This file is indexed.

/usr/share/gap/lib/grpfp.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
#############################################################################
##
#W  grpfp.gd                    GAP library                    Volkmar Felsch
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declarations for finitely presented groups
##  (fp groups).
##


#############################################################################
##
#V  CosetTableDefaultLimit
##
##  <#GAPDoc Label="CosetTableDefaultLimit">
##  <ManSection>
##  <Var Name="CosetTableDefaultLimit"/>
##
##  <Description>
##  is the default number of cosets with which any coset table is
##  initialized before doing a coset enumeration.
##  <P/>
##  The function performing this coset enumeration will automatically extend
##  the table whenever necessary (as long as the number of cosets does not
##  exceed the value of <Ref Var="CosetTableDefaultMaxLimit"/>),
##  but this is an expensive operation. Thus, if you change the value of
##  <Ref Var="CosetTableDefaultLimit"/>, you should set it to a number of
##  cosets that you expect to be sufficient for your subsequent
##  coset enumerations.
##  On the other hand, if you make it too large, your job will unnecessarily
##  waste a lot of space.
##  <P/>
##  The default value of <Ref Var="CosetTableDefaultLimit"/> is <M>1000</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
CosetTableDefaultLimit := 1000;


#############################################################################
##
#V  CosetTableDefaultMaxLimit
##
##  <#GAPDoc Label="CosetTableDefaultMaxLimit">
##  <ManSection>
##  <Var Name="CosetTableDefaultMaxLimit"/>
##
##  <Description>
##  is the default limit for the number of cosets allowed in a coset
##  enumeration.
##  <P/>
##  A coset enumeration will not finish if the subgroup does not have finite
##  index, and even if it has it may take many more intermediate cosets than
##  the actual index of the subgroup is. To avoid a coset enumeration
##  <Q>running away</Q> therefore &GAP; has a <Q>safety stop</Q> built in.
##  This is controlled by the global variable
##  <Ref Var="CosetTableDefaultMaxLimit"/>.
##  <P/>
##  If this number of cosets is reached, &GAP; will issue an error message
##  and prompt the user to either continue the calculation or to stop it.
##  The default value is <M>4096000</M>.
##  <P/>
##  See also the description of the options to
##  <Ref Func="CosetTableFromGensAndRels"/>.
##  <P/>
##  <Log><![CDATA[
##  gap> f := FreeGroup( "a", "b" );;
##  gap> u := Subgroup( f, [ f.2 ] );
##  Group([ b ])
##  gap> Index( f, u );
##  Error, the coset enumeration has defined more than 4096000 cosets
##   called from
##  TCENUM.CosetTableFromGensAndRels( fgens, grels, fsgens ) called from
##  CosetTableFromGensAndRels( fgens, grels, fsgens ) called from
##  TryCosetTableInWholeGroup( H ) called from
##  CosetTableInWholeGroup( H ) called from
##  IndexInWholeGroup( H ) called from
##  ...
##  Entering break read-eval-print loop ...
##  type 'return;' if you want to continue with a new limit of 8192000 cosets,
##  type 'quit;' if you want to quit the coset enumeration,
##  type 'maxlimit := 0; return;' in order to continue without a limit
##  brk> quit;
##  ]]></Log>
##  <P/>
##  At this point, a <K>break</K>-loop
##  (see Section&nbsp;<Ref Sect="Break Loops"/>) has been entered.
##  The line beginning <C>Error</C> tells you why this occurred.
##  The next seven lines occur if <Ref Func="OnBreak"/> has its default value
##  <Ref Func="Where"/>.
##  They explain, in this case,
##  how &GAP; came to be doing a coset enumeration.
##  Then you are given a number of options of how to escape the
##  <K>break</K>-loop:
##  you can either continue the calculation with a larger
##  number of permitted cosets, stop the calculation if you don't
##  expect the enumeration to finish (like in the example above), or continue
##  without a limit on the number of cosets. (Choosing the first option will,
##  of course, land you back in a <K>break</K>-loop. Try it!)
##  <P/>
##  Setting <Ref Var="CosetTableDefaultMaxLimit"/>
##  (or the <C>max</C> option value, for any function that invokes a coset
##  enumeration) to <Ref Var="infinity"/> (or to <M>0</M>) will force all
##  coset enumerations to continue until
##  they either get a result or exhaust the whole available space.
##  For example, each of the following two inputs
##  <P/>
##  <Listing><![CDATA[
##  gap> CosetTableDefaultMaxLimit := 0;;
##  gap> Index( f, u );
##  ]]></Listing>
##  <P/>
##  or
##  <P/>
##  <Listing><![CDATA[
##  gap> Index( f, u : max := 0 );
##  ]]></Listing>
##  <P/>
##  have essentially the same effect as choosing the third option
##  (typing: <C>maxlimit := 0; return;</C>) at the <C>brk></C> prompt above
##  (instead of <C>quit;</C>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
CosetTableDefaultMaxLimit := 2^12*1000;


#############################################################################
##
#V  CosetTableStandard
##
##  <#GAPDoc Label="CosetTableStandard">
##  <ManSection>
##  <Var Name="CosetTableStandard"/>
##
##  <Description>
##  specifies the definition of a <E>standard coset table</E>. It is used
##  whenever coset tables or augmented coset tables are created. Its value
##  may be <C>"lenlex"</C> or <C>"semilenlex"</C>.
##  If it is <C>"lenlex"</C> coset tables will be standardized using
##  all their columns as defined in Charles Sims' book
##  (this is the new default standard of &GAP;). If it is <C>"semilenlex"</C>
##  they will be standardized using only their generator columns (this was
##  the original &GAP; standard).
##  The default value of <Ref Var="CosetTableStandard"/> is <C>"lenlex"</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
CosetTableStandard := "lenlex";


