This file is indexed.

/usr/share/gap/lib/gpprmsya.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#############################################################################
##
#W  gpprmsya.gd                   GAP Library                    Frank Celler
#W                                                           Alexander Hulpke
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for symmetric and alternating
##  permutation groups
##


#############################################################################
##
#P  IsNaturalSymmetricGroup( <group> )
#P  IsNaturalAlternatingGroup( <group> )
##
##  <#GAPDoc Label="IsNaturalSymmetricGroup">
##  <ManSection>
##  <Prop Name="IsNaturalSymmetricGroup" Arg='group'/>
##  <Prop Name="IsNaturalAlternatingGroup" Arg='group'/>
##
##  <Description>
##  A group is a natural symmetric or alternating group if it is
##  a permutation group acting as symmetric or alternating group,
##  respectively, on its moved points.
##  <P/>
##  For groups that are known to be natural symmetric or natural alternating
##  groups, very efficient methods for computing membership,
##  conjugacy classes, Sylow subgroups etc.&nbsp;are used.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,5,7,8,99),(1,99,13,72));;
##  gap> IsNaturalSymmetricGroup(g);
##  true
##  gap> g;
##  Sym( [ 1, 5, 7, 8, 13, 72, 99 ] )
##  gap> IsNaturalSymmetricGroup( Group( (1,2)(4,5), (1,2,3)(4,5,6) ) );
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsNaturalSymmetricGroup", IsPermGroup );

DeclareProperty( "IsNaturalAlternatingGroup", IsPermGroup );


#############################################################################
##
#P  IsAlternatingGroup( <group> )
##
##  <#GAPDoc Label="IsAlternatingGroup">
##  <ManSection>
##  <Prop Name="IsAlternatingGroup" Arg='group'/>
##
##  <Description>
##  is <K>true</K> if the group <A>group</A> is isomorphic to a
##  alternating group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsAlternatingGroup", IsGroup );


#############################################################################
##
#M  IsAlternatingGroup( <nat-alt-grp> )
##
InstallTrueMethod( IsAlternatingGroup, IsNaturalAlternatingGroup );


#############################################################################
##
#P  IsSymmetricGroup( <group> )
##
##  <#GAPDoc Label="IsSymmetricGroup">
##  <ManSection>
##  <Prop Name="IsSymmetricGroup" Arg='group'/>
##
##  <Description>
##  is <K>true</K> if the group <A>group</A> is isomorphic to a
##  symmetric group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsSymmetricGroup", IsGroup );


#############################################################################
##
#M  IsSymmetricGroup( <nat-sym-grp> )
##
InstallTrueMethod( IsSymmetricGroup, IsNaturalSymmetricGroup );


#############################################################################
##
#A  SymmetricParentGroup( <grp> )
##
##  <#GAPDoc Label="SymmetricParentGroup">
##  <ManSection>
##  <Attr Name="SymmetricParentGroup" Arg='grp'/>
##
##  <Description>
##  For a permutation group <A>grp</A> this function returns the symmetric
##  group that moves the same points as <A>grp</A> does.
##  <Example><![CDATA[
##  gap> SymmetricParentGroup( Group( (1,2), (4,5), (7,8,9) ) );
##  Sym( [ 1, 2, 4, 5, 7, 8, 9 ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("SymmetricParentGroup",IsPermGroup);

#############################################################################
##
#A  AlternatingSubgroup( <grp> )
##
##  <ManSection>
##  <Attr Name="AlternatingSubgroup" Arg='grp'/>
##
##  <Description>
##  returns the intersection of <A>grp</A> with the alternating group on the
##  points moved by <A>grp</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute("AlternatingSubgroup",IsPermGroup);

#############################################################################
##
#A  OrbitStabilizingParentGroup( <grp> )
##
##  <ManSection>
##  <Attr Name="OrbitStabilizingParentGroup" Arg='grp'/>
##
##  <Description>
##  returns the subgroup of <C>SymmetricParentGroup(<A>grp</A>)</C> which stabilizes
##  the orbits of <A>grp</A> setwise. (So it is a direct product of wreath
##  products of symmetric groups.) It is a natural supergroup for the
##  normalizer.
##  </Description>
##  </ManSection>
##
DeclareAttribute("OrbitStabilizingParentGroup",IsPermGroup);


#############################################################################
##
#E