/usr/share/gap/lib/grppcint.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | #############################################################################
##
#W grppcint.gi GAP Library Frank Celler
#W & Bettina Eick
##
##
#Y Copyright (C) 1996, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the methods for the intersection of polycylic groups.
##
#############################################################################
##
#V GS_SIZE . . . . . . . . . . . . . . . . size from which on we use glasby
##
GS_SIZE := 20;
#############################################################################
##
#F GlasbyCover( <S>, <A>, <B>, <pcgsK> )
##
## Glasby's generalized covering algorithmus. <S> := <H>/\<N> * <K>/\<N>
## and <A> < <H>, <B> < <K>. <A> ( and also <B> ) generate the intersection
## modulo <S>.
##
GlasbyCover := function( S, A, B, pcgsK )
local Am, Bm, z, i;
# Decompose the intersection <H> /\ <K> /\ <N>.
Am := AsList( S.intersection );
Bm := List( Am, x -> x / SiftedPcElement( pcgsK, x ) );
# Now cover the other generators.
for i in [ 1 .. Length( A ) ] do
z := S.factorization(LeftQuotient( A[i], B[i]) );
A[ i ] := A[ i ] * z.u;
# what is the aim of this arithmetic? We can save one inversion
#B[ i ] := B[ i ] * ( z.n / SiftedPcElement( pcgsK, z.n ) ) ^ -1;
B[ i ] := B[ i ] * (SiftedPcElement( pcgsK, z.n )/z.n);
od;
# Concatenate them and return. The are not normalized.
Append( A, Am );
Append( B, Bm );
end;
#############################################################################
##
#F GlasbyShift( <C>, <B> )
##
GlasbyShift := function( C, B )
return List( C, x -> x / SiftedPcElement( B, x ) );
end;
#############################################################################
##
#F GlasbyStabilizer( <pcgs>, <A>, <B>, <pcgsL>)
##
GlasbyStabilizer := function( pcgs, A, B, pcgsL )
local f, transl, matA, pt;
f := GF( Order( pcgsL[1] ) );
transl := function( a )
return ExponentsOfPcElement(pcgsL,SiftedPcElement(B,a)) * One(f);
end;
A := InducedPcgsByPcSequenceNC( pcgs, A );
#U := SubgroupByPcgs( GroupOfPcgs(pcgs), A );
matA := AffineActionLayer( A, pcgsL, transl );
pt := List( pcgsL, x -> Zero( f ) );
Add( pt, One( f ) );
ConvertToVectorRep(pt,f);
# was: return Pcgs( Stabilizer( U, pt, A, matA, OnRight ) );
# we cannot simply return this pcgs here, as we cannot guarantee that
# the pcgs of this group will be compatible with the pcgs wrt. which we
# are computing.
#return InducedPcgs(pcgs, Stabilizer( U, pt, A, matA, OnRight ) );
return StabilizerPcgs(A, pt, matA, OnRight );
end;
#############################################################################
##
#F AvoidedLayers
##
AvoidedLayers := function( pcgs, pcgsH, pcgsK )
local occur, h, k, first, next, avoided, primes, p, sylow, res, i,
firsts, weights;
# get the gens, which do not occur in H or K
occur := List( [ 1..Length( pcgs ) ], x -> 0 );
for h in pcgsH do
occur := occur + ExponentsOfPcElement( pcgs, h );
od;
for k in pcgsK do
occur := occur + ExponentsOfPcElement( pcgs, k );
od;
# make a list of the avoided layers
avoided := [ ];
firsts := LGFirst( pcgs );
weights := LGWeights( pcgs );
for i in [ 1..Length( firsts )-1 ] do
first := firsts[i];
next := firsts[i+1];
if Maximum( occur{[first..next-1]} ) = 0 then
Add( avoided, first );
fi;
od;
# get the avoided heads
res := [ ];
for i in avoided do
if weights[i][2] = 1 then
Add( res, i );
fi;
od;
# get the avoided Sylow subgroups
primes := Set( List( avoided, x -> weights[x][3] ) );
for p in primes do
sylow := Filtered( firsts{[1..Length(firsts)-1]},
x -> weights[x][3] = p );
if IsSubset( avoided, sylow ) then
Append( res, sylow );
fi;
od;
return Set(res);
end;
#############################################################################
##
#F GlasbyIntersection
##
GlasbyIntersection := function( pcgs, pcgsH, pcgsK )
local m, G, first, weights, avoid, A, B, i, start, next, HmN, KmN,
sum, pcgsS, pcgsR, C, D,
new, U, deptH, deptK,pcgsL,depthS,depthN;
# compute a cgs for <H> and <K>
G := GroupOfPcgs( pcgs );
m := Length( pcgs );
# use the special pcgs
first := LGFirst( pcgs );
weights := LGWeights( pcgs );
avoid := AvoidedLayers( pcgs, pcgsH, pcgsK );
deptH := List( pcgsH, x -> DepthOfPcElement( pcgs, x ) );
deptK := List( pcgsK, x -> DepthOfPcElement( pcgs, x ) );
