This file is indexed.

/usr/share/gap/lib/grplatt.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#############################################################################
##
#W  grplatt.gd                GAP library                   Martin Schönert,
#W                                                          Alexander Hulpke
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This  file  contains declarations for subgroup latices
##


#############################################################################
##
#V  InfoLattice                                    Information
##
##  <#GAPDoc Label="InfoLattice">
##  <ManSection>
##  <InfoClass Name="InfoLattice"/>
##
##  <Description>
##  is the information class used by the cyclic extension methods for
##  subgroup lattice calculations.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass("InfoLattice");


#############################################################################
##
#R  IsConjugacyClassSubgroupsRep( <obj> )
#R  IsConjugacyClassSubgroupsByStabilizerRep( <obj> )
##
##  <#GAPDoc Label="IsConjugacyClassSubgroupsRep">
##  <ManSection>
##  <Filt Name="IsConjugacyClassSubgroupsRep" Arg='obj'
##   Type='Representation'/>
##  <Filt Name="IsConjugacyClassSubgroupsByStabilizerRep" Arg='obj'
##   Type='Representation'/>
##
##  <Description>
##  Is the representation &GAP; uses for conjugacy classes of subgroups.
##  It can be used to check whether an object is a class of subgroups.
##  The second representation
##  <Ref Func="IsConjugacyClassSubgroupsByStabilizerRep"/> in
##  addition is an external orbit by stabilizer and will compute its
##  elements via a transversal of the stabilizer.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareRepresentation("IsConjugacyClassSubgroupsRep",
  IsExternalOrbit,[]);
DeclareRepresentation("IsConjugacyClassSubgroupsByStabilizerRep",
  IsConjugacyClassSubgroupsRep and IsExternalOrbitByStabilizerRep,[]);


#############################################################################
##
#O  ConjugacyClassSubgroups( <G>, <U> )
##
##  <#GAPDoc Label="ConjugacyClassSubgroups">
##  <ManSection>
##  <Oper Name="ConjugacyClassSubgroups" Arg='G, U'/>
##
##  <Description>
##  generates the conjugacy class of subgroups of <A>G</A> with
##  representative <A>U</A>.
##  This class is an external set,
##  so functions such as <Ref Attr="Representative"/>,
##  (which returns <A>U</A>),
##  <Ref Func="ActingDomain"/> (which returns <A>G</A>),
##  <Ref Func="StabilizerOfExternalSet"/> (which returns the normalizer of
##  <A>U</A>), and <Ref Func="AsList"/> work for it.
##  <P/>
##  (The use of the <C>[]</C>
##  list access to select elements of the class is considered obsolescent
##  and will be removed in future versions.
##  Use <Ref Func="ClassElementLattice"/> instead.)
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));;IsNaturalSymmetricGroup(g);;
##  gap> cl:=ConjugacyClassSubgroups(g,Subgroup(g,[(1,2)]));
##  Group( [ (1,2) ] )^G
##  gap> Size(cl);
##  6
##  gap> ClassElementLattice(cl,4);
##  Group([ (2,3) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("ConjugacyClassSubgroups", [IsGroup,IsGroup]);

#############################################################################
##
#O  ClassElementLattice(<C>,<n>)
##
##  <#GAPDoc Label="ClassElementLattice">
##  <ManSection>
##  <Oper Name="ClassElementLattice" Arg='C, n'/>
##
##  <Description>
##  For a class <A>C</A> of subgroups, obtained by a lattice computation,
##  this operation returns the <A>n</A>-th conjugate subgroup in the class.
##  <P/>
##  <E>Because of other methods installed, calling <Ref Func="AsList"/> with
##  <A>C</A> can give a different arrangement of the class elements!</E>
##  <P/>
##  The &GAP; package <Package>XGAP</Package> permits a graphical display of
##  the lattice of subgroups in a nice way.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("ClassElementLattice", [IsExternalOrbit,IsPosInt]);

