/usr/share/gap/lib/grppcfp.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 | #############################################################################
##
#W grppcfp.gi GAP library Bettina Eick
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains some functions to convert a pc group into an
## fp group and vice versa.
##
#############################################################################
##
#F PcGroupFpGroup( F )
#F PcGroupFpGroupNC( F )
##
InstallGlobalFunction( PcGroupFpGroup, function( F )
return PolycyclicFactorGroup(
FreeGroupOfFpGroup( F ),
RelatorsOfFpGroup( F ) );
end );
InstallGlobalFunction( PcGroupFpGroupNC, function( F )
return PolycyclicFactorGroupNC(
FreeGroupOfFpGroup( F ),
RelatorsOfFpGroup( F ) );
end );
#############################################################################
##
#F IsomorphismFpGroupByPcgs( pcgs, str )
##
InstallGlobalFunction( IsomorphismFpGroupByPcgs, function( pcgs, str )
local n, F, gens, rels, i, pis, exp, t, h, rel, comm, j, H, phi;
n:=Length(pcgs);
if n=0 then
phi:=GroupHomomorphismByImagesNC(GroupOfPcgs(pcgs),
TRIVIAL_FP_GROUP,[],[]);
SetIsBijective( phi, true );
return phi;
fi;
F := FreeGroup( n, str );
gens := GeneratorsOfGroup( F );
pis := RelativeOrders( pcgs );
rels := [ ];
for i in [1..n] do
# the power
exp := ExponentsOfRelativePower( pcgs, i ){[i+1..n]};
t := One( F );
for h in [i+1..n] do
t := t * gens[h]^exp[h-i];
od;
rel := gens[i]^pis[i] / t;
Add( rels, rel );
# the commutators
for j in [i+1..n] do
comm := Comm( pcgs[j], pcgs[i] );
exp := ExponentsOfPcElement( pcgs, comm ){[i+1..n]};
t := One( F );
for h in [i+1..n] do
t := t * gens[h]^exp[h-i];
od;
rel := Comm( gens[j], gens[i] ) / t;
Add( rels, rel );
od;
od;
H := F / rels;
SetSize(H,Product(RelativeOrders(pcgs)));
phi :=
GroupHomomorphismByImagesNC( GroupOfPcgs(pcgs), H, AsList( pcgs ),
GeneratorsOfGroup( H ) );
SetIsBijective( phi, true );
return phi;
end );
#############################################################################
##
#M IsomorphismFpGroupByCompositionSeries( G, str )
##
InstallOtherMethod( IsomorphismFpGroupByCompositionSeries, "pc groups",
true, [IsGroup and CanEasilyComputePcgs,IsString], 0,
function( G,nam )
return IsomorphismFpGroupByPcgs( Pcgs(G), nam );
end);
#############################################################################
##
#O IsomorphismFpGroup( G )
##
InstallOtherMethod( IsomorphismFpGroup, "pc groups",
true, [IsGroup and CanEasilyComputePcgs,IsString], 0,
function( G,nam )
return IsomorphismFpGroupByPcgs( Pcgs( G ), nam);
end );
#############################################################################
##
#O IsomorphismFpGroupByGeneratorsNC( G )
##
InstallMethod(IsomorphismFpGroupByGeneratorsNC,"pcgs",
IsFamFamX,[IsGroup,IsPcgs,IsString],0,
function( G,p,nam )
