/usr/share/gap/lib/grpnames.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 | #############################################################################
##
#W grpnames.gd Stefan Kohl
## Markus Püschel
## Sebastian Egner
##
##
#Y Copyright (C) 2004 The GAP Group
##
## This file contains declarations of attributes, operations and functions
## related to the determination of structure descriptions for finite groups.
##
## It also includes comments from corresponding GAP3 code written by
## Markus Püschel and Sebastian Egner.
##
#############################################################################
##
#A DirectFactorsOfGroup( <G> ) . . . . . decomposition into a direct product
##
## <ManSection>
## <Attr Name="DirectFactorsOfGroup" Arg="G"/>
##
## <Description>
## A sorted list of factors [<A>G1</A>, .., <A>Gr</A>] such that
## <A>G</A> = <A>G1</A> x .. x <A>Gr</A> and none of the <A>Gi</A>
## is a direct product.
## </Description>
## </ManSection>
##
## The following hold:
##
## (1) <Gi> is a normal subgroup of <G>.
## (2) <i> <= <j> ==> Size(<Gi>) <= Size(<Gj>).
## (3) Size(<Gi>) > 1 unless <r> = 1 and <G> = 1.
## (4) <G> = <G1> * .. * <Gr> as the complex product.
## (5) $Gi \cap (G1 * .. * G_{i-1} * G_{i+1} * .. * Gr) = 1$.
##
## Factorization of a permutation group into a direct product
## ==========================================================
##
## Def.: Seien G1, .., Gr endliche Gruppen, dann ist
## G := (G1 x .. x Gr, *) eine Gruppe mit der Operation
## (g1, .., gr)*(h1, .., hr) := (g1 h1, .., gr hr).
## Wir sagen dann G ist das ("au"sere) direkte Produkt
## der Gruppen G1, .., Gr und schreiben G = G1 x .. x Gr.
##
## Lemma: Seien G1, .., Gr Normalteiler der endlichen Gruppe G
## mit den Eigenschaften
## (1) |G| = |G1| * .. * |Gr|
## (2) |Gi meet (Gi+1 * .. * Gr)| = 1
## Dann ist G = G1 x .. x Gr.
## Bew.: M. Hall, Th. 2.5.2.
##
## Lemma: Seien G = G1 x .. x Gr = H1 x .. x Hs zwei Zerlegungen
## von G in direkt unzerlegbare Faktoren. Dann gilt
## (1) r = s
## (2) Es gibt ein Permutation p der Faktoren, so
## da"s G[i] ~= H[p(i)] f"ur alle i.
## Bew.: Satz von Krull-Remak-Schmidt, Huppert I.
##
## Statements needed for DirectFactorsGroup
## ========================================
##
## Lemma:
## If G1, G2 are normal subgroups in G and (G1 meet G2) = 1
## then G = G1 x G2 <==> |G| = |G1|*|G2|.
## Proof:
## "==>": trivial.
## "<==": Use G1*G2/G1 ~= G2/(G1 meet G2) = G2/1 ==>
## |G1*G2|/|G1| = |G2|/|1|. q.e.d.
##
## Remark:
## The normal subgroup lattice of G does not contain
## all the information needed for the normal subgroup lattice
## of G2 for a decomposition G = G1 x G2. However let
## G = G1 x .. x Gr be finest direct product decomposition
## then all Gi are normal subgroups in G. Thus all Gi occur in
## the set NormalSubgroups(G) and we may split G recursively
## without recomputing normal subgroup lattices for factors.
##
## Method to enumerate factorizations given the divisors:
## Consider a strictly increasing chain
## 1 < a1 < a2 < .. < a_n < A
## of positive divisors of an integer A.
## The task is to enumerate all pairs 1 <= i <= j <= n
## such that a_i*a_j = A. This is done by
##
## i := 1;
## j := n;
## while i <= j do
## while j > i and a_i*a_j > A do
## j := j-1;
## end while;
## if a_i*a_j = A then
## "found i <= j with a_i*a_j = A"
## end if;
## i := i+1;
## end while;
##
## which is based on the following fact:
## Lemma:
## Let i1 <= j1, i2 <= j2 be such that
## a_i1*a_j1 = a_i2*a_j2 = A, then
## i2 > i1 ==> j2 < j1.
