/usr/share/gap/lib/grpprmcs.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 | #############################################################################
##
#W grpprmcs.gi GAP library Ákos Seress
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
#############################################################################
##
#F GInverses( <S> ) . . . . . . . . . . . . . . . . . . . . . . . . . local
##
## <S> must be a stabilizer chain.
##
## `GInverses' changes `<S>.generators' !
##
GInverses := function( S )
local inverses, set, i;
set := Set( S.translabels );
RemoveSet( set, 1 );
S.generators := S.labels{ set };
inverses := [ ];
for i in [ 1 .. Length( S.generators ) ] do
inverses[ i ] := S.generators[ i ] ^ -1;
od;
if IsBound( S.stabilizer ) then
Append( S.generators, S.stabilizer.generators );
fi;
return inverses;
end;
#############################################################################
##
#F DisplayCompositionSeries( <S> ) . . . . . . . . . . . . display function
##
InstallGlobalFunction( DisplayCompositionSeries, function( S )
local f, i;
# ok, we accept groups too
if IsGroup( S ) then
S := CompositionSeries( S );
fi;
# if we know the composition series, we know orders of groups, so we may
# enforce their computation before calling GroupString to display them.
Perform( S, Size );
Print( GroupString( S[1], "G" ), "\n" );
for i in [2..Length(S)] do
f:=Image(NaturalHomomorphismByNormalSubgroup(S[i-1],S[i]));
Print( " | ",IsomorphismTypeInfoFiniteSimpleGroup(f).name,"\n");
if i < Length(S) then
Print( GroupString( S[i], "S" ), "\n" );
else
Print( GroupString( S[i], "1" ), "\n" );
fi;
od;
end );
#############################################################################
##
#M CompositionSeries( <G> ) . . . . composition series of permutation group
##
## `CompositionSeriesPermGroup' returns the composition series of <G> as a
## list.
##
## The subgroups in this list have a slightly modified
## `NaturalHomomorphismByNormalSubgroup' method,
## which notices if you compute the factor group of one subgroup by the next
## and return the factor group as a primitive permutation group in this
## case (which is also computed by the function below). The factor groups
## remember the natural homomorphism since the images of the generators of
## the subgroup are known and the natural homomorphism can thus be written
## as `GroupHomomorphismByImages'.
##
## The program works for permutation groups of degree < 2^20 = 1048576.
## For higher degrees `IsSimple' and `CasesCSPG' must be extended with
## longer lists of primitive groups from extensions in Kantor's tables
## (see JSC. 12(1991), pp. 517-526). It may also be neccessary to modify
## `FindNormalCSPG'.
##
## A general reference for the algorithm is:
## Beals-Seress, 24th Symp. on Theory of Computing 1992.
##
InstallMethod( CompositionSeries,
"for a permutation group",
true,
[ IsPermGroup ], 0,
function( Gr )
local pcgs,
normals, # first component of output; normals[i] contains
# generators for i^th subgroup in comp. series
factors, # second component of output; factors[i] contains
# the action of generators in normals[i]
factorsize, # third component of output; factorsize[i] is the
# size of the i^th factor group
homlist, # list of homomorphisms applied to input group
auxiliary, # if auxiliary[j] is bounded, it contains
# a subg. which must be added to kernel of homlist[j]
index, # variable recording how many elements of normals are
# computed
workgroup, # the subnormal factor group we currently work with
workgrouporbit,
lastpt, # degree of workgroup
tchom, # transitive constituent homomorphism applied to
# intransitive workgroup
bhom, # block homomorphism applied to imprimitive workgroup
fahom, # factor homomorphism to store
bl, # block system in workgroup
D, # derived subgroup of workgroup
top, # index of D in workgroup
lenhomlist, # length of homlist
i, s, t, #
fac, # factor group as permutation group
list; # output of CompositionSeries
# Solvable groups first.
pcgs := Pcgs( Gr );
if pcgs <> fail then
list := ShallowCopy( PcSeries( pcgs ) );
s := list[ 1 ];
for i in [ 2 .. Length( list ) ] do
t := AsSubgroup( s, list[ i ] );
fac := CyclicGroup( IsPermGroup,
RelativeOrders( pcgs )[ i - 1 ] );
fahom:=GroupHomomorphismByImagesNC( s, fac,
pcgs{ [ i - 1 .. Length( pcgs ) ] },
Concatenation( GeneratorsOfGroup( fac ),
List( [ i .. Length( pcgs ) ], k -> One( fac ) ) ) );
Setter( NaturalHomomorphismByNormalSubgroupInParent )( t,fahom);
AddNaturalHomomorphismsPool(s,t,fahom);
list[ i ] := t;
s := t;
od;
return list;
fi;
# initialize output and work arrays
normals := [];
factors := [];
factorsize := [];
auxiliary := [];
homlist := [];
index := 1;
workgroup := Gr;