# this test now is obsolete but extremely cheap.
if Product(RelativeOrders(p))<Size(G) then
Error("pcgs does not generate the group");
fi;
return IsomorphismFpGroupByPcgs( p, nam);
end );
#############################################################################
##
#F InitEpimorphismSQ( F )
##
InstallGlobalFunction( InitEpimorphismSQ, function( F )
local g, gens, r, rels, ng, nr, pf, pn, pp, D, P, M, Q, I, A, G, min,
gensA, relsA, gensG, imgs, prei, i, j, k, l, norm, index, diag, n,genu;
if IsFpGroup(F) then
gens := GeneratorsOfGroup( FreeGroupOfFpGroup( F ) );
ng := Length( gens );
genu:=List(gens,i->GeneratorSyllable(i,1));
genu:=List([1..Maximum(genu)],i->Position(genu,i));
rels := RelatorsOfFpGroup( F );
nr := Length( rels );
# build the relation matrix for the commutator quotient group
M := [];
for i in [ 1..Maximum( nr, ng ) ] do
M[i] := List( [ 1..ng ], i->0 );
if i <= nr then
r := rels[i];
for j in [1..NrSyllables(r)] do
g := GeneratorSyllable(r,j);
k:=genu[g];
M[i][k] := M[i][k] + ExponentSyllable(r,j);
od;
fi;
od;
# compute normal form
norm := NormalFormIntMat( M,15 );
D := norm.normal;
P := norm.rowtrans;
Q := norm.coltrans;
I := Q^-1;
min := Minimum( Length(D), Length(D[1]) );
diag := List( [1..min], x -> D[x][x] );
if ForAny( diag, x -> x = 0 ) then
Info(InfoSQ,1,"solvable quotient is infinite");
return false;
fi;
# compute pc presentation for the finite quotient
n := Filtered( diag, x -> x <> 1 );
n := Length( Flat( List( n, x -> FactorsInt( x ) ) ) );
A := FreeGroup(IsSyllableWordsFamily, n );
gensA := GeneratorsOfGroup( A );
index := [];
relsA := [];
g := 1;
pf := [];
for i in [ 1..ng ] do
if D[i][i] <> 1 then
index[i] := g;
pf[i] := TransposedMat( Collected( FactorsInt( D[i][i] ) ) );
pf[i] := rec( factors := pf[i][1],
powers := pf[i][2] );
for j in [ 1..Length( pf[i].factors ) ] do
pn := pf[i].factors[j];
pp := pf[i].powers [j];
for k in [ 1..pp ] do
relsA[g] := [];
relsA[g][g] := gensA[g]^pn;
for l in [ 1..g-1 ] do
relsA[g][l] := gensA[g]^gensA[l]/gensA[g];
od;
if j <> 1 or k <> 1 then
relsA[g-1][g-1] := relsA[g-1][g-1]/gensA[g];
fi;
g := g + 1;
od;
od;
fi;
od;
relsA := Flat( relsA );
A := A / relsA;
# compute corresponding pc group
G := PcGroupFpGroup( A );
gensG := Pcgs( G );
# set up epimorphism F -> A -> G
imgs := [];
for i in [ 1..ng ] do
imgs[i] := One( G );
for j in [ 1..ng ] do
if Q[i][j] <> 0 and D[j][j] <> 1 then
imgs[i] := imgs[i] * gensG[index[j]]^( Q[i][j] mod D[j][j] );
fi;
od;
od;
# compute preimages
prei := [];
for i in [ 1..ng ] do
if D[i][i] <> 1 then
r := One( FreeGroupOfFpGroup( F ) );
for j in [ 1..ng ] do
if imgs[j] <> One( G ) then
r := r * gens[j] ^ ( I[i][j] mod Order( imgs[j] ) );
fi;
od;
g := index[i];
for j in [ 1..Length( pf[i].factors ) ] do
pn := pf[i].factors[j];
pp := pf[i].powers [j];
for k in [ 1..pp ] do
prei[g] := r;
g := g + 1;
r := r ^ pn;
od;
od;
fi;
od;
return rec( source := F,
image := G,
imgs := imgs,
prei := prei );