## Proof:
## i2 > i1
## ==> a_i2 > a_i1 by strictly increasing a's
## ==> a_i1*a_j1 = A = a_i2*a_j2 > a_i1*a_j2 by *a_j2
## ==> a_j1 > a_j2 by /a_i1
## ==> j1 > j2. q.e.d
##
## Now consider two strictly increasing chains
## 1 <= a1 < a2 < .. < a_n <= A
## 1 <= b1 < b2 < .. < b_m <= A
## of positive divisors of an integer A.
## The task is to enumerate all pairs i, j with
## 1 <= i <= n, 1 <= j <= m such that a_i*b_j = A.
## This is done by merging the two sequences into
## a single increasing sequence of pairs <c_i, which_i>
## where which_i indicates where c_i is in the a-sequence
## and where it is in the b-sequence if any. The the
## linear algorithm above may be used.
##
DeclareAttribute( "DirectFactorsOfGroup", IsGroup );
#############################################################################
##
#A SemidirectFactorsOfGroup( <G> ) . decomposition into a semidirect product
##
## <ManSection>
## <Attr Name="SemidirectFactorsOfGroup" Arg="G"/>
##
## <Description>
## A list [[<A>H1</A>, <A>N1</A>], .., [<A>Hr</A>, <A>Nr</A>]] of all
## direct or semidirect decompositions with minimal <A>H</A>:
## <A>G</A> = <A>Hi</A> semidirect <A>Ni</A> and |<A>Hi</A>| = |<A>Hj</A>|
## is minimal with respect to all semidirect products.
## Note that this function also recognizes direct products.
## </Description>
## </ManSection>
##
## Literatur:
## [1] Huppert Bd. I, Springer 1983.
## [2] M. Hall: Theory of Groups. 2nd ed.,
## Chelsea Publ. Co., 1979 NY.
##
## Zerlegung eines semidirekten Produkts, Grundlagen
## =================================================
##
## Def.: Seien H, N Gruppen und f: H -> Aut(N) ein Gr.-Hom.
## Dann wird G := (H x N, *) eine Gruppe mit der Operation
## (h1, n1)*(h2, n2) := (h1 h2, f(h2)(n1)*n2).
## Wir nennen G das ("au"sere) semidirekte Produkt von H und N
## und schreiben G = H semidirect[f] N.
##
## Lemma1:
## Sei G eine endliche Gruppe, N ein Normalteiler und H eine
## Untergruppe von G mit den Eigenschaften
## (1) |H| * |N| = |G| und
## (2) |H meet N| = 1.
## Dann gibt es ein f mit G = H semidirect[f] N.
## Bew.: [2], Th. 6.5.3.
##
## Lemma2:
## Sei G = H semidirect[phi] N und h in H, n in N, dann ist auch
## G = H^(h n) semidirect[psi] N mit
## psi = inn_n o phi o inn_h^-1 o inn_n^-1.
## Bew.:
## 1. |H^(h n)| = |H| ==> |H^(h n)|*|N| = |G| und
## |H^(h n) meet N| = 1 <==> |H meet N| = 1, weil N normal ist.
## Daher ist G = H^(h n) semidirect[psi] N mit einem
## psi : H^(h n) -> Aut(N).
## 2. Das psi ist durch H und N eindeutig bestimmt.
## 3. Die Form von psi wie oben angegeben kann durch berechnen
## von psi(h)(n) nachgepr"uft werden.
##
DeclareAttribute( "SemidirectFactorsOfGroup", IsGroup );
#############################################################################
##
#A DecompositionTypesOfGroup( <G> ) . . descriptions of decomposition types
#A DecompositionTypes( <G> )
##
## <ManSection>
## <Attr Name="DecompositionTypesOfGroup" Arg="G"/>
## <Attr Name="DecompositionTypes" Arg="G"/>
##
## <Description>
## A list of all possible decomposition types of the group
## into direct/semidirect products of non-splitting factors. <P/>
##
## A <E>decomposition type</E> <A>type</A> is denoted by a specification
## of the form
## <Log><![CDATA[
## <type> ::=
## <integer> ; cyclic group of prime power order
## | ["non-split", <integer>] ; non-split extension; size annotated
## | ["x", <type>, .., <type>] ; non-trivial direct product (ass., comm.)
## | [":", <type>, <type>] ; non-direct, non-trivial split extension
## ]]></Log>
## </Description>
## </ManSection>
##
DeclareAttribute( "DecompositionTypesOfGroup", IsGroup );
DeclareSynonym( "DecompositionTypes", DecompositionTypesOfGroup );
#############################################################################
##
#P IsDihedralGroup( <G> )
#A DihedralGenerators( <G> )
