructed
## with <Ref Func="ConjugatorIsomorphism"/>
## or with <Ref Func="ConjugatorAutomorphism"/>.
## <P/>
## <Ref Oper="InnerAutomorphismNC"/> does the same as
## <Ref Func="InnerAutomorphism"/>,
## except that the check is omitted whether <M><A>g</A> \in <A>G</A></M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "InnerAutomorphism" );
DeclareOperation( "InnerAutomorphismNC",
[ IsGroup, IsMultiplicativeElementWithInverse ] );
#############################################################################
##
#P IsConjugatorIsomorphism( <hom> )
#P IsConjugatorAutomorphism( <hom> )
#P IsInnerAutomorphism( <hom> )
##
## <#GAPDoc Label="IsConjugatorIsomorphism">
## <ManSection>
## <Prop Name="IsConjugatorIsomorphism" Arg='hom'/>
## <Prop Name="IsConjugatorAutomorphism" Arg='hom'/>
## <Prop Name="IsInnerAutomorphism" Arg='hom'/>
##
## <Description>
## Let <A>hom</A> be a group general mapping
## (see <Ref Func="IsGroupGeneralMapping"/>) with source <M>G</M>, say.
## <Ref Prop="IsConjugatorIsomorphism"/> returns <K>true</K> if <A>hom</A>
## is induced by conjugation of <M>G</M> by an element <M>g</M> that lies in
## <M>G</M> or in a group into which <M>G</M> is naturally embedded
## in the sense described below, and <K>false</K> otherwise.
## <P/>
## Natural embeddings are dealt with in the case that <M>G</M> is
## a permutation group (see Chapter <Ref Chap="Permutation Groups"/>),
## a matrix group (see Chapter <Ref Chap="Matrix Groups"/>),
## a finitely presented group
## (see Chapter <Ref Chap="Finitely Presented Groups"/>), or
## a group given w.r.t. a polycyclic presentation
## (see Chapter <Ref Chap="Pc Groups"/>).
## In all other cases, <Ref Prop="IsConjugatorIsomorphism"/> may return
## <K>false</K> if <A>hom</A> is induced by conjugation
## but is not an inner automorphism.
## <P/>
## If <Ref Prop="IsConjugatorIsomorphism"/> returns <K>true</K> for
## <A>hom</A> then an element <M>g</M> that induces <A>hom</A> can be
## accessed as value of the attribute
## <Ref Func="ConjugatorOfConjugatorIsomorphism"/>.
## <P/>
## <Ref Prop="IsConjugatorAutomorphism"/> returns <K>true</K> if <A>hom</A>
## is an automorphism (see <Ref Func="IsEndoGeneralMapping"/>)
## that is regarded as a conjugator isomorphism
## by <Ref Prop="IsConjugatorIsomorphism"/>, and <K>false</K> otherwise.
## <P/>
## <Ref Prop="IsInnerAutomorphism"/> returns <K>true</K> if <A>hom</A> is a
## conjugator automorphism such that an element <M>g</M> inducing <A>hom</A>
## can be chosen in <M>G</M>, and <K>false</K> otherwise.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsConjugatorIsomorphism", IsGroupGeneralMapping );
DeclareSynonymAttr( "IsConjugatorAutomorphism",
IsEndoGeneralMapping and IsConjugatorIsomorphism );
DeclareProperty( "IsInnerAutomorphism", IsGroupGeneralMapping );
InstallTrueMethod( IsBijective, IsConjugatorIsomorphism );
InstallTrueMethod( IsGroupHomomorphism, IsConjugatorIsomorphism );
InstallTrueMethod( IsConjugatorAutomorphism, IsInnerAutomorphism );
#############################################################################
##
#A ConjugatorOfConjugatorIsomorphism( <hom> )
