This file is indexed.

/usr/share/gap/lib/grppcprp.gi is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#############################################################################
##
#W  grppcprp.gi                 GAP Library                      Frank Celler
#W                                                             & Bettina Eick
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the methods for properties of polycylic groups.
##

InstallMethod( IsNilpotentGroup,
               "method for pc groups",
               true,
               [IsGroup and CanEasilyComputePcgs],
               0,
function( G )
    local w;
    w := LGWeights( SpecialPcgs(G) );
    return w[Length(w)][1] = 1; 
end);

InstallMethod( IsSupersolvableGroup,
               "method for pc groups",
               true,
               [IsGroup and CanEasilyComputePcgs],
               0,
function( G )
    local pr, spec, pcgs, p, sub, fac, mats, modu, facs;
    pr := PrimeDivisors(Size(G));
    spec := SpecialPcgs(G);
    pcgs := InducedPcgs( spec, FrattiniSubgroup( G ) );
    for p in pr do
        sub := InducedPcgsByPcSequenceAndGenerators( spec, pcgs, 
               GeneratorsOfGroup( PCore(G, p) ) );
        if Length(sub) > Length(pcgs) then
            fac := sub mod pcgs;
            mats := LinearOperationLayer( G, fac );
            modu := GModuleByMats( mats, GF(p) );
            facs := MTX.CompositionFactors( modu );
            if not ForAll( facs, x -> x.dimension = 1 ) then
                return false;
            fi;
        fi;
    od;
    return true;
end);

#############################################################################
##

#E  grppcpprp.gi  . . . . . . . . . . . . . . . . . . . . . . . . . ends here
##