This file is indexed.

/usr/share/gap/lib/grpcompl.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#############################################################################
##
#W  grpcompl.gi                  GAP Library                 Alexander Hulpke
##
##
#Y  Copyright (C)  1997
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for the computation of complements in
##  'white box groups'
##


BindGlobal("COCohomologyAction",function(oc,actgrp,auts,orbs)
  local b, mats, orb, com, stabilizer, i,coc,u;
  if not IsBound(oc.complement) then
    return [];
  fi;
  oc.zero:=Zero(LeftActingDomain(oc.oneCocycles));
  b:=BaseSteinitzVectors(BasisVectors(Basis(oc.oneCocycles)),
                         BasisVectors(Basis(oc.oneCoboundaries)));
  if Length(b.factorspace)=0 then
    u:=rec(com:=[rec(cocycle:=Zero(oc.oneCocycles),stabilizer:=actgrp)],
	   bas:=b);
    if orbs then
      u.com[1].orbit:=[Zero(oc.oneCocycles)];
    fi;
    return u;
  fi;
  Info(InfoComplement,2,"fuse ",
    Characteristic(oc.zero)^Length(b.factorspace)," classes");
  if Length(auts)=0 then
    auts:=[One(actgrp)];
  fi;

  mats:=COAffineCohomologyAction(oc,oc.complementGens,auts,b);
  orb:=COAffineBlocks(actgrp,auts,mats,orbs);
  com:=[];
  for i in orb do

    coc:=i.vector*b.factorspace;
    #u:=oc.cocycleToComplement(coc);
    u:=rec(cocycle:=coc,
		#complement:=u,
		stabilizer:=i.stabilizer);
    if orbs then u.orbit:=i.orbit;fi;
    Add(com,u);
  od;
  Info(InfoComplement,1,"obtain ",Length(com)," orbits");
  return rec(com:=com,bas:=b,mats:=mats);
end);

ComplementClassesRepresentativesSolvableWBG:=function(arg)
local G,N,K,s, h, q, fpi, factorpres, com, comgens, cen, ocrels, fpcgs, ncom, 
      ncomgens, ncen, nlcom, nlcomgens, nlcen, ocr, generators, modulePcgs, 
      l, complement, k, v, afu, i, j, jj;

  G:=arg[1];
  N:=arg[2];
  # compute a series through N
  s:=ChiefSeriesUnderAction(G,N);
  if Length(arg)=2 then
    K:=fail;
  else
    K:=arg[3];
    # build a series only down to K
    h:=List(s,x->ClosureGroup(K,x));
    s:=[h[1]];
    for i in h{[2..Length(h)]} do
      if Size(i)<Size(s[Length(s)]) then
	Add(s,i);
      fi;
    od;

  fi;

  Info(InfoComplement,1,"Series of factors:",
       List([1..Length(s)-1],i->Size(s[i])/Size(s[i+1])));

  # #T transfer probably to better group (later, AgCase)

  # construct a presentation
  h:=NaturalHomomorphismByNormalSubgroup(G,N);

  # AH still: Try to find a more simple presentation if available.

  if Source(h)=G then
    q:=ImagesSource(h);
  else
    q:=Image(h,G);
  fi;
  fpi:=IsomorphismFpGroup(q);
  Info(InfoComplement,2,"using a presentation with ",
       Length(MappingGeneratorsImages(fpi)[2])," generators");
  factorpres:=[FreeGeneratorsOfFpGroup(Range(fpi)),
               RelatorsOfFpGroup(Range(fpi)),
	       List(MappingGeneratorsImages(fpi)[2],
	            i->PreImagesRepresentative(fpi,i))];

  Assert(1,ForAll(factorpres[3],i->Image(h,PreImagesRepresentative(h,i))=i));
  # initialize
  com:=[G];
  comgens:=[List(factorpres[3],i->PreImagesRepresentative(h,i))];
  cen:=[s[1]];
  ocrels:=false;

  # step down
  for i in [2..Length(s)] do
    Info(InfoComplement,1,"Step ",i-1);
    # we know the complements after s[i-1], we want them after s[i].
    #fpcgs:=Pcgs(s[i-1]); # the factor pcgs
    #fpcgs:=fpcgs mod InducedPcgsByGenerators(fpcgs,GeneratorsOfGroup(s[i]));
    fpcgs:=ModuloPcgs(s[i-1],s[i]);

    ncom:=[];
    ncomgens:=[];
    ncen:=[];
    # loop over all complements so far
    for j in [1..Length(com)] do
      nlcom:=[];
      nlcomgens:=[];
      nlcen:=[];
      # compute complements
      ocr:=rec(group:=ClosureGroup(com[j],s[i-1]),
               generators:=comgens[j],
	       modulePcgs:=fpcgs,
	       factorpres:=factorpres
	       );
      if ocrels<>false then
        ocr.relators:=ocrels;
	Assert(2,ForAll(ocr.relators,
	                k->Product(List([1..Length(k.generators)],
			      l->ocr.generators[k.generators[l]]^k.powers[l]))
			      in s[i-1]));
      fi;