#############################################################################
##
#R  IsLatticeSubgroupsRep(<obj>)
##
##  <ManSection>
##  <Filt Name="IsLatticeSubgroupsRep" Arg='obj' Type='Representation'/>
##
##  <Description>
##  This representation indicates lattices of subgroups.
##  </Description>
##  </ManSection>
##
DeclareRepresentation("IsLatticeSubgroupsRep",
  IsComponentObjectRep and IsAttributeStoringRep,
  ["group","conjugacyClassesSubgroups"]);

#############################################################################
##
#A  Zuppos(<G>) .  set of generators for cyclic subgroups of prime power size
##
##  <#GAPDoc Label="Zuppos">
##  <ManSection>
##  <Attr Name="Zuppos" Arg='G'/>
##
##  <Description>
##  The <E>Zuppos</E> of a group are the cyclic subgroups of prime power order.
##  (The name <Q>Zuppo</Q> derives from the German abbreviation for <Q>zyklische
##  Untergruppen von Primzahlpotenzordnung</Q>.) This attribute
##  gives generators of all such subgroups of a group <A>G</A>. That is all elements
##  of <A>G</A> of prime power order up to the equivalence that they generate the
##  same cyclic subgroup.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("Zuppos",IsGroup);

#############################################################################
##
#F  LatticeByCyclicExtension( <G>[, <func>[, <noperf>]] )
##
##  <#GAPDoc Label="LatticeByCyclicExtension">
##  <ManSection>
##  <Func Name="LatticeByCyclicExtension" Arg='G[, func[, noperf]]'/>
##
##  <Description>
##  computes the lattice of <A>G</A> using the cyclic extension algorithm. If the
##  function <A>func</A> is given, the algorithm will discard all subgroups not
##  fulfilling <A>func</A> (and will also not extend them), returning a partial
##  lattice. This can be useful to compute only subgroups with certain
##  properties. Note however that this will <E>not</E> necessarily yield all
##  subgroups that fulfill <A>func</A>, but the subgroups whose subgroups are used
##  for the construction must also fulfill <A>func</A> as well.
##  (In fact the filter <A>func</A> will simply discard subgroups in the cyclic
##  extension algorithm. Therefore the trivial subgroup will always be
##  included.) Also note, that for such a partial lattice
##  maximality/minimality inclusion relations cannot be computed.
##  (If <A>func</A> is a list of length 2, its first entry is such a
##  discarding function, the second a function for discarding zuppos.)
##  <P/>
##  The cyclic extension algorithm requires the perfect subgroups of <A>G</A>.
##  However &GAP; cannot analyze the function <A>func</A> for its implication
##  but can only apply it. If it is known that <A>func</A> implies solvability,
##  the computation of the perfect subgroups can be avoided by giving a
##  third parameter <A>noperf</A> set to <K>true</K>. 
##  <P/>
##  <Example><![CDATA[
##  gap> g:=WreathProduct(Group((1,2,3),(1,2)),Group((1,2,3,4)));;
##  gap> l:=LatticeByCyclicExtension(g,function(G)
##  > return Size(G) in [1,2,3,6];end);
##  <subgroup lattice of <permutation group of size 5184 with 
##  9 generators>, 47 classes, 
##  2628 subgroups, restricted under further condition l!.func>
##  ]]></Example>
##  <P/>
##  The total number of classes in this example is much bigger, as the
##  following example shows:
##  <Example><![CDATA[
##  gap> LatticeSubgroups(g);
##  <subgroup lattice of <permutation group of size 5184 with 
##  9 generators>, 566 classes, 27134 subgroups>
##  ]]></Example> ##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("LatticeByCyclicExtension");

#############################################################################
##
#F  LatticeViaRadical(<G>)
##
##  <ManSection>
##  <Func Name="LatticeViaRadical" Arg='G'/>
##
##  <Description>
##  computes the lattice of <A>G</A> using the homomorphism principle to lift the
##  result from factor groups.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("LatticeViaRadical");