##
## <ManSection>
## <Prop Name="IsDihedralGroup" Arg="G"/>
## <Attr Name="DihedralGenerators" Arg="G"/>
##
## <Description>
## Indicates whether the group <A>G</A> is a dihedral group.
## If it is, methods may set the attribute <C>DihedralGenerators</C> to
## [<A>t</A>,<A>s</A>], where <A>t</A> and <A>s</A> are two elements such
## that <A>G</A> = <M><A>t, s | t^2 = s^n = 1, s^t = s^-1</A></M>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsDihedralGroup", IsGroup );
DeclareAttribute( "DihedralGenerators", IsGroup );
#############################################################################
##
#P IsQuaternionGroup( <G> )
#A QuaternionGenerators( <G> )
##
## <ManSection>
## <Prop Name="IsQuaternionGroup" Arg="G"/>
## <Attr Name="QuaternionGenerators" Arg="G"/>
##
## <Description>
## Indicates whether the group <A>G</A> is a generalized quaternion group
## of size <M>N = 2^(k+1)</M>, <M>k >= 2</M>. If it is, methods may set
## the attribute <C>QuaternionGenerators</C> to [<A>t</A>,<A>s</A>],
## where <A>t</A> and <A>s</A> are two elements such that <A>G</A> =
## <M><A>t, s | s^(2^k) = 1, t^2 = s^(2^k-1), s^t = s^-1</A></M>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsQuaternionGroup", IsGroup );
DeclareAttribute( "QuaternionGenerators", IsGroup );
#############################################################################
##
#P IsQuasiDihedralGroup( <G> )
#A QuasiDihedralGenerators( <G> )
##
## <ManSection>
## <Prop Name="IsQuasiDihedralGroup" Arg="G"/>
## <Attr Name="QuasiDihedralGenerators" Arg="G"/>
##
## <Description>
## Indicates whether the group <A>G</A> is a quasidihedral group
## of size <M>N = 2^(k+1)</M>, <M>k >= 2</M>. If it is, methods may set
## the attribute <C>QuasiDihedralGenerators</C> to [<A>t</A>,<A>s</A>],
## where <A>t</A> and <A>s</A> are two elements such that <A>G</A> =
## <M><A>t, s | s^(2^k) = t^2 = 1, s^t = s^(-1 + 2^(k-1))</A></M>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsQuasiDihedralGroup", IsGroup );
DeclareAttribute( "QuasiDihedralGenerators", IsGroup );
#############################################################################
##
#P IsPSL( <G> )
##
## <ManSection>
## <Prop Name="IsPSL" Arg="G"/>
##
## <Description>
## Indicates whether the group <A>G</A> is isomorphic to the projective
## special linear group PSL(<A>n</A>,<A>q</A>) for some integer <A>n</A>
## and some prime power <A>q</A>. If it is, methods may set the attribute
## <C>ParametersOfGroupViewedAsPSL</C>.
## </Description>
## </ManSection>
##
DeclareProperty( "IsPSL", IsGroup );
#############################################################################
##
#A ParametersOfGroupViewedAsPSL
#A ParametersOfGroupViewedAsSL
#A ParametersOfGroupViewedAsGL
##
## triples (n,p,e) such that the group is isomorphic to PSL(n,p^e), SL(n,p^e)
## and GL(n,p^e) respectively
##
## <ManSection>
## <Attr Name="ParametersOfGroupViewedAsPSL" Arg="G"/>
## <Attr Name="ParametersOfGroupViewedAsSL" Arg="G"/>
## <Attr Name="ParametersOfGroupViewedAsGL" Arg="G"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "ParametersOfGroupViewedAsPSL", IsGroup );
DeclareAttribute( "ParametersOfGroupViewedAsSL", IsGroup );
DeclareAttribute( "ParametersOfGroupViewedAsGL", IsGroup );
#############################################################################
##
#A AlternatingDegree . . . . degree of isomorphic natural alternating group
#A SymmetricDegree . . . . . . degree of isomorphic natural symmetric group
#A PSLDegree . . . . . . (one possible) degree of an isomorphic natural PSL
#A PSLUnderlyingField . . (one possible) underlying field " " "
#A SLDegree . . . . . . (one possible) degree of an isomorphic natural SL
#A SLUnderlyingField . . (one possible) underlying field " " "
#A GLDegree . . . . . . (one possible) degree of an isomorphic natural GL
#A GLUnderlyingField . . (one possible) underlying field " " "
##
## <Attr Name="AlternatingDegree" Arg="G"/>
## <Attr Name="SymmetricDegree" Arg="G"/>
## <Attr Name="PSLDegree" Arg="G"/>
## <Attr Name="PSLUnderlyingField" Arg="G"/>
## <Attr Name="SLDegree" Arg="G"/>
## <Attr Name="SLUnderlyingField" Arg="G"/>
## <Attr Name="GLDegree" Arg="G"/>
## <Attr Name="GLUnderlyingField" Arg="G"/>
##
## <Description>
## </Description>
## </ManSection>
##
DeclareAttribute( "AlternatingDegree", IsGroup );
DeclareAttribute( "SymmetricDegree", IsGroup );
DeclareAttribute( "PSLDegree", IsGroup );
DeclareAttribute( "PSLUnderlyingField", IsGroup );
DeclareAttribute( "SLDegree", IsGroup );
DeclareAttribute( "SLUnderlyingField", IsGroup );
DeclareAttribute( "GLDegree", IsGroup );
DeclareAttribute( "GLUnderlyingField", IsGroup );
#############################################################################
##
#F SizeGL( <n>, <q> )
#F SizeSL( <n>, <q> )
#F SizePSL( <n>, <q> )
##
## <ManSection>
## <Func Name="SizeGL" Arg="n, q"/>
## <Func Name="SizeSL" Arg="n, q"/>
## <Func Name="SizePSL" Arg="n, q"/>
##
## <Description>
## Computes the size of the group GL(<A>n</A>,<A>p</A>^<A>e</A>),
## SL(<A>n</A>,<A>p</A>^<A>e</A>) or PSL(<A>n</A>,<A>p</A>^<A>e</A>),
## respectively.
## </Description>
## </ManSection>
##
## The following formulas are used:
##
## |GL(n, p, e)| = Product(p^(e n) - p^(e k) : k in [0..n-1])
## |SL(n, p, e)| = |GL(n, p, e)| / (p^e - 1)
## |PSL(n, p, e)| = |SL(n, p, e)| / gcd(p^e - 1, n)
##
DeclareGlobalFunction( "SizeGL" );
DeclareGlobalFunction( "SizeSL" );
DeclareGlobalFunction( "SizePSL" );
#############################################################################
##
#F LinearGroupParameters( <N> )
