This file is indexed.

/usr/share/gap/lib/grpperm.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
#############################################################################
##
#W  grpperm.gd                  GAP library                    Heiko Theißen
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##


#############################################################################
##
#C  IsPermGroup( <obj> )
##
##  <#GAPDoc Label="IsPermGroup">
##  <ManSection>
##  <Filt Name="IsPermGroup" Arg='obj' Type='Category'/>
##
##  <Description>
##  A permutation group is a group of permutations on a finite set
##  <M>\Omega</M> of positive integers.
##  &GAP; does <E>not</E> require the user to specify the operation domain
##  <M>\Omega</M> when a permutation group is defined.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4),(1,2));
##  Group([ (1,2,3,4), (1,2) ])
##  ]]></Example>
##  <P/>
##  Permutation groups are groups and therefore all operations for groups
##  (see Chapter&nbsp;<Ref Chap="Groups"/>) can be applied to them.
##  In many cases special methods are installed for permutation groups
##  that make computations more effective.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareSynonym( "IsPermGroup", IsGroup and IsPermCollection );


#############################################################################
##
#M  IsSubsetLocallyFiniteGroup( <G> ) . . . . . .  for magmas of permutations
##
#T  Here we assume implicitly that all permutations are finitary!
#T  (What would be a permutation with unbounded largest moved point?
#T  Perhaps a permutation of possibly infinite order?)
##
InstallTrueMethod( IsSubsetLocallyFiniteGroup, IsPermCollection );


#############################################################################
##
#M  CanEasilySortElements
##
InstallTrueMethod( CanEasilySortElements, IsPermGroup and IsFinite );

#############################################################################
##
#M  KnowsHowToDecompose( <G> )  . . . . . . . .  always true for perm. groups
##
InstallTrueMethod( KnowsHowToDecompose, IsPermGroup );


#############################################################################
##
#M  IsGeneratorsOfMagmaWithInverses( <permcoll> ) . . . true for perm. colls.
##
InstallTrueMethod( IsGeneratorsOfMagmaWithInverses, IsPermCollection );


#############################################################################
##
#F  MinimizeExplicitTransversal
##
##  <ManSection>
##  <Func Name="MinimizeExplicitTransversal" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "MinimizeExplicitTransversal" );


#############################################################################
##
#F  AddCosetInfoStabChain
##
##  <ManSection>
##  <Func Name="AddCosetInfoStabChain" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "AddCosetInfoStabChain" );


#############################################################################
##
#F  NumberCoset
#F  CosetNumber
##
##  <ManSection>
##  <Func Name="NumberCoset" Arg='obj'/>
##  <Func Name="CosetNumber" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "NumberCoset" );

DeclareGlobalFunction( "CosetNumber" );


#############################################################################
##
#F  IndependentGeneratorsAbelianPPermGroup
##
##  <ManSection>
##  <Func Name="IndependentGeneratorsAbelianPPermGroup" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "IndependentGeneratorsAbelianPPermGroup" );


#############################################################################
##
#F  OrbitPerms( <perms>, <pnt> )
##
##  <#GAPDoc Label="OrbitPerms">
##  <ManSection>
##  <Func Name="OrbitPerms" Arg='perms, pnt'/>
##
##  <Description>
##  returns the orbit of the positive integer <A>pnt</A>
##  under the group generated by the permutations in the list <A>perms</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitPerms" );


#############################################################################
##
#F  OrbitsPerms( <perms>, <D> )
##
##  <#GAPDoc Label="OrbitsPerms">
##  <ManSection>
##  <Func Name="OrbitsPerms" Arg='perms, D'/>
##
##  <Description>
##  returns the list of orbits of the positive integers in the list <A>D</A>
##  under the group generated by the permutations in the list <A>perms</A>.
##  <Example><![CDATA[
##  gap> OrbitPerms( [ (1,2,3)(4,5), (3,6) ], 1 );
##  [ 1, 2, 3, 6 ]
##  gap> OrbitsPerms( [ (1,2,3)(4,5), (3,6) ], [ 1 .. 6 ] );
##  [ [ 1, 2, 3, 6 ], [ 4, 5 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "OrbitsPerms" );


#############################################################################
##
#F  SylowSubgroupPermGroup
##
##  <ManSection>
##  <Func Name="SylowSubgroupPermGroup" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SylowSubgroupPermGroup" );


#############################################################################
##
#F  SignPermGroup
##
##  <ManSection>
##  <Func Name="SignPermGroup" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SignPermGroup" );


#############################################################################
##
#F  CycleStructuresGroup
##
##  <ManSection>
##  <Func Name="CycleStructuresGroup" Arg='obj'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CycleStructuresGroup" );