      OCOneCocycles(ocr,true);
      ocrels:=ocr.relators;

      if IsBound(ocr.complement) then
	# special treatment for trivial case:
	if Dimension(ocr.oneCocycles)=Dimension(ocr.oneCoboundaries) then
	  l:=[rec(stabilizer:=cen[j],
                  cocycle:=Zero(ocr.oneCocycles),
		  complement:=ocr.complement)];
        else
	  #l:=BaseSteinitzVectors(BasisVectors(Basis(ocr.oneCocycles)),
	#			 BasisVectors(Basis(ocr.oneCoboundaries)));
#
#	  v:=Enumerator(VectorSpace(LeftActingDomain(ocr.oneCocycles),
#				    l.factorspace,Zero(ocr.oneCocycles)));
#
#	  dimran:=[1..Length(v[1])];
#
#	  # fuse
#	  Info(InfoComplement,2,"fuse ",Length(v)," classes; working in dim ",
#	   Dimension(ocr.oneCocycles),"/",Dimension(ocr.oneCoboundaries));
#
#	  opfun:=function(z,g)
#	    Assert(3,z in AsList(v));
#	    z:=ocr.cocycleToList(z);
#	    for k in [1..Length(z)] do
#	      z[k]:=Inverse(ocr.complementGens[k])*(ocr.complementGens[k]*z[k])^g;
#	    od;
#	    Assert(2,ForAll(z,k->k in s[i-1]));
#	    z:=ocr.listToCocycle(z);
#	    Assert(2,z in ocr.oneCocycles);
#	    # sift z
#	    for k in dimran do
#	      if IsBound(l.heads[k]) and l.heads[k]<0 then
#		z:=z-z[k]*l.subspace[-l.heads[k]];
#	      fi;
#	    od;
#	    Assert(1,z in AsList(v));
#	    return z;
#	  end;
#
#	  k:=ExternalOrbitsStabilizers(cen[j],v,opfun);

	  l:=COCohomologyAction(ocr,cen[j],GeneratorsOfGroup(cen[j]),false).com;
#	  if Length(l)<>Length(k) then Error("differ!");fi;
	fi;

	Info(InfoComplement,2,"splits in ",Length(l)," complements");
      else
        l:=[];
	Info(InfoComplement,2,"no complements");
      fi;

      for k in l do
	q:=k.stabilizer;
	k:=ocr.cocycleToComplement(k.cocycle);
	Assert(3,Length(GeneratorsOfGroup(k))
	          =Length(MappingGeneratorsImages(fpi)[2]));
	# correct stabilizer to obtain centralizer

	v:=Normalizer(q,ClosureGroup(s[i],k));
	afu:=function(x,g) return CanonicalRightCosetElement(s[i],x^g);end;
	for jj in GeneratorsOfGroup(k) do
	  if ForAny(GeneratorsOfGroup(v),x->not Comm(x,jj) in s[i]) then
	    # we are likely very close as we centralized in the higher level
	    # and stabilize the cohomology. Thus a plain stabilizer
	    # calculation ought to work.
	    v:=Stabilizer(v,CanonicalRightCosetElement(s[i],jj),afu);
	  fi;
	od;


	Add(ncen,v);
        Add(nlcom,k);
	Add(nlcomgens,GeneratorsOfGroup(k));
      od;

      ncom:=Concatenation(ncom,nlcom);
      ncomgens:=Concatenation(ncomgens,nlcomgens);
      ncen:=Concatenation(ncen,nlcen);
    od;
    com:=ncom;
    comgens:=ncomgens;
    cen:=ncen;
    Info(InfoComplement,1,Length(com)," complements in total");
  od;

  if K<>fail then
    com:=List(com,x->ClosureGroup(K,x));
  fi;
  return com;

end;

InstallMethod(ComplementClassesRepresentativesSolvableNC,"using cohomology",
  IsIdenticalObj,
  [IsGroup,IsGroup],1,
  ComplementClassesRepresentativesSolvableWBG);

#############################################################################
##
#E  grpcompl.gi
##