#############################################################################
##
#V  InfoFpGroup
##
##  <#GAPDoc Label="InfoFpGroup">
##  <ManSection>
##  <InfoClass Name="InfoFpGroup"/>
##
##  <Description>
##  The info class for functions dealing with finitely presented groups is
##  <Ref InfoClass="InfoFpGroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoFpGroup" );


#############################################################################
##
#C  IsSubgroupFgGroup( <H> )
##
##  <ManSection>
##  <Filt Name="IsSubgroupFgGroup" Arg='H' Type='Category'/>
##
##  <Description>
##  This category (intended for future extensions) represents (subgroups of)
##  a finitely generated group, whose elements are represented as words in
##  the generators. However we do not necessarily have a set or relators.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsSubgroupFgGroup", IsGroup );

#############################################################################
##
#C  IsSubgroupFpGroup( <H> )
##
##  <#GAPDoc Label="IsSubgroupFpGroup">
##  <ManSection>
##  <Filt Name="IsSubgroupFpGroup" Arg='H' Type='Category'/>
##
##  <Description>
##  returns <K>true</K> if <A>H</A> is a finitely presented group
##  or a subgroup of a finitely presented group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsSubgroupFpGroup", IsSubgroupFgGroup );

# implications for the full family
InstallTrueMethod(CanEasilyTestMembership, IsSubgroupFgGroup and IsWholeFamily);

#############################################################################
##
#F  IsFpGroup(<G>)
##
##  <#GAPDoc Label="IsFpGroup">
##  <ManSection>
##  <Func Name="IsFpGroup" Arg='G'/>
##
##  <Description>
##  is a synonym for
##  <C>IsSubgroupFpGroup(<A>G</A>) and IsGroupOfFamily(<A>G</A>)</C>.
##  <P/>
##  Free groups are a special case of finitely presented groups,
##  namely finitely presented groups with no relators.
##  <P/>
##  Another special case are groups given by polycyclic presentations.
##  &GAP; uses a special representation for these groups which is created
##  in a different way.
##  See chapter <Ref Chap="Pc Groups"/> for details.
##  <Example><![CDATA[
##  gap> g:=FreeGroup(2);
##  <free group on the generators [ f1, f2 ]>
##  gap> IsFpGroup(g);
##  true
##  gap> h:=CyclicGroup(2);
##  <pc group of size 2 with 1 generators>
##  gap> IsFpGroup(h);
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsFpGroup", IsSubgroupFpGroup and IsGroupOfFamily );

#############################################################################
##
#C  IsElementOfFpGroup
##
##  <ManSection>
##  <Filt Name="IsElementOfFpGroup" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsElementOfFpGroup",
    IsMultiplicativeElementWithInverse and IsAssociativeElement );

#############################################################################
##
#C  IsElementOfFpGroupCollection
##
##  <ManSection>
##  <Filt Name="IsElementOfFpGroupCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryCollections( "IsElementOfFpGroup" );


#############################################################################
##
#m  IsSubgroupFpGroup
##
InstallTrueMethod(IsSubgroupFpGroup,IsGroup and IsElementOfFpGroupCollection);

##  free groups also are to be fp
InstallTrueMethod(IsSubgroupFpGroup,IsGroup and IsAssocWordCollection);


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <fpelmscoll> )
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,
    IsElementOfFpGroupCollection );


#############################################################################
##
#C  IsElementOfFpGroupFamily
##
##  <ManSection>
##  <Filt Name="IsElementOfFpGroupFamily" Arg='obj' Type='Category'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareCategoryFamily( "IsElementOfFpGroup" );


#############################################################################
##
#A  FpElmEqualityMethod(<fam>)
##
##  <ManSection>
##  <Attr Name="FpElmEqualityMethod" Arg='fam'/>
##
##  <Description>
##  If <A>fam</A> is the elements family of a finitely presented group this
##  attribute returns a function <C>equal(<A>left</A>, <A>right</A>)</C> that will be
##  used to compare elements in <A>fam</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FpElmEqualityMethod",IsElementOfFpGroupFamily);

#############################################################################
##
#A  FpElmComparisonMethod(<fam>)
##
##  <#GAPDoc Label="FpElmComparisonMethod">
##  <ManSection>
##  <Attr Name="FpElmComparisonMethod" Arg='fam'/>
##
##  <Description>
##  If <A>fam</A> is the elements family of a finitely presented group this
##  attribute returns a function <C>smaller(<A>left</A>, <A>right</A>)</C>
##  that will be used to compare elements in <A>fam</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FpElmComparisonMethod",IsElementOfFpGroupFamily);

#############################################################################
##
#F  SetReducedMultiplication(<f>)
#F  SetReducedMultiplication(<e>)
#F  SetReducedMultiplication(<fam>)
##
##  <#GAPDoc Label="SetReducedMultiplication">
##  <ManSection>
##  <Func Name="SetReducedMultiplication" Arg='obj'/>
##
##  <Description>
##  For an FpGroup <A>obj</A>, an element <A>obj</A> of it or the family
##  <A>obj</A> of its elements,
##  this function will force immediate reduction when multiplying, keeping
##  words short at extra cost per multiplication.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SetReducedMultiplication");

#############################################################################
##
#A  FpElementNFFunction(<fam>)
##
##  <ManSection>
##  <Attr Name="FpElementNFFunction" Arg='fam'/>
##
##  <Description>
##  If <A>fam</A> is the elements family of a finitely presented group this
##  attribute returns a function <A>f</A>, which, when applied to the
##  <b>underlying element</b> of an element of <A>fam</A> returns a <b>normal
##  form</b> (whose format is not defined and will differ on the method used).
##  This normal form can be used (and is used by
##  <Ref Func="SetReducedMultiplication"/>) to
##  compare elements or to reduce long products.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "FpElementNFFunction",IsElementOfFpGroupFamily);