#############################################################################
##
#F  ApproximateSuborbitsStabilizerPermGroup( <G>, <pnt> )
##
##  <#GAPDoc Label="ApproximateSuborbitsStabilizerPermGroup">
##  <ManSection>
##  <Func Name="ApproximateSuborbitsStabilizerPermGroup" Arg='G, pnt'/>
##
##  <Description>
##  returns an approximation of the orbits of <C>Stabilizer( <A>G</A>, <A>pnt</A> )</C>
##  on all points of the orbit <C>Orbit( <A>G</A>, <A>pnt</A> )</C>,
##  without computing the full point stabilizer;
##  As not all Schreier generators are used,
##  the result may represent the orbits of only a subgroup of the point
##  stabilizer.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("ApproximateSuborbitsStabilizerPermGroup");


#############################################################################
##
#A  AllBlocks( <G> )
##
##  <#GAPDoc Label="AllBlocks">
##  <ManSection>
##  <Attr Name="AllBlocks" Arg='G'/>
##
##  <Description>
##  computes a list of representatives of all block systems for a
##  permutation group <A>G</A> acting transitively on the points moved by the
##  group.
##  <Example><![CDATA[
##  gap> AllBlocks(g);
##  [ [ 1, 8 ], [ 1, 2, 3, 8 ], [ 1, 4, 5, 8 ], [ 1, 6, 7, 8 ], [ 1, 3 ], 
##    [ 1, 3, 5, 7 ], [ 1, 3, 4, 6 ], [ 1, 5 ], [ 1, 2, 5, 6 ], [ 1, 2 ], 
##    [ 1, 2, 4, 7 ], [ 1, 4 ], [ 1, 7 ], [ 1, 6 ] ]
##  ]]></Example>
##  <P/>
##  The stabilizer of a block can be computed via the action
##  <Ref Func="OnSets"/>:
##  <P/>
##  <Example><![CDATA[
##  gap> Stabilizer(g,[1,8],OnSets);
##  Group([ (1,8)(2,3)(4,5)(6,7) ])
##  ]]></Example>
##  <P/>
##  If <C>bs</C> is a partition of the action domain, given as a set of sets,
##  the stabilizer under the action <Ref Func="OnSetsDisjointSets"/> returns
##  the largest subgroup which preserves <C>bs</C> as a block system.
##  <P/>
##  <Example><![CDATA[
##  gap> g:=Group((1,2,3,4,5,6,7,8),(1,2));;
##  gap> bs:=[[1,2,3,4],[5,6,7,8]];;
##  gap> Stabilizer(g,bs,OnSetsDisjointSets);
##  Group([ (6,7), (5,6), (5,8), (2,3), (3,4)(5,7), (1,4), 
##    (1,5,4,8)(2,6,3,7) ])
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "AllBlocks", IsPermGroup );


#############################################################################
##
#A  TransitiveIdentification( <G> )
##
##  <#GAPDoc Label="TransitiveIdentification">
##  <ManSection>
##  <Attr Name="TransitiveIdentification" Arg='G'/>
##
##  <Description>
##  Let <A>G</A> be a permutation group, acting transitively on a set of up
##  to 30 points.
##  Then <Ref Func="TransitiveIdentification"/> will return the position of
##  this group in the transitive groups library.
##  This means, if <A>G</A> acts on <M>m</M> points and
##  <Ref Func="TransitiveIdentification"/>  returns <M>n</M>,
##  then <A>G</A> is permutation isomorphic to the group
##  <C>TransitiveGroup(m,n)</C>.
##  <P/>
##  Note: The points moved do <E>not</E> need to be [1..<A>n</A>], the group
##  <M>\langle (2,3,4),(2,3) \rangle</M> is considered to be transitive on 3
##  points. If the group has several orbits on the points moved by it the
##  result of <Ref Func="TransitiveIdentification"/> is undefined.
##  <Example><![CDATA[
##  gap> TransitiveIdentification(Group((1,2),(1,2,3)));
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "TransitiveIdentification", IsPermGroup );

#############################################################################
##
#A  PrimitiveIdentification( <G> )
##
##  <#GAPDoc Label="PrimitiveIdentification">
##  <ManSection>
##  <Attr Name="PrimitiveIdentification" Arg='G'/>
##
##  <Description>
##  For a primitive permutation group for which an <M>S_n</M>-conjugate exists in
##  the library of primitive permutation groups
##  (see&nbsp;<Ref Sect="Primitive Permutation Groups"/>),
##  this attribute returns the index position. That is <A>G</A> is
##  conjugate to
##  <C>PrimitiveGroup(NrMovedPoints(<A>G</A>),PrimitiveIdentification(<A>G</A>))</C>.
##  <P/>
##  Methods only exist if the primitive groups library is installed.
##  <P/>
##  Note: As this function uses the primitive groups library, the result is
##  only guaranteed to the same extent as this library. If it is incomplete,
##  <C>PrimitiveIdentification</C> might return an existing index number for a
##  group not in the library.
##  <Example><![CDATA[
##  gap> PrimitiveIdentification(Group((1,2),(1,2,3)));
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "PrimitiveIdentification", IsPermGroup );