elif IsMapping(F) then
if IsSurjective(F) and IsWholeFamily(Range(F)) then
return rec(source:=Source(F),
image:=Parent(Image(F)), # parent will replace full group
# with other gens.
imgs:=List(GeneratorsOfGroup(Source(F)),
i->Image(F,i)));
else
# ensure the image group is the whole family
gensG:=Pcgs(Image(F));
G:=GroupByPcgs(gensG);
return rec(source:=Source(F),
image:=G,
imgs:=List(GeneratorsOfGroup(Source(F)),
i->PcElementByExponentsNC(FamilyPcgs(G),
ExponentsOfPcElement(gensG,Image(F,i)))));
fi;
fi;
Error("Syntax!");
end );
#############################################################################
##
#F LiftEpimorphismSQ( epi, M, c )
##
InstallGlobalFunction( LiftEpimorphismSQ, function( epi, M, c )
local F, G, pcgsG, n, H, pcgsH, d, gensf, pcgsN, htil, gtil, mtil,mtilinv,
w, e, g, m, i, A, V, rel, l, v, mats, j, t, mat, k, elms, imgs,
lift, null, vec, new, U, sol, sub, elm, r,tval,tvalp,
ex,pos,i1,genid,rels,reln,stopi;
F := epi.source;
gensf := GeneratorsOfGroup( FreeGroupOfFpGroup( F ) );
r := Length( gensf );
genid:=[];
for i in [1..r] do
genid[GeneratorSyllable(gensf[i],1)]:=i;
od;
d := M.dimension;
G := epi.image;
pcgsG := Pcgs( G );
n := Length( pcgsG );
H := ExtensionNC( G, M, c );
pcgsH := Pcgs( H );
pcgsN := InducedPcgsByPcSequence( pcgsH, pcgsH{[n+1..n+d]} );
htil := pcgsH{[1..n]};
gtil := [];
mtil := [];
mtilinv:=[];
for w in epi.imgs do
e := ExponentsOfPcElement( pcgsG, w );
g := PcElementByExponentsNC( pcgsH, htil, e );
Add( gtil, g );
m := ImmutableMatrix(M.field, IdentityMat( d, M.field ) );
for i in [1..n] do
m := m * M.generators[i]^e[i];
od;
Add( mtil,m);
#Add( mtilinv, ImmutableMatrix(M.field,m^-1 ));
od;
mtilinv:=List(mtil,i->i^-1);
# set up inhom eq
A := List( [1..r*d], x -> [] );
V := [];
# for each relator of G add
rels:=RelatorsOfFpGroup(F);
stopi:=[4,8,15,30,200];
AddSet(stopi,Length(rels));
for reln in [1..Length(rels)] do
if IsInt(reln/100) then
Info(InfoSQ,2,reln);
fi;
rel:=rels[reln];
l := NrSyllables( rel );
# right hand side
# was: v := MappedWord( rel, gensf, gtil );
v:=One(gtil[1]);
for i in [1..l] do
j := genid[GeneratorSyllable(rel,i)];
ex:=ExponentSyllable(rel,i);
if ex<0 then
v:=v/gtil[j]^(-ex);
else
v:=v*gtil[j]^ex;
fi;
od;
v := ExponentsOfPcElement( pcgsN, v ) * One( M.field );
Append( V, v );
# left hand side
mats := ListWithIdenticalEntries( r,
Immutable( NullMat( d, d, M.field ) ) );
# ahulpke, 28-feb-00: it seems to be much more clever, to run
# through this loop backwards. Then `MappedWord' can be replaced by
# a multiplication
# Similarly the iterated calls to `Subword' are very expensive - better
# use the internal syllable indexing
# tval is the product from position i on, tvalp the product from
# position i+1 on (the tval of the last round)
tval:=One(mats[1]);
for i in [l,l-1..1] do
j := genid[GeneratorSyllable(rel,i)];
ex:=ExponentSyllable(rel,i);
if ex<0 then
pos:=false;
ex:=-ex;
else
pos:=true;
fi;
for i1 in [1..ex] do
tvalp:=tval;
if pos then
tval:=mtil[j]*tval;
mat:=tvalp;
mats[j] := mats[j] + mat;
else
tval:=mtilinv[j]*tval;
mat := tval;
mats[j] := mats[j] - mat;
fi;
od;
od;
for i in [1..r] do
for j in [1..d] do
k := d * (i-1) + j;
Append( A[k], mats[i][j] );
od;
od;
# do these tests several times earlier to speed up
if reln in stopi then
sol := SolutionMat( A, V );
# if there is no solution, then there is no lift
if sol=fail then
#T return value should be fail?