# #############################################################################
# ##
# #A  FpElmKBRWS(<fam>)
# ##
# ##  <ManSection>
# ##  <Attr Name="FpElmKBRWS" Arg='fam'/>
# ##
# ##  <Description>
# ##  If <A>fam</A> is the elements family of a finitely presented group this
# ##  attribute returns a list [<A>iso</A>,<A>k</A>,<A>id</A>] where <A>iso</A> is a isomorphism to an
# ##  fp monoid, <A>k</A> a confluent rewriting system for the image of <A>iso</A> and
# ##  <A>id</A> the element in the free monoid corresponding to the image of the
# ##  identity element under <A>iso</A>.
# ##  </Description>
# ##  </ManSection>
# ##
#DeclareAttribute( "FpElmKBRWS",IsElementOfFpGroupFamily);


#############################################################################
##
#O  ElementOfFpGroup( <fam>, <word> )
##
##  <#GAPDoc Label="ElementOfFpGroup">
##  <ManSection>
##  <Oper Name="ElementOfFpGroup" Arg='fam, word'/>
##
##  <Description>
##  If <A>fam</A> is the elements family of a finitely presented group
##  and <A>word</A> is a word in the free generators underlying this
##  finitely presented group, this operation creates the element with the
##  representative <A>word</A> in the free group.
##  <Example><![CDATA[
##  gap> ge := ElementOfFpGroup( FamilyObj( g.1 ), f.1*f.2 );
##  a*b
##  gap> ge in f;
##  false
##  gap> ge in g;
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ElementOfFpGroup",
    [ IsElementOfFpGroupFamily, IsAssocWordWithInverse ] );


#############################################################################
##
#V  TCENUM
#V  GAPTCENUM
##
##  <ManSection>
##  <Var Name="TCENUM"/>
##  <Var Name="GAPTCENUM"/>
##
##  <Description>
##  TCENUM is a global record variable whose components contain functions
##  used for coset enumeration. By default <C>TCENUM</C> is assigned to
##  <C>GAPTCENUM</C>, which contains the coset enumeration functions provided by
##  the GAP library.
##  </Description>
##  </ManSection>
##
BindGlobal("GAPTCENUM",rec(name:="GAP Felsch-type enumerator"));
TCENUM:=GAPTCENUM;

#############################################################################
##
#F  CosetTableFromGensAndRels( <fgens>, <grels>, <fsgens> )
##
##  <#GAPDoc Label="CosetTableFromGensAndRels">
##  <ManSection>
##  <Func Name="CosetTableFromGensAndRels" Arg='fgens, grels, fsgens'/>
##
##  <Description>
##  <Index Key="TCENUM"><C>TCENUM</C></Index>
##  <Index Key="GAPTCENUM"><C>GAPTCENUM</C></Index>
##  is an internal function which is called by the functions
##  <Ref Func="CosetTable"/>, <Ref Func="CosetTableInWholeGroup"/>
##  and others.
##  It is, in fact, the proper working horse that performs a Todd-Coxeter
##  coset enumeration.
##  <A>fgens</A> must be a set of free generators and <A>grels</A> a set
##  of relators in these generators. <A>fsgens</A> are subgroup generators
##  expressed as words in these generators. The function returns a coset
##  table with respect to <A>fgens</A>.
##  <P/>
##  <Ref Func="CosetTableFromGensAndRels"/> will call
##  <C>TCENUM.CosetTableFromGensAndRels</C>.
##  This makes it possible to replace the built-in coset enumerator with
##  another one by assigning <C>TCENUM</C> to another record.
##  <P/>
##  The library version which is used by default performs a standard Felsch
##  strategy coset enumeration. You can call this function explicitly as
##  <C>GAPTCENUM.CosetTableFromGensAndRels</C> even if other coset enumerators
##  are installed.
##  <P/>
##  The expected parameters are
##  <List>
##  <Mark><A>fgens</A></Mark>
##  <Item>
##  generators of the free group <A>F</A>
##  </Item>
##  <Mark><A>grels</A></Mark>
##  <Item>
##  relators as words in <A>F</A>
##  </Item>
##  <Mark><A>fsgens</A></Mark>
##  <Item>
##  subgroup generators as words in <A>F</A>.
##  </Item>
##  </List>
##  <P/>
##  <Ref Func="CosetTableFromGensAndRels"/> processes two options (see
##  chapter&nbsp;<Ref Chap="Options Stack"/>): 
##  <List>
##  <Mark><C>max</C></Mark>
##  <Item>
##    The limit of the number of cosets to be defined. If the
##    enumeration does not finish with this number of cosets, an error is
##    raised and the user is asked whether she wants to continue. The
##    default value is the value given in the variable
##    <C>CosetTableDefaultMaxLimit</C>. (Due to the algorithm the actual
##    limit used can be a bit higher than the number given.)
##  </Item>
##  <Mark><C>silent</C></Mark>
##  <Item>
##    If set to <K>true</K> the algorithm will not raise the error
##    mentioned under option <C>max</C> but silently return <K>fail</K>.
##    This can be useful if an enumeration is only wanted unless it becomes
##    too big.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("CosetTableFromGensAndRels");


#############################################################################
##
#F  IndexCosetTab( <table> )
##
##  <ManSection>
##  <Func Name="IndexCosetTab" Arg='table'/>
##
##  <Description>
##  this function returns <C>Length(table[1])</C>, but the table might be empty
##  for a no-generator group, in which case 1 is returned.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("IndexCosetTab");

#############################################################################
##
#F  StandardizeTable( <table>, <standard> )
##
##  <#GAPDoc Label="StandardizeTable">
##  <ManSection>
##  <Func Name="StandardizeTable" Arg='table, standard'/>
##
##  <Description>
##  standardizes the given coset table <A>table</A>. The second argument is
##  optional. It defines the standard to be used, its values may be
##  <C>"lenlex"</C> or <C>"semilenlex"</C> specifying the new or the old
##  convention, respectively.
##  If no value for the parameter <A>standard</A> is provided the
##  function will use the global variable <Ref Var="CosetTableStandard"/>
##  instead.
##  Note that the function alters the given table, it does not create a copy.
##  <Example><![CDATA[
##  gap> StandardizeTable( tab, "semilenlex" );
##  gap> PrintArray( TransposedMat( tab ) );
##  [ [  1,  1,  2,  4 ],
##    [  3,  3,  4,  1 ],
##    [  2,  2,  3,  3 ],
##    [  5,  5,  1,  2 ],
##    [  4,  4,  5,  5 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("StandardizeTable");