# go down the elementary abelian series. <A> < <H>, <B> < <K>.
A := [ ];
B := [ ];
depthN:=[1..m];
for i in [ 1..Length(first)-1 ] do
start := first[i];
next := first[i+1];
depthS := depthN;
depthN := [next..m];
if not start in avoid then
#pcgsN := InducedPcgsByPcSequenceNC( pcgs, pcgs{depthN} );
HmN := pcgsH{Filtered( [1..Length(deptH)],
x -> start <= deptH[x] and next > deptH[x] )};
KmN := pcgsK{Filtered( [1..Length(deptK)],
x -> start <= deptK[x] and next > deptK[x] )};
#pcgsHmN := Concatenation( HmN, pcgsN );
#pcgsHmN := InducedPcgsByPcSequenceNC( pcgs, pcgsHmN );
#pcgsHF := pcgsHmN mod pcgsN;
#pcgsKmN := Concatenation( KmN, pcgsN );
#pcgsKmN := InducedPcgsByPcSequenceNC( pcgs, pcgsKmN );
#pcgsKF := pcgsKmN mod pcgsN;
# SumFactorizationFunction takes *LISTS* as arguments 2,3, so we
# don't need to make pcgs at all.
#pcgsHF := ModuloTailPcgsByList(pcgs,HmN,[next..m]);
#pcgsKF := ModuloTailPcgsByList(pcgs,KmN,[next..m]);
#sum := SumFactorizationFunctionPcgs( pcgs, pcgsHF, pcgsKF, pcgsN );
# and `SFF' now takes a tail depth, so the expensive sifting to
# find the identity can be ignored.
sum := SumFactorizationFunctionPcgs( pcgs, HmN, KmN, next );
# Maybe there is nothing left to stabilize.
if Length( sum.sum ) = next - start then
C := ShallowCopy( AsList( A ) );
D := ShallowCopy( AsList( B ) );
else
# GlasbyStabilizer would make a pcgs out of it first anyhow
B := InducedPcgsByPcSequenceNC( pcgs, B );
if Length(sum.sum)>0 then
pcgsS := InducedPcgsByPcSequenceNC( pcgs, pcgs{depthS} );
pcgsR := Concatenation( sum.sum, pcgs{depthN} );
pcgsR := InducedPcgsByPcSequenceNC( pcgs, pcgsR );
pcgsL:=pcgsS mod pcgsR;
else
pcgsL:=ModuloTailPcgsByList(pcgs,
pcgs{Difference(depthS,depthN)},
depthN);
fi;
C := GlasbyStabilizer( pcgs, A, B, pcgsL );
C := ShallowCopy( AsList( C ) );
#D := GlasbyShift( C, InducedPcgsByPcSequenceNC(pcgs, B) );
D := GlasbyShift( C, B );
D := ShallowCopy( AsList( D ) );
fi;