##
## <ManSection>
## <Func Name="LinearGroupParameters" Arg="N"/>
##
## <Description>
## Determines all parameters <A>n</A> >= 2, <A>p</A> prime, <A>e</A> >= 1,
## such that the given number is the size of one of the linear groups
## GL(<A>n</A>,<A>p</A>^<A>e</A>), SL(<A>n</A>,<A>p</A>^<A>e</A>) or
## PSL(<A>n</A>,<A>p</A>^<A>e</A>). <P/>
## A record with the fields <C>npeGL</C>, <C>npeSL</C>, <C>npePSL</C> is
## returned, which contains the lists of possible triples
## [<A>n</A>,<A>p</A>,<A>e</A>].
## </Description>
## </ManSection>
##
## Lemma (o.B.):
## Es bezeichne
##
## gl(n, p, e) = Product(p^(e n) - p^(e k) : k in [0..n-1])
## sl(n, p, e) = gl(n, p, e) / (p^e - 1)
## psl(n, p, e) = sl(n, p, e) / gcd(p^e - 1, n)
##
## die Gr"o"sen der Gruppen GL, SL, PSL mit den Parametern
## n, p, e. Dann gilt
##
## gl(n, p, e) = sl(n, p, e) <==> p^e = 2
## sl(n, p, e) = psl(n, p, e) <==> gcd(p^e - 1, n) = 1
## psl(n, p, e) = gl(n, p, e) <==> p^e = 2
##
## und in diesen F"allen sind die dazugeh"origen Gruppen auch
## isomorph. Dar"uberhinaus existieren genau die folgenden
## sporadischen "Ubereinstimmungen
##
## psl(2, 2, 2) = psl(2, 5, 1) = 60 ; PSL(2, 4) ~= PSL(2, 5) ~= A5
## psl(2, 7, 1) = psl(3, 2, 1) = 168 ; PSL(2, 7) ~= PSL(3, 2)
## psl(4, 2, 1) = psl(3, 2, 2) = 20160 ; PSL(4, 2) not~= PSL(3, 4)
##
## wobei in den ersten beiden F"allen die dazugeh"origen Gruppen
## isomorph sind, im letzten Fall aber nicht! Die Gruppen PSL(4, 2)
## und PSL(3, 4) sind "uber das Zentrum ihrer 2-Sylowgruppen
## unterscheidbar (Huppert: S.185).
## Es bezeichne Z1, Z2 die Zentren der 2-Sylowgruppen von PSL(4, 2)
## bzw. PSL(3, 4). Dann ist |Z1| = 2 und |Z2| = 4.
##
## Die Aussage des Lemmas wurde rechnerisch bis zur Gruppenordnung 10^100
## getestet.
##
DeclareGlobalFunction( "LinearGroupParameters" );
#############################################################################
##
#A StructureDescription( <G> )