#############################################################################
##
#F  StandardizeTable2( <table>, <table2>, <standard> )
##
##  <ManSection>
##  <Func Name="StandardizeTable2" Arg='table, table2, standard'/>
##
##  <Description>
##  standardizes the augmented coset table given by <A>table</A> and <A>table2</A>.
##  The third argument is optional. It defines the standard to be used, its
##  values may be <C>"lenlex"</C> or <C>"semilenlex"</C> specifying the new or the old
##  convention, respectively. If no value for the parameter <A>standard</A> is
##  provided the function will use the global variable <C>CosetTableStandard</C>
##  instead. Note that the function alters the given table, it does not
##  create a copy.
##  <P/>
##  Warning: The function alters just the two tables. Any further lists
##  involved in the object <E>augmented coset table</E> which refer to these two
##  tables will not be updated.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("StandardizeTable2");


#############################################################################
##
#A  CosetTableInWholeGroup(< H >)
#O  TryCosetTableInWholeGroup(< H >)
##
##  <#GAPDoc Label="CosetTableInWholeGroup">
##  <ManSection>
##  <Attr Name="CosetTableInWholeGroup" Arg='H'/>
##  <Oper Name="TryCosetTableInWholeGroup" Arg='H'/>
##
##  <Description>
##  is equivalent to <C>CosetTable(<A>G</A>,<A>H</A>)</C> where <A>G</A> is
##  the (unique)  finitely presented group such that <A>H</A> is a subgroup
##  of <A>G</A>.
##  It overrides a <C>silent</C> option
##  (see&nbsp;<Ref Func="CosetTableFromGensAndRels"/>) with <K>false</K>.
##  <P/>
##  The variant <Ref Func="TryCosetTableInWholeGroup"/> does not override the
##  <C>silent</C> option with <K>false</K> in case a coset table is only
##  wanted if not too expensive.
##  It will store a result that is not <K>fail</K> in the attribute
##  <Ref Func="CosetTableInWholeGroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CosetTableInWholeGroup", IsGroup );
DeclareOperation( "TryCosetTableInWholeGroup", [IsGroup] );

InstallTrueMethod(CanEasilyTestMembership, 
  IsSubgroupFpGroup and HasCosetTableInWholeGroup);


#############################################################################
##
#A  CosetTableNormalClosureInWholeGroup(< H >)
##
##  <ManSection>
##  <Attr Name="CosetTableNormalClosureInWholeGroup" Arg='H'/>
##
##  <Description>
##  is equivalent to <C>CosetTableNormalClosure(<A>G</A>,<A>H</A>)</C> where <A>G</A> is the
##  (unique) finitely presented group such that <A>H</A> is a subgroup of <A>G</A>.
##  It overrides a <C>silent</C> option (see&nbsp;<Ref Func="CosetTableFromGensAndRels"/>) with
##  <K>false</K>.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "CosetTableNormalClosureInWholeGroup", IsGroup );


#############################################################################
##
#F  TracedCosetFpGroup( <tab>, <word>, <pt> )
##
##  <#GAPDoc Label="TracedCosetFpGroup">
##  <ManSection>
##  <Func Name="TracedCosetFpGroup" Arg='tab, word, pt'/>
##
##  <Description>
##  Traces the coset number <A>pt</A> under the word <A>word</A> through the
##  coset table <A>tab</A>.
##  (Note: <A>word</A> must be in the free group, use
##  <Ref Func="UnderlyingElement" Label="fp group elements"/> if in doubt.)
##  <Example><![CDATA[
##  gap> TracedCosetFpGroup(tab,UnderlyingElement(g.1),2);
##  4
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("TracedCosetFpGroup");


#############################################################################
##
#F  SubgroupOfWholeGroupByCosetTable( <fpfam>, <tab> )
##
##  <#GAPDoc Label="SubgroupOfWholeGroupByCosetTable">
##  <ManSection>
##  <Func Name="SubgroupOfWholeGroupByCosetTable" Arg='fpfam, tab'/>
##
##  <Description>
##  takes a family <A>fpfam</A> of an FpGroup and a coset table <A>tab</A>
##  and returns the subgroup of <A>fpfam</A><C>!.wholeGroup</C> defined by
##  this coset table.
##  See also&nbsp;<Ref Func="CosetTableBySubgroup"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupOfWholeGroupByCosetTable");


#############################################################################
##
#F  SubgroupOfWholeGroupByQuotientSubgroup( <fpfam>, <Q>, <U> )
##
##  <#GAPDoc Label="SubgroupOfWholeGroupByQuotientSubgroup">
##  <ManSection>
##  <Func Name="SubgroupOfWholeGroupByQuotientSubgroup" Arg='fpfam, Q, U'/>
##
##  <Description>
##  takes a FpGroup family <A>fpfam</A>, a finitely generated group <A>Q</A>
##  such that the fp generators of <A>fpfam</A> can be mapped by an
##  epimorphism <M>phi</M> onto the <Ref Func="GeneratorsOfGroup"/> value
##  of <A>Q</A>, and a subgroup <A>U</A> of <A>Q</A>.
##  It returns the subgroup of <A>fpfam</A><C>!.wholeGroup</C> which is
##  the full preimage of <A>U</A> under <M>phi</M>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupOfWholeGroupByQuotientSubgroup");

#############################################################################
##
#R  IsSubgroupOfWholeGroupByQuotientRep(<G>)
##
##  <#GAPDoc Label="IsSubgroupOfWholeGroupByQuotientRep">
##  <ManSection>
##  <Filt Name="IsSubgroupOfWholeGroupByQuotientRep" Arg='G'
##   Type='Representation'/>
##
##  <Description>
##  is the representation for subgroups of an FpGroup, given by a quotient
##  subgroup. The components <A>G</A><C>!.quot</C> and <A>G</A><C>!.sub</C>
##  hold quotient, respectively subgroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation("IsSubgroupOfWholeGroupByQuotientRep",
  IsSubgroupFpGroup,["quot","sub"]);

#############################################################################
##
#F  DefiningQuotientHomomorphism(<U>)
##
##  <#GAPDoc Label="DefiningQuotientHomomorphism">
##  <ManSection>
##  <Func Name="DefiningQuotientHomomorphism" Arg='U'/>
##
##  <Description>
##  if <A>U</A> is a subgroup in quotient representation
##  (<Ref Func="IsSubgroupOfWholeGroupByQuotientRep"/>),
##  this function returns the
##  defining homomorphism from the whole group to <A>U</A><C>!.quot</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("DefiningQuotientHomomorphism");

#############################################################################
##
#A  AsSubgroupOfWholeGroupByQuotient(<U>)
##
##  <#GAPDoc Label="AsSubgroupOfWholeGroupByQuotient">
##  <ManSection>
##  <Attr Name="AsSubgroupOfWholeGroupByQuotient" Arg='U'/>
##
##  <Description>
##  returns the same subgroup in the representation
##  <Ref Func="AsSubgroupOfWholeGroupByQuotient"/>.
##  <P/>
##  See also <Ref Func="SubgroupOfWholeGroupByCosetTable"/>
##  and <Ref Func="CosetTableBySubgroup"/>.
##  <P/>
##  This technique is used by &GAP; for example to represent the derived
##  subgroup, which is obtained from the quotient <M>G/G'</M>.
##  <Example><![CDATA[
##  gap> f:=FreeGroup(2);;g:=f/[f.1^6,f.2^6,(f.1*f.2)^6];;
##  gap> d:=DerivedSubgroup(g);
##  Group(<fp, no generators known>)
##  gap> Index(g,d);
##  36
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("AsSubgroupOfWholeGroupByQuotient", IsSubgroupFpGroup);


############################################################################
##
#O  LowIndexSubgroupsFpGroupIterator( <G>[, <H>], <index>[, <excluded>] )
#O  LowIndexSubgroupsFpGroup( <G>[, <H>], <index>[, <excluded>] )
##
##  <#GAPDoc Label="LowIndexSubgroupsFpGroupIterator">
##  <ManSection>
##  <Oper Name="LowIndexSubgroupsFpGroupIterator"
##   Arg='G[, H], index[, excluded]'/>
##  <Oper Name="LowIndexSubgroupsFpGroup" Arg='G[, H], index[, excluded]'/>
##
##  <Description>
##  <Index Subkey="for low index subgroups">iterator</Index>
##  These functions compute representatives of the conjugacy classes of
##  subgroups of the finitely presented group <A>G</A> that contain the
##  subgroup <A>H</A> of <A>G</A> and that have index less than or equal to
##  <A>index</A>.
##  <P/>
##  <Ref Func="LowIndexSubgroupsFpGroupIterator"/> returns an iterator
##  (see&nbsp;<Ref Sect="Iterators"/>)
##  that can be used to run over these subgroups,
##  and <Ref Func="LowIndexSubgroupsFpGroup"/> returns the list of these
##  subgroups.
##  If one is interested only in one or a few subgroups up to a given index
##  then preferably the iterator should be used.
##  <P/>
##  If the optional argument <A>excluded</A> has been specified, then it is
##  expected to be a list of words in the free generators of the underlying
##  free group of <A>G</A>, and <Ref Func="LowIndexSubgroupsFpGroup"/>
##  returns only those subgroups of index at most <A>index</A> that contain
##  <A>H</A>, but do not contain any conjugate of any of the group elements
##  defined by these words.
##  <P/>
##  If not given, <A>H</A> defaults to the trivial subgroup.
##  <P/>
##  The algorithm used finds the requested subgroups
##  by systematically running through a tree of all potential coset tables
##  of <A>G</A> of length at most <A>index</A> (where it skips all branches
##  of that tree for which it knows in advance that they cannot provide new
##  classes of such subgroups).
##  The time required to do this depends, of course, on the presentation of
##  <A>G</A>, but in general it will grow exponentially with
##  the value of <A>index</A>. So you should be careful with the choice of
##  <A>index</A>.
##  <Example><![CDATA[
##  gap> li:=LowIndexSubgroupsFpGroup( g, TrivialSubgroup( g ), 10 );
##  [ Group(<fp, no generators known>), Group(<fp, no generators known>), 
##    Group(<fp, no generators known>), Group(<fp, no generators known>) ]
##  ]]></Example>
##  <P/>
##  By default, the algorithm computes no generating sets for the subgroups.
##  This can be enforced with <Ref Func="GeneratorsOfGroup"/>:
##  <Example><![CDATA[
##  gap> GeneratorsOfGroup(li[2]);
##  [ a, b*a*b^-1 ]
##  ]]></Example>
##  <P/>
##  If we are interested just in one (proper) subgroup of index at most
##  <M>10</M>, we can use the function that returns an iterator.
##  The first subgroup found is the group itself,
##  except if a list of excluded elements is entered (see below),
##  so we look at the second subgroup.
##  <P/>
##  <Example><![CDATA[
##  gap> iter:= LowIndexSubgroupsFpGroupIterator( g, 10 );;
##  gap> s1:= NextIterator( iter );;  Index( g, s1 );
##  1
##  gap> IsDoneIterator( iter );
##  false
##  gap> s2:= NextIterator( iter );;  s2 = li[2];
##  true
##  ]]></Example>
##  <P/>
##  As an example for an application of the optional parameter
##  <A>excluded</A>, we
##  compute all conjugacy classes of torsion free subgroups of index at most
##  <M>24</M> in the group <M>G =
##  \langle x,y,z \mid x^2, y^4, z^3, (xy)^3, (yz)^2, (xz)^3 \rangle</M>.
##  It is know from theory that each torsion element of this
##  group is conjugate to a power of <M>x</M>, <M>y</M>, <M>z</M>, <M>xy</M>,
##  <M>xz</M>, or <M>yz</M>.
##  (Note that this includes conjugates of <M>y^2</M>.)
##  <P/>
##  <Example><![CDATA[
##  gap> F := FreeGroup( "x", "y", "z" );;
##  gap> x := F.1;; y := F.2;; z := F.3;;
##  gap> G := F / [ x^2, y^4, z^3, (x*y)^3, (y*z)^2, (x*z)^3 ];;
##  gap> torsion := [ x, y, y^2, z, x*y, x*z, y*z ];;
##  gap> SetInfoLevel( InfoFpGroup, 2 );
##  gap> lis := LowIndexSubgroupsFpGroup(G, TrivialSubgroup(G), 24, torsion);;
##  #I  LowIndexSubgroupsFpGroup called
##  #I   class 1 of index 24 and length 8
##  #I   class 2 of index 24 and length 24
##  #I   class 3 of index 24 and length 24
##  #I   class 4 of index 24 and length 24
##  #I   class 5 of index 24 and length 24
##  #I  LowIndexSubgroupsFpGroup done. Found 5 classes
##  gap> SetInfoLevel( InfoFpGroup, 0 );
##  ]]></Example>
##  <P/>
##  If a particular image group is desired, the operation
##  <Ref Func="GQuotients"/>
##  (see&nbsp;<Ref Sect="Quotient Methods"/>) can be useful as well.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
    [ IsSubgroupFpGroup, IsPosInt ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
    [ IsSubgroupFpGroup, IsSubgroupFpGroup, IsPosInt ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
    [ IsSubgroupFpGroup and IsWholeFamily, IsPosInt, IsList ] );
DeclareOperation( "LowIndexSubgroupsFpGroupIterator",
    [ IsSubgroupFpGroup and IsWholeFamily, IsSubgroupFpGroup, IsPosInt,
      IsList ] );