if reln<Length(rels) then
Info(InfoSQ,3,"early break:",reln);
fi;
return false;
fi;
fi;
od;
# create lift
elms := [];
for i in [1..r] do
sub := - sol{[d*(i-1)+1..d*i]};
elm := PcElementByExponentsNC( pcgsN, sub );
Add( elms, elm );
od;
imgs := List( [1..r], x -> gtil[x] * elms[x] ) ;
lift := rec( source := F,
image := H,
imgs := imgs );
# in non-split case this is it
if IsRowVector( c ) then return lift; fi;
# otherwise check
U := Subgroup( H, imgs );
if Size( U ) = Size( H )
and c=0 then # c=0 is the ordinary case
return lift;
else
lift:=false; # indicate the lift is no good
fi;
# this is not optimal - see Plesken
null := NullspaceMat( A );
Info(InfoSQ,2,"nullspace dimension:",Length(null));
for vec in null do
new := vec + sol;
elms := [];
for i in [1..r] do
sub := new{[d*(i-1)+1..d*i]};
elm := PcElementByExponentsNC( pcgsN, sub );
Add( elms, elm );
od;
imgs := List( [1..r], x -> gtil[x] * elms[x] );
U := Subgroup( H, imgs );
if Size( U ) = Size( H ) then
if lift<>false then
Info(InfoSQ,2,"found one");
lift:=SubdirProdPcGroups(H,imgs,
lift.image,lift.imgs);
H:=lift[1];
imgs:=lift[2];
fi;
lift := rec( source := F,
image := H,
imgs := imgs );
if c=0 then
return lift;
fi;
fi;
od;
# give up
return lift; # if c=0 this is automatically false
end );
#############################################################################
##
#F BlowUpCocycleSQ( v, K, F )
##
InstallGlobalFunction( BlowUpCocycleSQ, function( v, K, F )
local Q, B, vectors, hlp, i, k;
if F = K then return v; fi;
Q := AsField( K, F );
B := Basis( Q );
vectors:= BasisVectors( B );
hlp := [];
for i in [ 1..Length( v ) ] do
for k in [ 1..Length( vectors ) ] do
Add( hlp, Coefficients( B, v[i] * vectors[k] )[1] );
od;
od;
return hlp;
end );
#############################################################################
##
#F TryModuleSQ( epi, M )
##
InstallGlobalFunction( TryModuleSQ, function( epi, M )
local C, lift, co, cb, cc, r, q, ccpos, ccnum, l, v, qi, c;
# first try a split extension
lift := LiftEpimorphismSQ( epi, M, 0 );
if not IsBool( lift ) then return lift; fi;
# get collector
C := CollectorSQ( epi.image, M.absolutelyIrreducible, true );
# compute the two cocycles
co := TwoCocyclesSQ( C, epi.image, M.absolutelyIrreducible );
# if there is one non split extension, try all mod coboundaries
if 0 < Length(co) then
cb := TwoCoboundariesSQ( C, epi.image, M.absolutelyIrreducible );
# use only those coboundaries which lie in <co>
if 0 < Length(C.avoid) then
cb := SumIntersectionMat( co, cb )[2];
fi;
# convert them into row spaces
if 0 < Length(cb) then
cc := BaseSteinitzVectors( co, cb ).factorspace;
else
cc := co;
fi;
# try all non split extensions
if 0 < Length(cc) then
r := PrimitiveRoot( M.absolutelyIrreducible.field );
q := Size( M.absolutelyIrreducible.field );
# loop over all vectors of <cc>
for ccpos in [ 1 .. Length(cc) ] do
for ccnum in [ 0 .. q^(Length(cc)-ccpos)-1 ] do
v := cc[Length(cc)-ccpos+1];
for l in [ 1 .. Length(cc)-ccpos ] do
qi := QuoInt( ccnum, q^(l-1) );
if qi mod q <> q-1 then
v := v + r^(qi mod q) * cc[l];
fi;
od;
# blow cocycle up
c := BlowUpCocycleSQ( v, M.field,
M.absolutelyIrreducible.field );
# try to lift epimorphism
lift := LiftEpimorphismSQ( epi, M, c);
# return if we have found a lift
if not IsBool( lift ) then return lift; fi;
od;
od;
fi;
fi;
# give up
return false;
end );
#############################################################################
##
#F AllModulesSQ( epi, M )
##
InstallGlobalFunction( AllModulesSQ, function( epi, M,onlyact )
local C, lift, co, cb, cc, r, q, ccpos, ccnum, l, v, qi,
c,all,cnt,total,i,j,iter,sel,dim;
iter:=onlyact<Length(Pcgs(epi.image)); # are we running in iteration?