#############################################################################
##
#A  ONanScottType( <G> )
##
##  <#GAPDoc Label="ONanScottType">
##  <ManSection>
##  <Attr Name="ONanScottType" Arg='G'/>
##
##  <Description>
##  returns the type of a primitive permutation group <A>G</A>,
##  according to the O'Nan-Scott classification.
##  The labelling of the different types is not consistent in the literature,
##  we use the following identifications. The two-letter code given is the
##  name of the type as used by Praeger.
##  <List>
##  <Mark>1</Mark>
##  <Item>
##   Affine. (HA)
##  </Item>
##  <Mark>2</Mark>
##  <Item>
##   Almost simple. (AS)
##  </Item>
##  <Mark>3a</Mark>
##  <Item>
##   Diagonal, Socle consists of two normal subgroups. (HS)
##  </Item>
##  <Mark>3b</Mark>
##  <Item>
##   Diagonal, Socle is minimal normal. (SD)
##  </Item>
##  <Mark>4a</Mark>
##  <Item>
##   Product action with the first factor primitive of type 3a. (HC)
##  </Item>
##  <Mark>4b</Mark>
##  <Item>
##   Product action with the first factor primitive of type 3b. (CD)
##  </Item>
##  <Mark>4c</Mark>
##  <Item>
##   Product action with the first factor primitive of type 2. (PA)
##  </Item>
##  <Mark>5</Mark>
##  <Item>
##   Twisted wreath product (TW)
##  </Item>
##  </List>
##  See <Cite Key="EickHulpke01"/> for correspondence to other labellings used
##  in the literature.
##  As it can contain letters, the type is returned as a string.
##  <P/>
##  If <A>G</A> is not a permutation group or does not act primitively on the
##  points moved by it, the result is undefined.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ONanScottType", IsPermGroup );

#############################################################################
##
#A  SocleTypePrimitiveGroup( <G> )
##
##  <#GAPDoc Label="SocleTypePrimitiveGroup">
##  <ManSection>
##  <Attr Name="SocleTypePrimitiveGroup" Arg='G'/>
##
##  <Description>
##  returns the socle type of the primitive permutation group <A>G</A>.
##  The socle of a primitive group is the direct product of isomorphic simple
##  groups,
##  therefore the type is indicated by a record with components
##  <C>series</C>, <C>parameter</C> (both as described under
##  <Ref Func="IsomorphismTypeInfoFiniteSimpleGroup" Label="for a group"/>),
##  and <C>width</C> for the number of direct factors.
##  <P/>
##  If <A>G</A> does not have a faithful primitive action,
##  the result is undefined.
##  <Example><![CDATA[
##  gap> g:=AlternatingGroup(5);;
##  gap> h:=DirectProduct(g,g);;
##  gap> p:=List([1,2],i->Projection(h,i));;
##  gap> ac:=Action(h,AsList(g),
##  > function(g,h) return Image(p[1],h)^-1*g*Image(p[2],h);end);;
##  gap> Size(ac);NrMovedPoints(ac);IsPrimitive(ac,[1..60]);
##  3600
##  60
##  true
##  gap> ONanScottType(ac);
##  "3a"
##  gap> SocleTypePrimitiveGroup(ac);
##  rec( 
##    name := "A(5) ~ A(1,4) = L(2,4) ~ B(1,4) = O(3,4) ~ C(1,4) = S(2,4) \
##  ~ 2A(1,4) = U(2,4) ~ A(1,5) = L(2,5) ~ B(1,5) = O(3,5) ~ C(1,5) = S(2,\
##  5) ~ 2A(1,5) = U(2,5)", parameter := 5, series := "A", width := 2 )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SocleTypePrimitiveGroup", IsPermGroup );

#############################################################################
##
#F  DiagonalSocleAction( <grp>,<n> )
##
##  <ManSection>
##  <Func Name="DiagonalSocleAction" Arg='grp,n'/>
##
##  <Description>
##  returns the direct product of <A>n</A> copied of <A>grp</A> in diagonal action.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "DiagonalSocleAction" );

#############################################################################
##
#F  ReducedPermdegree( <g> )
##
##  <ManSection>
##  <Func Name="ReducedPermdegree" Arg='g'/>
##
##  <Description>
##  This functions tries to find cheaply a smaller domain on which the
##  permutation group <A>g</A> acts faithfully. It returns a monomorphism from
##  <A>g</A> onto an isomorphic group of smaller degree or <K>fail</K> if no such
##  domain is found. 
##  <P/>
##  In constrast to <C>SmallerDegreePermutationRepresentation</C> little effort
##  is spent on fincting completely different actions. The degree obtained
##  by <C>ReducedPermdegree</C> therefore in general is not that small, on the
##  other hand <C>ReducedPermdegree</C> works fast enough (and returns a
##  sufficiently well-behaved homomorphism) that it can be used within other
##  routines.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ReducedPermdegree" );

DeclareGlobalFunction("MovedPointsPerms");

# use for pcgs conversion
DeclareGlobalFunction("CreateIsomorphicPcGroup");

#############################################################################
##
#E