DeclareOperation("LowIndexSubgroupsFpGroup",
  [IsSubgroupFpGroup,IsSubgroupFpGroup,IsPosInt]);


############################################################################
##
#F  MostFrequentGeneratorFpGroup( <G> )
##
##  <#GAPDoc Label="MostFrequentGeneratorFpGroup">
##  <ManSection>
##  <Func Name="MostFrequentGeneratorFpGroup" Arg='G'/>
##
##  <Description>
##  is an internal function which is used in some applications of coset
##  table methods. It returns the first of those generators of the given
##  finitely presented group <A>G</A> which occur most frequently in the
##  relators.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("MostFrequentGeneratorFpGroup");


#############################################################################
##
#A  FreeGeneratorsOfFpGroup( <G> )
#O  FreeGeneratorsOfWholeGroup( <U> )
##
##  <#GAPDoc Label="FreeGeneratorsOfFpGroup">
##  <ManSection>
##  <Attr Name="FreeGeneratorsOfFpGroup" Arg='G'/>
##  <Oper Name="FreeGeneratorsOfWholeGroup" Arg='U'/>
##
##  <Description>
##  <Ref Func="FreeGeneratorsOfFpGroup"/> returns the underlying free
##  generators corresponding to the generators of the finitely presented
##  group <A>G</A> which must be a full FpGroup.
##  <P/>
##  <Ref Func="FreeGeneratorsOfWholeGroup"/> also works for subgroups of an
##  FpGroup and returns the free generators of the full group that defines
##  the family.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "FreeGeneratorsOfFpGroup",
     IsSubgroupFpGroup and IsGroupOfFamily  );
DeclareOperation( "FreeGeneratorsOfWholeGroup",
     [IsSubgroupFpGroup]  );

############################################################################
##
#A  RelatorsOfFpGroup(<G>)
##
##  <#GAPDoc Label="RelatorsOfFpGroup">
##  <ManSection>
##  <Attr Name="RelatorsOfFpGroup" Arg='G'/>
##
##  <Description>
##  returns the relators of the finitely presented group <A>G</A> as words
##  in the free generators provided by the
##  <Ref Func="FreeGeneratorsOfFpGroup"/> value of <A>G</A>.
##  <Example><![CDATA[
##  gap> f := FreeGroup( "a", "b" );;
##  gap> g := f / [ f.1^5, f.2^2, f.1^f.2*f.1 ];
##  <fp group on the generators [ a, b ]>
##  gap> Size( g );
##  10
##  gap> FreeGroupOfFpGroup( g ) = f;
##  true
##  gap> FreeGeneratorsOfFpGroup( g );
##  [ a, b ]
##  gap> RelatorsOfFpGroup( g );
##  [ a^5, b^2, b^-1*a*b*a ]
##  ]]></Example>
##  <P/>
##  Note that these attributes are only available for the <E>full</E>
##  finitely presented group.
##  It is possible (for example by using <Ref Func="Subgroup"/>) to
##  construct a subgroup of index <M>1</M> which is not identical to the
##  whole group.
##  The latter one can be obtained in this situation via
##  <Ref Func="Parent"/>.
##  <P/>
##  Elements of a finitely presented group are not words, but are represented
##  using a word from the free group as representative. The following two
##  commands obtain this representative, respectively create an element in the
##  finitely presented group.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("RelatorsOfFpGroup",IsSubgroupFpGroup and IsGroupOfFamily);

#############################################################################
##
#A  FreeGroupOfFpGroup(<G>)
##
##  <#GAPDoc Label="FreeGroupOfFpGroup">
##  <ManSection>
##  <Attr Name="FreeGroupOfFpGroup" Arg='G'/>
##
##  <Description>
##  returns the underlying free group for the finitely presented group
##  <A>G</A>.
##  This is the group generated by the free generators provided by the
##  <Ref Func="FreeGeneratorsOfFpGroup"/> value of <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("FreeGroupOfFpGroup",IsSubgroupFpGroup and IsGroupOfFamily);