# Now we can cover <C> and <D>.
GlasbyCover( sum, C, D, pcgsK );
A := ShallowCopy( C );
B := ShallowCopy( D ) ;
fi;
od;
# <A> is the unnormalized intersection.
new := InducedPcgsByPcSequenceNC( pcgs, A );
U := SubgroupByPcgs( G, new );
return U;
end;
#############################################################################
##
#F ZassenhausIntersection( pcgs, pcgsN, pcgsU )
##
ZassenhausIntersection := function( pcgs, pcgsN, pcgsU )
local sw, m, ins, g, new;
if Length(pcgsN)=0 then
return SubgroupByPcgs( GroupOfPcgs( pcgs ), pcgsN );
fi;
# If <N> is composition subgroup, no calculation is needed. We can use
# weights instead. Otherwise 'IntersectionSumAgGroup' will do the work.
sw := DepthOfPcElement( pcgs, pcgsN[1] );
m := Length( pcgs );
if pcgs{[sw..m]} = pcgsN then
ins := [];
for g in pcgsU do
if DepthOfPcElement( pcgs, g ) >= sw then
Add( ins, g );
fi;
od;
new := InducedPcgsByPcSequenceNC( pcgs, ins );
ins := SubgroupByPcgs( GroupOfPcgs( pcgs ), new );
return ins;
else
new := ExtendedIntersectionSumPcgs( pcgs, pcgsN, pcgsU, true );
new := InducedPcgsByPcSequenceNC( pcgs, new.intersection );
ins := SubgroupByPcgs( GroupOfPcgs( pcgs ), new );
return ins;
fi;
end;
#############################################################################
##
#M Intersection2( <U>, <V> )
##
InstallMethod( Intersection2,
"groups with pcgs",
true,
[ IsGroup and HasHomePcgs,
IsGroup and HasHomePcgs ],
0,
function( U, V )
local G, home, pcgs, pcgsU, pcgsV;
# Check the parent and catch a trivial case
home := HomePcgs(U);
if home <> HomePcgs(V) then
TryNextMethod();
fi;
# check for trivial cases
if IsInt(Size(V)/Size(U))
and ForAll( GeneratorsOfGroup(U), x -> x in V ) then
return U;
# here we can test Size(V)<Size(U): if they are the same the test before
# would have found out.
elif Size(V)<Size(U) and IsInt(Size(U)/Size(V))
and ForAll( GeneratorsOfGroup(V), x -> x in U ) then
return V;
fi;
G := GroupOfPcgs(home);
if Size(U) < GS_SIZE then
return SubgroupNC( G, Filtered( AsList(U), x -> x in V and
x <> Identity(V) ) );
elif Size(V) < GS_SIZE then
return SubgroupNC( G, Filtered( AsList(V), x -> x in U and
x <> Identity(U) ) );
fi;
# compute nice pcgs's
pcgs := SpecialPcgs(home);
pcgsU := InducedPcgs(pcgs, U );
pcgsV := InducedPcgs(pcgs, V );
# disabled calls to `ZassenhausIntersection' that seems to be not
# applicable. AH, 4/12/05
# # test if one the groups is known to be normal
# if IsNormal( G, U ) then
# return ZassenhausIntersection( pcgs, pcgsU, pcgsV );
# elif IsNormal( G, V ) then
# return ZassenhausIntersection( pcgs, pcgsV, pcgsU );
# fi;
return GlasbyIntersection( pcgs, pcgsU, pcgsV );
end );
#############################################################################
##
#M NormalIntersection( <G>, <U> ) . . . . . intersection with normal subgrp
##
InstallMethod( NormalIntersection,
"method for two groups with home pcgs",
IsIdenticalObj, [ IsGroup and HasHomePcgs, IsGroup and HasHomePcgs],
function( G, H )
local home;
home:=HomePcgs(G);
if home<>HomePcgs(H) then
TryNextMethod();
fi;
return ZassenhausIntersection(home,InducedPcgs(home,G),InducedPcgs(home,H));
end );
#############################################################################
##
#E grppcpint.gi . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##
|