##
## <#GAPDoc Label="ConjugatorOfConjugatorIsomorphism">
## <ManSection>
## <Attr Name="ConjugatorOfConjugatorIsomorphism" Arg='hom'/>
##
## <Description>
## For a conjugator isomorphism <A>hom</A>
## (see <Ref Func="ConjugatorIsomorphism"/>),
## <Ref Func="ConjugatorOfConjugatorIsomorphism"/> returns an element
## <M>g</M> such that mapping under <A>hom</A> is induced by conjugation
## with <M>g</M>.
## <P/>
## To avoid problems with <Ref Func="IsInnerAutomorphism"/>,
## it is guaranteed that the conjugator is taken from the source of
## <A>hom</A> if possible.
## <P/>
## <Example><![CDATA[
## gap> hgens:=[(1,2,3),(1,2,4)];;h:=Group(hgens);;
## gap> hom:=GroupHomomorphismByImages(h,h,hgens,[(1,2,3),(2,3,4)]);;
## gap> IsInnerAutomorphism(hom);
## true
## gap> ConjugatorOfConjugatorIsomorphism(hom);
## (1,2,3)
## gap> hom:=GroupHomomorphismByImages(h,h,hgens,[(1,3,2),(1,4,2)]);
## [ (1,2,3), (1,2,4) ] -> [ (1,3,2), (1,4,2) ]
## gap> IsInnerAutomorphism(hom);
## false
## gap> IsConjugatorAutomorphism(hom);
## true
## gap> ConjugatorOfConjugatorIsomorphism(hom);
## (1,2)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ConjugatorOfConjugatorIsomorphism",
IsConjugatorIsomorphism );
## just for compatibility with &GAP; 4.1 ...
DeclareSynonymAttr( "ConjugatorInnerAutomorphism",
ConjugatorOfConjugatorIsomorphism );
#############################################################################
##
## 4. Functions for ...
##
DeclareGlobalFunction( "MakeMapping" );
#############################################################################
##
#F GroupHomomorphismByFunction( <S>, <R>, <fun>[, <invfun>] )
#F GroupHomomorphismByFunction( <S>, <R>, <fun>, `false', <prefun> )
##
## <#GAPDoc Label="GroupHomomorphismByFunction">
## <ManSection>
## <Heading>GroupHomomorphismByFunction</Heading>
## <Func Name="GroupHomomorphismByFunction" Arg='S, R, fun[, invfun]'
## Label="by function (and inverse function) between two domains"/>
## <Func Name="GroupHomomorphismByFunction" Arg='S, R, fun, false, prefun'
## Label="by function and function that computes one preimage"/>
##
## <Description>
## <Ref Func="GroupHomomorphismByFunction" Label="by function (and inverse function) between two domains"/>
## returns a group homomorphism
## <C>hom</C> with source <A>S</A> and range <A>R</A>,
## such that each element <C>s</C> of <A>S</A> is mapped to the element
## <A>fun</A><C>( s )</C>, where <A>fun</A> is a &GAP; function.
## <P/>
## If the argument <A>invfun</A> is bound then <A>hom</A> is a bijection
## between <A>S</A> and <A>R</A>,
## and the preimage of each element <C>r</C> of <A>R</A> is given by
## <A>invfun</A><C>( r )</C>,
## where <A>invfun</A> is a &GAP; function.
## <P/>
## If five arguments are given and the fourth argument is <K>false</K> then
## the &GAP; function <A>prefun</A> can be used to compute a single preimage
## also if <C>hom</C> is not bijective.
## <P/>
## No test is performed on whether the functions actually give an
## homomorphism between both groups because this would require testing the
## full multiplication table.
## <P/>
## <Ref Func="GroupHomomorphismByFunction" Label="by function (and inverse function) between two domains"/>
## creates a mapping which lies in <Ref Func="IsSPGeneralMapping"/>.
## <P/>
## <Example><![CDATA[
## gap> hom:=GroupHomomorphismByFunction(g,h,
## > function(x) if SignPerm(x)=-1 then return (1,2); else return ();fi;end);
## MappingByFunction( Group([ (1,2,3,4), (1,2) ]), Group(
## [ (1,2,3), (1,2) ]), function( x ) ... end )
## gap> ImagesSource(hom);
## Group([ (1,2), (1,2) ])
## gap> Image(hom,(1,2,3,4));
## (1,2)
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("GroupHomomorphismByFunction");
#############################################################################
##
#F ImagesRepresentativeGMBIByElementsList( <hom>, <elm> )
##
## <ManSection>
## <Func Name="ImagesRepresentativeGMBIByElementsList" Arg='hom, elm'/>
##
## <Description>
## This is the method for <C>ImagesRepresentative</C> which calls <C>MakeMapping</C>
## and uses element lists to evaluate the image. It is used by
## <C>Factorization</C>.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("ImagesRepresentativeGMBIByElementsList");
#############################################################################
##
#A ImagesSmallestGenerators(<map>)
##
## <#GAPDoc Label="ImagesSmallestGenerators">
## <ManSection>
## <Attr Name="ImagesSmallestGenerators" Arg='map'/>
##
## <Description>
## returns the list of images of <C>GeneratorsSmallest(Source(<A>map</A>))</C>.
## This list can be used to compare group homomorphisms. (The standard
## comparison is to compare the image lists on the set of elements of the
## source. If however x and y have the same images under a and b,
## certainly all their products have. Therefore it is sufficient to test
## this on the images of the smallest generators.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "ImagesSmallestGenerators",
IsGroupGeneralMapping );
#############################################################################
##
#A RegularActionHomomorphism( <G> )
##
## <#GAPDoc Label="RegularActionHomomorphism">
## <ManSection>
## <Attr Name="RegularActionHomomorphism" Arg='G'/>
##
## <Description>
## returns an isomorphism from <A>G</A> onto the regular permutation
## representation of <A>G</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "RegularActionHomomorphism", IsGroup );
#############################################################################
##
#E
|