#############################################################################
##
#A  IndicesInvolutaryGenerators( <G> )
##
##  <#GAPDoc Label="IndicesInvolutaryGenerators">
##  <ManSection>
##  <Attr Name="IndicesInvolutaryGenerators" Arg='G'/>
##
##  <Description>
##  returns the indices of those generators of the finitely presented group
##  <A>G</A> which are known to be involutions. This knowledge is used by
##  internal functions to improve the performance of coset enumerations.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("IndicesInvolutaryGenerators",
  IsSubgroupFpGroup and IsGroupOfFamily);

############################################################################
##
#F  RelatorRepresentatives(<rels>)
##
##  <ManSection>
##  <Func Name="RelatorRepresentatives" Arg='rels'/>
##
##  <Description>
##  returns a set of  relators,  that  contains for each relator in the list
##  <A>rels</A> its minimal cyclical  permutation (which is automatically
##  cyclically reduced).
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RelatorRepresentatives");


#############################################################################
##
#F  RelsSortedByStartGen( <gens>, <rels>, <table> )
##
##  <ManSection>
##  <Func Name="RelsSortedByStartGen" Arg='gens, rels, table'/>
##
##  <Description>
##  is a  subroutine of the  Felsch Todd-Coxeter and the  Reduced
##  Reidemeister-Schreier  routines. It returns a list which for each
##  generator or  inverse generator in <A>gens</A> contains a list  of all
##  cyclically reduced relators,  starting  with that element,  which can be
##  obtained by conjugating or inverting the given relators <A>rels</A>.  The
##  relators are represented as lists of the coset table columns from the
##  table <A>table</A> corresponding to the generators and, in addition, as lists
##  of the respective column numbers.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("RelsSortedByStartGen");

#############################################################################
##
#A  IsomorphismPermGroupOrFailFpGroup( <G> [,<max>] )
##
##  <ManSection>
##  <Attr Name="IsomorphismPermGroupOrFailFpGroup" Arg='G [,max]'/>
##
##  <Description>
##  returns an isomorphism <M>\varphi</M> from the fp group <A>G</A> onto
##  a permutation group <A>P</A> which is isomorphic to <A>G</A>, if one can be found
##  with reasonable effort and of reasonable degree. The function
##  returns <K>fail</K> otherwise.
##  <P/>
##  The optional argument <C>max</C> can be used to override the default maximal
##  size of a coset table used (and thus the maximal degree of the resulting
##  permutation).
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("IsomorphismPermGroupOrFailFpGroup");


#############################################################################
##
#F  SubgroupGeneratorsCosetTable(<freegens>,<fprels>,<table>)
##
##  <ManSection>
##  <Func Name="SubgroupGeneratorsCosetTable" Arg='freegens,fprels,table'/>
##
##  <Description>
##  determinates subgroup generators for the subgroup given by the coset
##  table <A>table</A> from the free generators <A>freegens</A>,
##  the  relators <A>fprels</A> (as words in <A>freegens</A>).
##  It returns words in <A>freegens</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SubgroupGeneratorsCosetTable" );

#############################################################################
##
#F  LiftFactorFpHom(<hom>,<G>,<M>,<N>,<dec>)
##
##  <ManSection>
##  <Func Name="LiftFactorFpHom" Arg='hom,G,M,N,dec'/>
##
##  <Description>
##  Let <A>hom</A> be an epimorphism from a group <A>G</A> to a finitely presented
##  group <A>F</A> with kernel <A>M</A> and <M>M/N</M> a chief factor.
##  If <M>M/N</M> is abelian, then <A>dec</A> is a modulo pcgs. Otherwise <A>dec</A> is a
##  homomorphism from <A>M</A> onto a finitely presented group, with kernel <A>N</A>.
##  This function
##  constructs a new fp group <A>F2</A> isomorphic to <M>G/N</M> and returns an
##  epimorphism from <A>G</A> onto <A>F2</A>.
##  <P/>
##  No test of the arguments is performed.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "LiftFactorFpHom" );

DeclareGlobalFunction( "IsomorphismFpGroupByChiefSeriesFactor" );

#############################################################################
##
#F  ComplementFactorFpHom(<hom>,<G>,<M>,<N>,<C>,<Ggens>,<Cgens>)
##
##  <ManSection>
##  <Func Name="ComplementFactorFpHom" Arg='hom,G,M,N,C,Ggens,Cgens'/>
##
##  <Description>
##  Let <A>hom</A> be an epimorphism from a group <A>G</A> to a finitely presented
##  group <A>F</A> with kernel <A>M</A> and <M>M/N</M> be elementary abelian and <M>C/N</M> a
##  complement to <A>M</A> in <M>G/N</M>. The set <A>Cgens</A> is a set of generators of
##  <A>C</A> modulo <A>N</A>, <A>Ggens</A> are corresponding representatives in <A>G</A>.
##  This function constructs a new epimorphism from <A>C</A> onto <A>F</A>.
##  <P/>
##  No test of the arguments is performed.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ComplementFactorFpHom" );

#############################################################################
##
#F  FactorGroupFpGroupByRels( <G>, <elts> )
##
##  <#GAPDoc Label="FactorGroupFpGroupByRels">
##  <ManSection>
##  <Func Name="FactorGroupFpGroupByRels" Arg='G, elts'/>
##
##  <Description>
##  returns the factor group <A>G</A>/<M>N</M> of <A>G</A> by
##  the normal closure <M>N</M> of <A>elts</A>
##  where <A>elts</A> is expected to be a list of elements of <A>G</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FactorGroupFpGroupByRels" );