all:=epi;
if not iter then
# first try a split extension
# the -1 indicates we want *all* sdps
lift := LiftEpimorphismSQ( epi, M, -1 );
if not IsBool( lift ) then
all:=lift;
Info(InfoSQ,2,"semidirect ",Size(all.image)/Size(epi.image)," found");
fi;
fi;
# get collector
dim:=M.absolutelyIrreducible.dimension;
C := CollectorSQ( epi.image, M.absolutelyIrreducible, true );
# compute the two cocycles
co := TwoCocyclesSQ( C, epi.image, M.absolutelyIrreducible );
# if there is one non split extension, try all mod coboundaries
if 0 < Length(co) then
cb := TwoCoboundariesSQ( C, epi.image, M.absolutelyIrreducible );
q:=false;
if iter and Length(cb)>0 then
# we only want those cocycles, which are trivial for the extra
# generators
# find those indices which can have nontrivial cocycles
r:=Length(Pcgs(epi.image));
v:=[1..dim];
sel:=[];
for i in [1..r] do
for j in [1..Minimum(i,onlyact)] do
UniteSet(sel,((i^2-i)/2+j-1)*dim+v);
od;
od;
v:=IdentityMat(Length(co[1]),M.absolutelyIrreducible.field){sel};
v:=ImmutableMatrix(M.absolutelyIrreducible.field,v);
r:=SumIntersectionMat(v,co)[2];
if Length(r)<Length(co) then
Info(InfoSQ,1,"don't need all cocycles/reduced cohomology");
co:=r;
q:=true; # use as flag whether it got changed
fi;
fi;
# use only those coboundaries which lie in <co>
if 0 < Length(C.avoid) or q then
cb := SumIntersectionMat( co, cb )[2];
fi;
# representatives for basis for the 2-cohomology
if 0 < Length(cb) then
cc := BaseSteinitzVectors( co, cb ).factorspace;
else
cc := co;
fi;
# try all non split extensions
if 0 < Length(cc) then
r := PrimitiveRoot( M.absolutelyIrreducible.field );
q := Size( M.absolutelyIrreducible.field );
total:=Int(q^Length(cc)/(q-1)); # approximately
cnt:=0;
# loop over all vectors of <cc>
for ccpos in [ 1 .. Length(cc) ] do
for ccnum in [ 0 .. q^(Length(cc)-ccpos)-1 ] do
cnt:=cnt+1;
if cnt mod 10 =0 then
CompletionBar(InfoSQ,2,"cocycle loop: ",cnt/total);
fi;
v := cc[Length(cc)-ccpos+1];
for l in [ 1 .. Length(cc)-ccpos ] do
qi := QuoInt( ccnum, q^(l-1) );
if qi mod q <> q-1 then
v := v + r^(qi mod q) * cc[l];
fi;
od;
# blow cocycle up
c := BlowUpCocycleSQ( v, M.field,
M.absolutelyIrreducible.field );
# try to lift epimorphism
lift := LiftEpimorphismSQ( epi, M, c);
# return if we have found a lift
if not IsBool( lift ) then
lift:=SubdirProdPcGroups(all.image,all.imgs,
lift.image,lift.imgs);
all:=rec(source:=epi.source,
image:=lift[1],
imgs:=lift[2]);
Info(InfoSQ,2,"locally ",Size(all.image)/Size(epi.image),
" found");
fi;
od;
od;
fi;
CompletionBar(InfoSQ,2,"cocycle loop: ",false);
fi;
# return all lifts
return all;
end );
#############################################################################
##
#F TryLayerSQ( epi, layer )
##
InstallGlobalFunction( TryLayerSQ, function( epi, layer )
local field, dim, reps, rep, lift;
# compute modules for prime
field := GF(layer[1]);
dim := layer[2];
reps := IrreducibleModules( epi.image, field, dim );
reps:=reps[2]; # the actual modules
# loop over the representations
for rep in reps do
lift := TryModuleSQ( epi, rep );
if not IsBool( lift ) then
if not layer[3] or rep.dimension = dim then
return lift;
fi;
fi;
od;
# give up
return false;
end );
#############################################################################
##
#F EAPrimeLayerSQ( epi, prime )
##
InstallGlobalFunction( EAPrimeLayerSQ, function( epi, prime )
local field, dim, rep, lift,all,dims,allmo,mo,start,found,genum,genepi;
# compute modules for prime
field := GF(prime);
start:=epi;
dims:=List(CharacterDegrees(epi.image,prime),i->i[1]);
