This file is indexed.

/usr/share/gap/lib/ghomfp.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#############################################################################
##
#W  ghomfp.gd                   GAP library                  Alexander Hulpke
##
#Y  (C) 2000 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##

############################################################################
##
#R  IsFromFpGroupGeneralMapping(<map>)
#R  IsFromFpGroupHomomorphism(<map>)
##
##  <ManSection>
##  <Filt Name="IsFromFpGroupGeneralMapping" Arg='map' Type='Representation'/>
##  <Filt Name="IsFromFpGroupHomomorphism" Arg='map' Type='Representation'/>
##
##  <Description>
##  is the representation of mappings from an fp group.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsFromFpGroupGeneralMapping", IsGroupGeneralMapping
  # we want all methods for homs from fp groups to be better. This (slight
  # hack) increases the rank of the category of such mappings.
  and NewFilter("Extrarankfilter",10));
DeclareSynonym("IsFromFpGroupHomomorphism",
  IsFromFpGroupGeneralMapping and IsMapping);

############################################################################
##
#R  IsFromFpGroupGeneralMappingByImages(<map>)
#R  IsFromFpGroupHomomorphismByImages(<map>)
##
##  <#GAPDoc Label="IsFromFpGroupGeneralMappingByImages">
##  <ManSection>
##  <Filt Name="IsFromFpGroupGeneralMappingByImages" Arg='map'
##   Type='Representation'/>
##  <Filt Name="IsFromFpGroupHomomorphismByImages" Arg='map'
##   Type='Representation'/>
##
##  <Description>
##  is the representation of mappings from an fp group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation( "IsFromFpGroupGeneralMappingByImages",
      IsFromFpGroupGeneralMapping and IsGroupGeneralMappingByImages, 
      [ "generators", "genimages" ] );
DeclareSynonym("IsFromFpGroupHomomorphismByImages",
  IsFromFpGroupGeneralMappingByImages and IsMapping);

############################################################################
##
#R  IsFromFpGroupStdGensGeneralMappingByImages(<map>)
#R  IsFromFpGroupStdGensHomomorphismByImages(<map>)
##
##  <#GAPDoc Label="IsFromFpGroupStdGensGeneralMappingByImages">
##  <ManSection>
##  <Filt Name="IsFromFpGroupStdGensGeneralMappingByImages" Arg='map'
##   Type='Representation'/>
##  <Filt Name="IsFromFpGroupStdGensHomomorphismByImages" Arg='map'
##   Type='Representation'/>
##
##  <Description>
##  is the representation of total mappings from an fp group that give images of
##  the standard generators.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation( "IsFromFpGroupStdGensGeneralMappingByImages",
      IsFromFpGroupGeneralMappingByImages, [ "generators", "genimages" ] );
DeclareSynonym("IsFromFpGroupStdGensHomomorphismByImages",
  IsFromFpGroupStdGensGeneralMappingByImages and IsMapping);


############################################################################
##
#R  IsToFpGroupGeneralMappingByImages(<map>)
#R  IsToFpGroupHomomorphismByImages(<map>)
##
##  <ManSection>
##  <Filt Name="IsToFpGroupGeneralMappingByImages" Arg='map' Type='Representation'/>
##  <Filt Name="IsToFpGroupHomomorphismByImages" Arg='map' Type='Representation'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareRepresentation( "IsToFpGroupGeneralMappingByImages",
      IsGroupGeneralMappingByImages,
      [ "generators", "genimages" ] );
DeclareSynonym("IsToFpGroupHomomorphismByImages",
  IsToFpGroupGeneralMappingByImages and IsMapping);

############################################################################
##
#P  IsWordDecompHomomorphism(<map>)
##
##  <ManSection>
##  <Prop Name="IsWordDecompHomomorphism" Arg='map'/>
##
##  <Description>
##  these homomorphism contain a component <C>!.decompinfo</C> that provides
##  functionality to decompose a word into generators. They are primarily
##  used for <C>IsomorphismFpGroupBy...Series</C>.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsWordDecompHomomorphism",IsGroupGeneralMappingByImages);