#############################################################################
##
#A  MaximalSubgroupsLattice(<lat>)
##
##  <#GAPDoc Label="MaximalSubgroupsLattice">
##  <ManSection>
##  <Attr Name="MaximalSubgroupsLattice" Arg='lat'/>
##
##  <Description>
##  For a lattice <A>lat</A> of subgroups this attribute contains the maximal
##  subgroup relations among the subgroups of the lattice.
##  It is a list corresponding to the <Ref Func="ConjugacyClassesSubgroups"/>
##  value of the lattice, each entry giving a list of the maximal subgroups
##  of the representative of this class.
##  Every maximal subgroup is indicated by a list of the form <M>[ c, n ]</M>
##  which means that the <M>n</M>-th subgroup in class number <M>c</M> is a
##  maximal subgroup of the representative. 
##  <P/>
##  The number <M>n</M> corresponds to access via
##  <Ref Func="ClassElementLattice"/>
##  and <E>not</E> necessarily the <Ref Func="AsList"/> arrangement!
##  See also <Ref Func="MinimalSupergroupsLattice"/>.
##  <Example><![CDATA[
##  gap> MaximalSubgroupsLattice(l);
##  [ [  ], [ [ 1, 1 ] ], [ [ 1, 1 ] ], [ [ 1, 1 ] ], 
##    [ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ] ], [ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ], 
##    [ [ 2, 3 ] ], [ [ 4, 1 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ] ], 
##    [ [ 7, 1 ], [ 6, 1 ], [ 5, 1 ] ], 
##    [ [ 5, 1 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], [ 4, 4 ] ], 
##    [ [ 10, 1 ], [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 8, 1 ], [ 8, 2 ], 
##        [ 8, 3 ], [ 8, 4 ] ] ]
##  gap> last[6];
##  [ [ 3, 1 ], [ 3, 6 ], [ 2, 3 ] ]
##  gap> u1:=Representative(ConjugacyClassesSubgroups(l)[6]);
##  Group([ (3,4), (1,2)(3,4) ])
##  gap> u2:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],1);;
##  gap> u3:=ClassElementLattice(ConjugacyClassesSubgroups(l)[3],6);;
##  gap> u4:=ClassElementLattice(ConjugacyClassesSubgroups(l)[2],3);;
##  gap> IsSubgroup(u1,u2);IsSubgroup(u1,u3);IsSubgroup(u1,u4);
##  true
##  true
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("MaximalSubgroupsLattice",IsLatticeSubgroupsRep);

#############################################################################
##
#A  MinimalSupergroupsLattice(<lat>)
##
##  <#GAPDoc Label="MinimalSupergroupsLattice">
##  <ManSection>
##  <Attr Name="MinimalSupergroupsLattice" Arg='lat'/>
##
##  <Description>
##  For a lattice <A>lat</A> of subgroups this attribute contains the minimal
##  supergroup relations among the subgroups of the lattice.
##  It is a list corresponding to the <Ref Func="ConjugacyClassesSubgroups"/>
##  value of the lattice, each entry giving a list of the minimal supergroups
##  of the representative of this class.
##  Every minimal supergroup is indicated by a list of the form
##  <M>[ c, n ]</M>, which means that the <M>n</M>-th subgroup in class
##  number <M>c</M> is a minimal supergroup of the representative.
##  <P/>
##  The number <M>n</M> corresponds to access via
##  <Ref Func="ClassElementLattice"/>
##  and <E>not</E> necessarily the <Ref Func="AsList"/> arrangement!
##  See also <Ref Func="MaximalSubgroupsLattice"/>.
##  <Example><![CDATA[
##  gap> MinimalSupergroupsLattice(l);
##  [ [ [ 2, 1 ], [ 2, 2 ], [ 2, 3 ], [ 3, 1 ], [ 3, 2 ], [ 3, 3 ], 
##        [ 3, 4 ], [ 3, 5 ], [ 3, 6 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ], 
##        [ 4, 4 ] ], [ [ 5, 1 ], [ 6, 2 ], [ 7, 2 ] ], 
##    [ [ 6, 1 ], [ 8, 1 ], [ 8, 3 ] ], [ [ 8, 1 ], [ 10, 1 ] ], 
##    [ [ 9, 1 ], [ 9, 2 ], [ 9, 3 ], [ 10, 1 ] ], [ [ 9, 1 ] ], 
##    [ [ 9, 1 ] ], [ [ 11, 1 ] ], [ [ 11, 1 ] ], [ [ 11, 1 ] ], [  ] ]
##  gap> last[3];
##  [ [ 6, 1 ], [ 8, 1 ], [ 8, 3 ] ]
##  gap> u5:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],1);
##  Group([ (3,4), (2,4,3) ])
##  gap> u6:=ClassElementLattice(ConjugacyClassesSubgroups(l)[8],3);
##  Group([ (1,3), (1,3,4) ])
##  gap> IsSubgroup(u5,u2);
##  true
##  gap> IsSubgroup(u6,u2);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("MinimalSupergroupsLattice",IsLatticeSubgroupsRep);