#############################################################################
##
#F  ExcludedOrders( <fpgrp>[,<ords>] )
#A  StoredExcludedOrders( <fpgrp> )
##
##  <ManSection>
##  <Func Name="ExcludedOrders" Arg='fpgrp[,ords]'/>
##  <Attr Name="StoredExcludedOrders" Arg='fpgrp'/>
##
##  <Description>
##  for a (full) finitely presented group <A>fpgrp</A> this attribute returns
##  a list of orders, corresponding to <Ref Func="GeneratorsOfGroup"/>,
##  for which the presentation collapses.
##  (That is, the group becomes trivial when a relator <M>g_i^o</M> is
##  added.) If given, the list <A>ords</A> contains a set of
##  orders corresponding to the generators which are explicitly to be
##  tested.
##  (The mutable attribute <Ref Func="StoredExcludedOrders"/> is used to
##  store results.)
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("ExcludedOrders");
DeclareAttribute( "StoredExcludedOrders",IsSubgroupFpGroup,"mutable");


#############################################################################
##
#F  NewmanInfinityCriterion(<G>,<p>)
##
##  <#GAPDoc Label="NewmanInfinityCriterion">
##  <ManSection>
##  <Func Name="NewmanInfinityCriterion" Arg='G, p'/>
##
##  <Description>
##  Let <A>G</A> be a finitely presented group and <A>p</A> a prime that
##  divides the order of the commutator factor group of <A>G</A>.
##  This function applies an infinity criterion due to M. F.&nbsp;Newman
##  <Cite Key="New90"/> to <A>G</A>.
##  (See <Cite Key="Joh97" Where="chapter 16"/> for a more explicit
##  description.)
##  It returns <K>true</K>
##  if the criterion succeeds in proving that <A>G</A> is infinite and
##  <K>fail</K> otherwise.
##  <P/>
##  Note that the criterion uses the number of generators and
##  relations in the presentation of <A>G</A>.
##  Reduction of the presentation via Tietze transformations
##  (<Ref Func="IsomorphismSimplifiedFpGroup"/>) therefore might
##  produce an isomorphic group, for which the criterion will work better.
##  <Example><![CDATA[
##  gap> g:=FibonacciGroup(2,9);
##  <fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8, f9 ]>
##  gap> hom:=EpimorphismNilpotentQuotient(g,2);;
##  gap> k:=Kernel(hom);;
##  gap> Index(g,k);
##  152
##  gap> AbelianInvariants(k);
##  [ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]
##  gap> NewmanInfinityCriterion(Kernel(hom),5);
##  true
##  ]]></Example>
##  <P/>
##  This proves that the subgroup <C>k</C>
##  (and thus the whole group <C>g</C>) is infinite.
##  (This is the original example from&nbsp;<Cite Key="New90"/>.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("NewmanInfinityCriterion");

#############################################################################
##
#F  FibonacciGroup(<r>,<n>)
#F  FibonacciGroup(<n>)
##
##  <ManSection>
##  <Func Name="FibonacciGroup" Arg='r,n'/>
##  <Func Name="FibonacciGroup" Arg='n'/>
##
##  <Description>
##  This function returns the <E>Fibonacci group</E> with parameters <A>r</A>, <A>n</A>.
##  This is a finitely presented group with <A>n</A> generators <M>x_i</M> and <A>n</A>
##  relators <M>x_i\cdot\cdots\cdot x_{r+i-1}/x_{r+i}</M> (with indices reduced
##  modulo <A>n</A>).
##  <P/>
##  If <A>r</A> is omitted, it defaults to 2.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("FibonacciGroup");

#############################################################################
##
#A  FPFaithHom(<fam>)
##
##  <ManSection>
##  <Attr Name="FPFaithHom" Arg='fam'/>
##
##  <Description>
##  For the elements family <A>fam</A> of a finite fp group <A>G</A> this returns an 
##  isomorphism to a permutation
##  or a pc group isomorphic to <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareAttribute("FPFaithHom",IsFamily);

#############################################################################
##
#F  ParseRelators(<gens>,<rels>)
##
##  <#GAPDoc Label="ParseRelators">
##  <ManSection>
##  <Func Name="ParseRelators" Arg='gens, rels'/>
##
##  <Description>
##  Will translate a list of relations as given in print, e.g.
##  <M>x y^2 = (x y^3 x)^2 xy = yzx</M> into relators.
##  <A>gens</A> must be a list of generators of a free group,
##  each being displayed by a single letter.
##  <A>rels</A> is a string that lists a sequence of equalities.
##  These must be written in the letters which are the names of
##  the generators in <A>gens</A>.
##  Change of upper/lower case is interpreted to indicate inverses.
##  <P/>
##  <Example><![CDATA[
##  gap> f:=FreeGroup("x","y","z");;
##  gap> AssignGeneratorVariables(f);
##  #I  Assigned the global variables [ x, y, z ]
##  gap> r:=ParseRelators([x,y,z],
##  > "x^2 = y^5 = z^3 = (xyxyxy^4)^2 = (xz)^2 = (y^2z)^2 = 1");
##  [ x^2, y^5, z^3, (x*z)^2, (y^2*z)^2, ((x*y)^3*y^3)^2 ]
##  gap> g:=f/r;
##  <fp group on the generators [ x, y, z ]>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("ParseRelators");

#############################################################################
##
#F  StringFactorizationWord(<w>)
##
##  <#GAPDoc Label="StringFactorizationWord">
##  <ManSection>
##  <Func Name="StringFactorizationWord" Arg='w'/>
##
##  <Description>
##  returns a string that expresses a given word <A>w</A> in compact form
##  written as a string. Inverses are expressed by changing the upper/lower
##  case of the generators, recurring expressions are written as products.
##  <Example><![CDATA[
##  gap> StringFactorizationWord(z^-1*x*y*y*y*x*x*y*y*y*x*y^-1*x);
##  "Z(xy3x)2Yx"
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("StringFactorizationWord");

# used in homomorphisms
DeclareGlobalVariable("TRIVIAL_FP_GROUP");

#############################################################################
##
#E