genum:=Length(Pcgs(epi.image)); # number of generators of the starting
# group. (We need to consider nontrivial
# cocycles only for those elements, as we
# only want to get one layer.)
# build all modules
allmo:=[];
for dim in dims do
rep := IrreducibleModules( epi.image, field, dim );
rep:=rep[2]; # the actual modules
rep:=Filtered(rep,i->i.dimension=dim);
Info(InfoSQ,1,"Dimension ",dim,", ",Length(rep)," modules");
allmo[dim]:=rep;
od;
repeat # extend as long as possible
all:=epi;
genepi:=Length(Pcgs(epi.image));
found:=false;
for dim in dims do
# loop over the representations
for rep in [1..Length(allmo[dim])] do
Info(InfoSQ,2,"Module representative ",dim," #",rep);
mo:=allmo[dim][rep];
# inflate to extra generators
if genum<genepi then
mo:=GModuleByMats(Concatenation(mo.generators,
List([1..genepi-genum],
i->One(mo.generators[1]))),field);
if allmo[dim][rep].absolutelyIrreducible=allmo[dim][rep] then
mo.absolutelyIrreducible:=mo;
else
mo.absolutelyIrreducible:=GModuleByMats(
Concatenation(allmo[dim][rep].absolutelyIrreducible.generators,
List([1..genepi-genum],
i->One(allmo[dim][rep].absolutelyIrreducible.generators[1]))),
allmo[dim][rep].absolutelyIrreducible.field);
fi;
fi;
lift := AllModulesSQ( epi, mo,genum);
if Size(lift.image)>Size(epi.image) then
found:=true;
lift:=SubdirProdPcGroups(all.image,all.imgs,
lift.image,lift.imgs);
all:=rec(source:=epi.source,
image:=lift[1],
imgs:=lift[2]);
Info(InfoSQ,1,"globally ",Size(all.image)/Size(start.image)," found");
fi;
od;
od;
epi:=all;
until not found;
return all;
end );
#############################################################################
##
#F SQ( <F>, <...> ) / SolvableQuotient( <F>, <...> )
##
InstallGlobalFunction( SolvableQuotient, function ( F, primes )
local G, epi, tup, lift, i, found, fac, j, p, iso;
# initialise epimorphism
epi := InitEpimorphismSQ(F);
if epi=false then
if 0 in AbelianInvariants(F) then
Error("Group has infinite abelian quotient");
else
Error("initialization failed");
fi;
fi;
iso := IsomorphismSpecialPcGroup( epi.image );
epi.image := Image( iso );
epi.imgs := List( epi.imgs, x -> Image( iso, x ) );
G := epi.image;
Info(InfoSQ,1,"init done, quotient has size ",Size(G));
# if the commutator factor group is trivial return
if Size( G ) = 1 then return epi; fi;
# if <primes> is a list of tuples, it denotes a chief series
if IsList( primes ) and IsList( primes[1] ) then
Info(InfoSQ,2,"have chief series given");
for tup in primes{[2..Length(primes)]} do
Info(InfoSQ,1,"trying ", tup);
tup[3] := true;
lift := TryLayerSQ( epi, tup );
if IsBool( lift ) then
return epi;
else
epi := ShallowCopy( lift );
iso := IsomorphismSpecialPcGroup( epi.image );
epi.image := Image( iso );
epi.imgs := List( epi.imgs, x -> Image( iso, x ) );
G := epi.image;
fi;
Info(InfoSQ,1,"found quotient of size ", Size(G));
od;
fi;
# if <primes> is a list of primes, we have to use try and error
if IsList( primes ) and IsInt( primes[1] ) then
found := true;
i := 1;
while found and i <= Length( primes ) do
p := primes[i];
tup := [p, 0, false];
Info(InfoSQ,1,"trying ", tup);
lift := TryLayerSQ( epi, tup );
if not IsBool( lift ) then
epi := ShallowCopy( lift );
iso := IsomorphismSpecialPcGroup( epi.image );
epi.image := Image( iso );
epi.imgs := List( epi.imgs, x -> Image( iso, x ) );
G := epi.image;
found := true;
i := 1;
else
i := i + 1;
fi;
Info(InfoSQ,1,"found quotient of size ", Size(G));
od;
fi;
# if <primes> is an integer it is size we want
if IsInt(primes) then
if not IsInt(primes/Size(G)) then
i:=Lcm(primes,Size(G));
Info(InfoWarning,1,"Added extra factor ",i/primes,
" to allow for G/G'");
primes:=i;
fi;
i := primes / Size( G );
found := true;
while i > 1 and found do
fac := Collected( FactorsInt( i ) );
found := false;
j := 1;
while not found and j <= Length( fac ) do
fac[j][3] := false;
Info(InfoSQ,1,"trying ", fac[j]);
lift := TryLayerSQ( epi, fac[j] );
if not IsBool( lift ) then
epi := ShallowCopy( lift );
iso := IsomorphismSpecialPcGroup( epi.image );
epi.image := Image( iso );
epi.imgs := List( epi.imgs, x -> Image( iso, x ) );
G := epi.image;
found := true;
i := primes / Size( G );
else
j := j + 1;
fi;
Info(InfoSQ,1,"found quotient of size ", Size(G));
od;
od;
fi;
# this is the result - should be G only with setted epimorphism
return epi;
end );
InstallGlobalFunction(EpimorphismSolvableQuotient,function(arg)
local g, sq, hom;
g:=arg[1];
sq:=CallFuncList(SQ,arg);
hom:=GroupHomomorphismByImages(g,sq.image,GeneratorsOfGroup(g),sq.imgs);
return hom;
end);
|