##
## <#GAPDoc Label="StructureDescription">
## <ManSection>
## <Attr Name="StructureDescription" Arg="G"/>
##
## <Description>
## The method for <Ref Func="StructureDescription"/> exhibits a structure
## of the given group <A>G</A> to some extent, using the strategy outlined
## below. The idea is to return a possibly short string which gives some
## insight in the structure of the considered group. It is intended
## primarily for small groups (order less than 100) or groups with few normal
## subgroups, in other cases, in particular large <M>p</M>-groups, it can
## be very costly. Furthermore, the string returned is -- as the action on
## chief factors is not described -- often not the most useful way to describe
## a group.<P/>
##
## The string returned by <Ref Func="StructureDescription"/> is
## <B>not</B> an isomorphism invariant: non-isomorphic groups can have the
## same string value, and two isomorphic groups in different representations
## can produce different strings.
##
## The value returned by <Ref Func="StructureDescription"/> is a string of
## the following form: <P/>
## <Listing><![CDATA[
## StructureDescription(<G>) ::=
## 1 ; trivial group
## | C<size> ; cyclic group
## | A<degree> ; alternating group
## | S<degree> ; symmetric group
## | D<size> ; dihedral group
## | Q<size> ; quaternion group
## | QD<size> ; quasidihedral group
## | PSL(<n>,<q>) ; projective special linear group
## | SL(<n>,<q>) ; special linear group
## | GL(<n>,<q>) ; general linear group
## | PSU(<n>,<q>) ; proj. special unitary group
## | O(2<n>+1,<q>) ; orthogonal group, type B
## | O+(2<n>,<q>) ; orthogonal group, type D
## | O-(2<n>,<q>) ; orthogonal group, type 2D
## | PSp(2<n>,<q>) ; proj. special symplectic group
## | Sz(<q>) ; Suzuki group
## | Ree(<q>) ; Ree group (type 2F or 2G)
## | E(6,<q>) | E(7,<q>) | E(8,<q>) ; Lie group of exceptional type
## | 2E(6,<q>) | F(4,<q>) | G(2,<q>)
## | 3D(4,<q>) ; Steinberg triality group
## | M11 | M12 | M22 | M23 | M24
## | J1 | J2 | J3 | J4 | Co1 | Co2
## | Co3 | Fi22 | Fi23 | Fi24' | Suz
## | HS | McL | He | HN | Th | B
## | M | ON | Ly | Ru ; sporadic simple group
## | 2F(4,2)' ; Tits group
## | PerfectGroup(<size>,<id>) ; the indicated group from the
## ; library of perfect groups
## | A x B ; direct product
## | N : H ; semidirect product
## | C(G) . G/C(G) = G' . G/G' ; non-split extension
## ; (equal alternatives and
## ; trivial extensions omitted)
## | Phi(G) . G/Phi(G) ; non-split extension:
## ; Frattini subgroup and
## ; Frattini factor group
## ]]></Listing>
## <P/>
## Note that the <Ref Func="StructureDescription"/> is only <E>one</E>
## possible way of building up the given group from smaller pieces. <P/>
##
## The option <Q>short</Q> is recognized - if this option is set, an
## abbreviated output format is used (e.g. <C>"6x3"</C> instead of
## <C>"C6 x C3"</C>). <P/>
##
## If the <Ref Func="Name"/> attribute is not bound, but
## <Ref Func="StructureDescription"/> is, <Ref Func="View"/> prints the
## value of the attribute <Ref Func="StructureDescription"/>.
## The <Ref Func="Print"/>ed representation of a group is not affected
## by computing a <Ref Func="StructureDescription"/>. <P/>
##
## The strategy used to compute a <Ref Func="StructureDescription"/> is
## as follows:
## <P/>
## <List>
## <Mark>1.</Mark>
## <Item>
## Lookup in a precomputed list, if the order of <A>G</A> is not
## larger than 100 and not equal to 64.
## </Item>
## <Mark>2.