#############################################################################
##
#A  CosetTableFpHom(<hom>) 
##
##  <ManSection>
##  <Attr Name="CosetTableFpHom" Arg='hom'/>
##
##  <Description>
##  returns an augmented coset table for an homomorphism from an fp group,
##  corresponding to the !.generators component. The component
##  <C>.secondaryImages</C> of this table will give the images of all (primary
##  and secondary) subgroup generators under <A>hom</A>.
##  <P/>
##  As we might want to add further entries to the table, its a mutable
##  attribute.
##  </Description>
##  </ManSection>
##
DeclareAttribute("CosetTableFpHom",IsGeneralMapping,"mutable");

#############################################################################
##
#F  SecondaryImagesAugmentedCosetTable(<aug>,<gens>,<genimages>) 
##
##  <ManSection>
##  <Func Name="SecondaryImagesAugmentedCosetTable" Arg='aug,gens,genimages'/>
##
##  <Description>
##  returns a list of images of the secondary generators, based on the
##  components <C>homgens</C> and <C>homgenims</C> in the augmented coset table <A>aug</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("SecondaryImagesAugmentedCosetTable");

#############################################################################
##
#F  TrySecondaryImages(<aug>) 
##
##  <ManSection>
##  <Func Name="TrySecondaryImages" Arg='aug'/>
##
##  <Description>
##  sets a component <C>secondaryImages</C> in the augmented coset table (seeded
##  to a ShallowCopy of the primary images) if having all these images
##  cannot become too memory extensive. (Call this function for augmented
##  coset tables for homomorphisms once -- the other functions make use of
##  the <C>secondaryImages</C> component if existing.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("TrySecondaryImages");

#############################################################################
##
#F  KuKGenerators( <G>, <beta>, <alpha> )
##
##  <#GAPDoc Label="KuKGenerators">
##  <ManSection>
##  <Func Name="KuKGenerators" Arg='G, beta, alpha'/>
##
##  <Description>
##  <Index>Krasner-Kaloujnine theorem</Index>
##  <Index>Wreath product embedding</Index>
##  If <A>beta</A> is a homomorphism from <A>G</A> into a transitive
##  permutation group, <M>U</M> the full preimage of the point stabilizer and
##  <A>alpha</A> a homomorphism defined on (a superset) of <M>U</M>,
##  this function returns images of the generators of <A>G</A> when mapping
##  to the wreath product <M>(U <A>alpha</A>) \wr (<A>G</A> <A>beta</A>)</M>.
##  (This is the Krasner-Kaloujnine embedding theorem.)
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;
##  gap> hom:=GroupHomomorphismByImages(g,Group((1,2)),
##  > GeneratorsOfGroup(g),[(1,2),(1,2)]);;
##  gap> u:=PreImage(hom,Stabilizer(Image(hom),1));
##  Group([ (2,3,4), (1,2,4) ])
##  gap> hom2:=GroupHomomorphismByImages(u,Group((1,2,3)),
##  > GeneratorsOfGroup(u),[ (1,2,3), (1,2,3) ]);;
##  gap> KuKGenerators(g,hom,hom2);
##  [ (1,4)(2,5)(3,6), (1,6)(2,4)(3,5) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("KuKGenerators");

#############################################################################
##
#A  IsomorphismSimplifiedFpGroup( <G> )
##
##  <#GAPDoc Label="IsomorphismSimplifiedFpGroup">
##  <ManSection>
##  <Attr Name="IsomorphismSimplifiedFpGroup" Arg='G'/>
##
##  <Description>
##  applies Tietze transformations to a copy of the presentation of the
##  given finitely presented group <A>G</A> in order to reduce it
##  with respect to the number of generators, the number of relators,
##  and the relator lengths.
##  <P/>
##  The operation returns an isomorphism with source <A>G</A>, range a group
##  <A>H</A> isomorphic to <A>G</A>, so that the presentation of <A>H</A> has
##  been simplified using Tietze transformations.
##  <Example><![CDATA[
##  gap> f:=FreeGroup(3);;
##  gap> g:=f/[f.1^2,f.2^3,(f.1*f.2)^5,f.1/f.3];
##  <fp group on the generators [ f1, f2, f3 ]>
##  gap> hom:=IsomorphismSimplifiedFpGroup(g);
##  [ f1, f2, f3 ] -> [ f1, f2, f1 ]
##  gap> Range(hom);
##  <fp group on the generators [ f1, f2 ]>
##  gap> RelatorsOfFpGroup(Range(hom));
##  [ f1^2, f2^3, (f1*f2)^5 ]
##  gap> RelatorsOfFpGroup(g);
##  [ f1^2, f2^3, (f1*f2)^5, f1*f3^-1 ]
##  ]]></Example>
##  <P/>
##  <Ref Func="IsomorphismSimplifiedFpGroup"/> uses Tietze transformations
##  to simplify the presentation, see <Ref Sect="SimplifiedFpGroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("IsomorphismSimplifiedFpGroup",IsSubgroupFpGroup);