#############################################################################
##
#F  DotFileLatticeSubgroups( <L>, <file> )
##
##  <#GAPDoc Label="DotFileLatticeSubgroups">
##  <ManSection>
##  <Func Name="DotFileLatticeSubgroups" Arg='L, file'/>
##
##  <Description>
##  <Index>dot-file</Index>
##  <Index>graphviz</Index>
##  <Index>OmniGraffle</Index>
##  This function produces a graphical representation of the subgroup
##  lattice <A>L</A> in file <A>file</A>. The output is in <C>.dot</C> (also known as
##  <C>GraphViz</C> format). For details on the format, and information about how to
##  display or edit this format see <URL>http://www.graphviz.org</URL>. (On the
##  Macintosh, the program <C>OmniGraffle</C> is also able to read this format.)
##  <P/>
##  Subgroups are labelled in the form <C><A>i</A>-<A>j</A></C> where <A>i</A> is the number of
##  the class of subgroups and <A>j</A> the number within this class. Normal
##  subgroups are represented by a box. 
##  <P/>
##  <Log><![CDATA[
##  gap> DotFileLatticeSubgroups(l,"s4lat.dot");
##  ]]></Log>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("DotFileLatticeSubgroups");

#############################################################################
##
#F  ExtendSubgroupsOfNormal( <G>, <N>,<Nsubs> )
##
##  <#GAPDoc Label="ExtendSubgroupsOfNormal">
##  <ManSection>
##  <Func Name="ExtendSubgroupsOfNormal" Arg='G,N,Nsubs'/>
##
##  <Description>
##  If $N$ is normal in $G$ and $Nsubs$ is a list of subgroups of $N$ up to
##  conjugacy, this function extends this list to taht of all subgroups of $G$.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("ExtendSubgroupsOfNormal");

#############################################################################
##
#F  SubdirectSubgroups( <D> )
##
##  <#GAPDoc Label="SubdirectSubgroups">
##  <ManSection>
##  <Func Name="SubdirectSubgroups" Arg='D'/>
##
##  <Description>
##  If $D$ is created as a direct product, this function determines all
##  subgroups of $D$ up to conjugacy, using subdirect products.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SubdirectSubgroups");

#############################################################################
##
#F  SubgroupsTrivialFitting( <G> )
##
##  <#GAPDoc Label="SubgroupsTrivialFitting">
##  <ManSection>
##  <Func Name="SubgroupsTrivialFitting" Arg='G'/>
##
##  <Description>
##  Determines representatives of the conjugacy classes of subgroups of a
##  trivial-fitting group $G$.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("SubgroupsTrivialFitting");

#############################################################################
##
#A  TomDataAlmostSimpleRecognition(<G>) Tom Library Identification
##
##  <#GAPDoc Label="TomDataAlmostSimpleRecognition">
##  <ManSection>
##  <Attr Name="TomDataAlmostSimpleRecognition" Arg='G'/>
##
##  <Description>
##  For an almost simple group, this returns a list: isomorphism, table of
##  marks
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute("TomDataAlmostSimpleRecognition",IsGroup);

# functions return list of (maximal/all) subgroups of almost simple fetched
# from tom library, or `fail' if data is not there.
DeclareGlobalFunction("TomDataMaxesAlmostSimple");
DeclareGlobalFunction("TomDataSubgroupsAlmostSimple");

#############################################################################
##
#E