This file is indexed.

/usr/share/gap/lib/grppccom.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#############################################################################
##
#W  grppccom.gd                  GAP Library                     Frank Celler
#W                                                           Alexander Hulpke
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the operations for the computation of complements in
##  pc groups
##

#############################################################################
##
#V  InfoComplement
##
##  <#GAPDoc Label="InfoComplement">
##  <ManSection>
##  <InfoClass Name="InfoComplement"/>
##
##  <Description>
##  Info class for the complement routines.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass("InfoComplement");

#############################################################################
##
#F  COAffineBlocks( <S>,<Sgens>,<mats>,<orbs> )
##
##  <ManSection>
##  <Func Name="COAffineBlocks" Arg='S,Sgens,mats,orbs'/>
##
##  <Description>
##  Let <A>S</A> be a group whose generators <A>Sgens</A> act via <A>mats</A> on an affine
##  space. This routine calculates the orbits under this action. If <A>orbs</A>
##  also orbits as sets of vectors are returned.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("COAffineBlocks");

#############################################################################
##
#O  CONextCentralizer( <ocr>, <S>, <H> )  . . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="CONextCentralizer" Arg='ocr, S, H'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("CONextCentralizer");

#############################################################################
##
#O  COAffineCohomologyAction( <ocr>, <fgens>, <acts>,<B> )
##
##  <ManSection>
##  <Oper Name="COAffineCohomologyAction" Arg='ocr, fgens, acts,B'/>
##
##  <Description>
##  calculates matrices for the affine action of a factor centralizer on the
##  complements, represented by elements of the cohomology group. <A>B</A> is the
##  result of <C>BaseSteinitzVectors</C> used to represent the cohomology group.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("COAffineCohomologyAction");

#############################################################################
##
#O  CONextCocycles( <cor>, <ocr>, <S> ) . . . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="CONextCocycles" Arg='cor, ocr, S'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("CONextCocycles");

#############################################################################
##
#O  CONextCentral( <cor>, <ocr>, <S> ) . . . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="CONextCentral" Arg='cor, ocr, S'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("CONextCentral");

#############################################################################
##
#O  CONextComplements( <cor>, <S>, <K>, <M> ) . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="CONextComplements" Arg='cor, S, K, M'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("CONextComplements");

#############################################################################
##
#O  COComplements( <cor>, <G>, <N>, <all> ) . . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="COComplements" Arg='cor, G, N, all'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("COComplements");

#############################################################################
##
#O  COComplementsMain( <G>, <N>, <all>, <fun> )  . . . . . . . . . . . . . local
##
##  <ManSection>
##  <Oper Name="COComplementsMain" Arg='G, N, all, fun'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction("COComplementsMain");

#############################################################################
##
#O  ComplementClassesRepresentativesSolvableNC( <G>, <N> )
##
##  <ManSection>
##  <Oper Name="ComplementClassesRepresentativesSolvableNC" Arg='G, N'/>
##
##  <Description>
##  computes a set of representatives of the complement classes of <A>N</A> in
##  <A>G</A> by cohomological methods. <A>N</A> must be a solvable normal subgroup
##  of <A>G</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation("ComplementClassesRepresentativesSolvableNC",
  [IsGroup,IsGroup]);


# Basic routine for complements with solvable factor group.
DeclareGlobalFunction("COSolvableFactor");

#############################################################################
##
#O  ComplementClassesRepresentatives( <G>, <N> ) . . . . . . . . . . . . find all complement
##
##  <#GAPDoc Label="ComplementClassesRepresentatives">
##  <ManSection>
##  <Oper Name="ComplementClassesRepresentatives" Arg='G, N'/>
##
##  <Description>
##  Let <A>N</A> be a normal subgroup of <A>G</A>.
##  This command returns a set of representatives for the conjugacy classes
##  of complements of <A>N</A> in <A>G</A>.
##  Complements are subgroups of <A>G</A> which intersect trivially with
##  <A>N</A> and together with <A>N</A> generate <A>G</A>.
##  <P/>
##  At the moment only methods for a solvable <A>N</A> are available.
##  <Example><![CDATA[
##  gap> ComplementClassesRepresentatives(g,Group((1,2)(3,4),(1,3)(2,4)));
##  [ Group([ (3,4), (2,4,3) ]) ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("ComplementClassesRepresentatives",[IsGroup,IsGroup]);


#############################################################################
##
#E