#############################################################################
##
#A  EpimorphismFromFreeGroup( <G> )
##
##  <#GAPDoc Label="EpimorphismFromFreeGroup">
##  <ManSection>
##  <Attr Name="EpimorphismFromFreeGroup" Arg='G'/>
##
##  <Description>
##  For a group <A>G</A> with a known generating set, this attribute returns
##  a homomorphism from a free group that maps the free generators to the
##  groups generators.
##  <P/>
##  The option <C>names</C> can be used to prescribe a (print) name
##  for the free generators.
##  <P/>
##  The following example shows how to decompose elements of <M>S_4</M> in the
##  generators <C>(1,2,3,4)</C> and <C>(1,2)</C>:
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));
##  Group([ (1,2,3,4), (1,2) ])
##  gap> hom:=EpimorphismFromFreeGroup(g:names:=["x","y"]);
##  [ x, y ] -> [ (1,2,3,4), (1,2) ]
##  gap> PreImagesRepresentative(hom,(1,4));
##  y^-1*x^-1*(x^-1*y^-1)^2*x
##  ]]></Example>
##  <P/>
##  The following example stems from a real request to the &GAP; Forum.
##  In September 2000 a &GAP; user working with puzzles wanted to express the
##  permutation <C>(1,2)</C> as a word as short as possible in particular
##  generators of the symmetric group <M>S_{16}</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> perms := [ (1,2,3,7,11,10,9,5), (2,3,4,8,12,11,10,6),
##  >   (5,6,7,11,15,14,13,9), (6,7,8,12,16,15,14,10) ];;
##  gap> puzzle := Group( perms );;Size( puzzle );
##  20922789888000
##  gap> hom:=EpimorphismFromFreeGroup(puzzle:names:=["a", "b", "c", "d"]);;
##  gap> word := PreImagesRepresentative( hom, (1,2) );
##  a^-1*c*b*c^-1*a*b^-1*a^-2*c^-1*a*b^-1*c*b
##  gap> Length( word );
##  13
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("EpimorphismFromFreeGroup",IsGroup);

#############################################################################
##
#F  LargerQuotientBySubgroupAbelianization( <hom>,<U> )
##
##  <#GAPDoc Label="LargerQuotientBySubgroupAbelianization">
##  <ManSection>
##  <Func Name="LargerQuotientBySubgroupAbelianization" Arg='hom, U'/>
##
##  <Description>
##  Let <A>hom</A> a homomorphism from a finitely presented group <M>G</M>
##  to a finite group <M>H</M> and <M><A>U</A>\le H</M>. This function will -- if it
##  exists -- return a subgroup <M>S\le<A>G</A></M>, such that the core of
##  <M>S</M> is properly
##  contained in the kernel of <A>hom</A> as well as in <M>V'</M>, where <M>V</M> is the
##  pre-image of <A>U</A> under <A>hom</A>.  Thus <M>S</M> exposes a larger quotient
##  of <M>G</M>.
##  If no such subgroup exists, <A>fail</A> is returned.
##  <Example><![CDATA[
##  gap> f:=FreeGroup("x","y","z");;
##  gap> g:=f/ParseRelators(f,"x^3=y^3=z^5=(xyx^2y^2)^2=(xz)^2=(yz^3)^2=1");
##  <fp group on the generators [ x, y, z ]>
##  gap> l:=LowIndexSubgroupsFpGroup(g,6);;
##  gap> List(l,IndexInWholeGroup);
##  [ 1, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6 ]
##  gap> q:=DefiningQuotientHomomorphism(l[6]);;p:=Image(q);Size(p);
##  Group([ (4,5,6), (1,2,3)(4,6,5), (2,4,6,3,5) ])
##  360
##  gap> s:=LargerQuotientBySubgroupAbelianization(q,SylowSubgroup(p,3)); 
##  Group(<fp, no generators known>)
##  gap> Size(Image(DefiningQuotientHomomorphism(s))); 
##  193273528320
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("LargerQuotientBySubgroupAbelianization");


#############################################################################
##
#E