</Mark>
## <Item>
## If <A>G</A> is abelian, then decompose it into cyclic factors
## in <Q>elementary divisors style</Q>. For example,
## <C>"C2 x C3 x C3"</C> is <C>"C6 x C3"</C>.
## </Item>
## <Mark>3.</Mark>
## <Item>
## Recognize alternating groups, symmetric groups,
## dihedral groups, quasidihedral groups, quaternion groups,
## PSL's, SL's, GL's and simple groups not listed so far
## as basic building blocks.
## </Item>
## <Mark>4.</Mark>
## <Item>
## Decompose <A>G</A> into a direct product of irreducible factors.
## </Item>
## <Mark>5.</Mark>
## <Item>
## Recognize semidirect products <A>G</A>=<M>N</M>:<M>H</M>,
## where <M>N</M> is normal.
## Select a pair <M>N</M>, <M>H</M> with the following preferences:
## <List>
## <Mark>1.</Mark>
## <Item>
## <M>H</M> is abelian
## </Item>
## <Mark>2.</Mark>
## <Item>
## <M>N</M> is abelian
## </Item>
## <Mark>2a.</Mark>
## <Item>
## <M>N</M> has many abelian invariants
## </Item>
## <Mark>3.</Mark>
## <Item>
## <M>N</M> is a direct product
## </Item>
## <Mark>3a.</Mark>
## <Item>
## <M>N</M> has many direct factors
## </Item>
## <Mark>4.</Mark>
## <Item>
## <M>\phi: H \rightarrow</M> Aut(<M>N</M>),
## <M>h \mapsto (n \mapsto n^h)</M> is injective.
## </Item>
## </List>
## </Item>
## <Mark>6.</Mark>
## <Item>
## Fall back to non-splitting extensions:
## If the centre or the commutator factor group is non-trivial,
## write <A>G</A> as Z(<A>G</A>).<A>G</A>/Z(<A>G</A>) or
## <A>G</A>'.<A>G</A>/<A>G</A>', respectively.
## Otherwise if the Frattini subgroup is non-trivial, write <A>G</A>
## as <M>\Phi</M>(<A>G</A>).<A>G</A>/<M>\Phi</M>(<A>G</A>).
## </Item>
## <Mark>7.</Mark>
## <Item>
## If no decomposition is found (maybe this is not the case for
## any finite group), try to identify <A>G</A> in the perfect groups
## library. If this fails also, then return a string describing this
## situation.
## </Item>
## </List>
## Note that <Ref Func="StructureDescription"/> is <E>not</E> intended
## to be a research tool, but rather an educational tool. The reasons for
## this are as follows:
## <List>
## <Mark>1.</Mark>
## <Item>
## <Q>Most</Q> groups do not have <Q>nice</Q> decompositions.
## This is in some contrast to what is often taught in elementary
## courses on group theory, where it is sometimes suggested that
## basically every group can be written as iterated direct or
## semidirect product of cyclic groups and nonabelian simple groups.
## </Item>
## <Mark>2.</Mark>
## <Item>
## In particular many <M>p</M>-groups have very <Q>similar</Q>
## structure, and <Ref Func="StructureDescription"/> can only
## exhibit a little of it. Changing this would likely make the
## output not essentially easier to read than a pc presentation.
## </Item>
## </List>
## <Example><![CDATA[
## gap> l := AllSmallGroups(12);;
## gap> List(l,StructureDescription);; l;
## [ C3 : C4, C12, A4, D12, C6 x C2 ]
## gap> List(AllSmallGroups(40),G->StructureDescription(G:short));
## [ "5:8", "40", "5:8", "5:Q8", "4xD10", "D40", "2x(5:4)", "(10x2):2",
## "20x2", "5xD8", "5xQ8", "2x(5:4)", "2^2xD10", "10x2^2" ]
## gap> List(AllTransitiveGroups(DegreeAction,6),
## > G->StructureDescription(G:short));
## [ "6", "S3", "D12", "A4", "3xS3", "2xA4", "S4", "S4", "S3xS3",
## "(3^2):4", "2xS4", "A5", "(S3xS3):2", "S5", "A6", "S6" ]
## gap> StructureDescription(PSL(4,2));
## "A8"
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "StructureDescription", IsGroup );
#############################################################################
##
#E
|