# workgroup is always a factor group of the input Gr such that a
# composition series for Gr/workgroup is already computed.
# Try to get a factor group of workgroup
while (Size(workgroup) > 1) or (Length(homlist) > 0) do
#Print(List(normals,Length)," ",Size(workgroup),"\n");
if Size(workgroup) > 1 then
lastpt := LargestMovedPoint(workgroup);
# if workgroup is not transitive
workgrouporbit:= StabChainMutable( workgroup ).orbit;
if Length(workgrouporbit) < lastpt then
tchom :=
ActionHomomorphism(workgroup,workgrouporbit,"surjective");
Add(homlist,tchom);
workgroup := Image(tchom,workgroup);
else
bl := MaximalBlocks(workgroup,[1..lastpt]);
# if workgroup is not primitive
if Length(bl) > 1 then
bhom:=ActionHomomorphism(workgroup,bl,OnSets,"surjective");
workgroup := Image(bhom,workgroup);
Add(homlist,bhom);
else
D := DerivedSubgroup(workgroup);
top := Size(workgroup)/Size(D);
# if workgroup is not perfect
if top > 1 then
# fill up workgroup/D by cyclic factors
index := NonPerfectCSPG(homlist,normals,factors,
auxiliary,factorsize,top,index,D,workgroup);
workgroup := D;
# otherwise chop off simple factor group from top of
# workgroup
else
workgroup := PerfectCSPG(homlist,normals,factors,
auxiliary,factorsize,index,workgroup);
index := index+1;
fi; # nonperfect-perfect
fi; # primitive-imprimitive
fi; # transitive-intransitive
# if the workgroup was trivial
else
lenhomlist := Length(homlist);
# pull back natural homs
PullBackNaturalHomomorphismsPool(homlist[lenhomlist]);
workgroup := KernelOfMultiplicativeGeneralMapping(
homlist[lenhomlist] );
# if auxiliary[lenhmlist] is bounded, it is faster to augment it
# by generators of the kernel of `homlist[lenhomlist]'
if IsBound(auxiliary[lenhomlist]) then
workgroup := auxiliary[lenhomlist];
workgroup := ClosureGroup( workgroup, GeneratorsOfGroup(
KernelOfMultiplicativeGeneralMapping(
homlist[lenhomlist] ) ) );
fi;
Unbind(auxiliary[lenhomlist]);
Unbind(homlist[lenhomlist]);
fi; # workgroup is nontrivial-trivial
od;
# loop over the subgroups
#s := SubgroupNC( Gr, normals[1] );
#SetSize( s, Size( Gr ) );
s:=Gr;
list := [ s ];
for i in [2..Length(normals)] do
t := SubgroupNC( s, normals[i] );
SetSize( t, Size( s ) / factorsize[i-1] );
fac := GroupByGenerators( factors[i-1] );
SetSize( fac, factorsize[i-1] );
SetIsSimpleGroup( fac, true );
fahom:=GroupHomomorphismByImagesNC( s, fac,
normals[i-1], factors[i-1] );
#if IsIdenticalObj(Parent(t),s) then
# Setter( NaturalHomomorphismByNormalSubgroupInParent )( t,fahom);
#fi;
AddNaturalHomomorphismsPool(s, t,fahom);
Add( list, t );
s := t;
od;
t := TrivialSubgroup( s );
Assert(1,Size( s )=factorsize[Length(normals)]);
fac := GroupByGenerators( factors[Length(normals)] );
SetSize( fac, factorsize[Length(normals)] );
SetIsSimpleGroup( fac, true );
fahom:=GroupHomomorphismByImagesNC( s, fac,
normals[Length(normals)], factors[Length(normals)] );
if IsIdenticalObj(Parent(t),s) then
Setter( NaturalHomomorphismByNormalSubgroupInParent )( t,fahom);
fi;
AddNaturalHomomorphismsPool(s, t,fahom);
Add( list, t );
# return output
return list;
end );
#############################################################################
##
#F NonPerfectCSPG() . . . . . . . . non perfect case of composition series
##
## When <workgroup> is not perfect, it fills up the factor group of the
## commutator subgroup with cyclic factors.
## Output is the first index in normals which remains undefined
##
InstallGlobalFunction( NonPerfectCSPG,
function( homlist, normals, factors, auxiliary,
factorsize, top, index, D, workgroup )
local listlength, # number of cyclic factors to add to factors
indexup, # loop variable for adding the cyclic factors
oldworkup, # loop subgroups between
workup, # workgroup and derived subgrp
order, # index of oldworkup in workup
orderlist, # prime factors of order
g, p, # generators of workup, oldworkup
h, # a power of g
i; # loop variables
# number of primes in factor <workgroup> / <derived subgroup>
listlength := Length(FactorsInt(top));
indexup := index+listlength;
oldworkup := D;
# starting with the derived subgroup, add generators g of workgroup
# each addition produces a cyclic factor group on top of previous;
# appropriate powers of g will divide the cyclic factor group into
# factors of prime length
for g in StabChainMutable( workgroup ).generators do
if not (g in oldworkup) then
# check for error in random computation of derived subgroup
Assert(1, ForAll ( StabChainMutable( oldworkup ).generators,
x->(x^g in oldworkup) ));
workup := ClosureGroup(oldworkup, g);
order := Size(workup)/Size(oldworkup);
orderlist := FactorsInt(order);
for i in [1..Length(orderlist)] do
# h is the power of g which adds prime length factors
h := g^Product([i+1..Length(orderlist)],x->orderlist[x]);
# construct entries in factors, normals
factors[indexup -1] := [];
normals[indexup -1] := [];
for p in StabChainMutable( oldworkup ).generators do
# p acts trivially in factor group
Add(factors[indexup -1],());
# preimage of p is a generator in normals
Add(normals[indexup -1],PullbackCSPG(p,homlist));
od;
# workgroup is a factor group of original input;
# kernel of homomorphism must be added to gens in normals
PullbackKernelCSPG(homlist,normals,factors,
auxiliary,indexup-1);
# add preimage of h to generator list
Add(normals[indexup-1],PullbackCSPG(h,homlist));
# add a prime length cycle to factor group action
Add(factors[indexup-1],
PermList(Concatenation([2..orderlist[i]],[1])));
# size of factor group is a prime
factorsize[indexup-1] := orderlist[i];
indexup := indexup -1;
od;
oldworkup := workup;
fi;
od;
return index+listlength;
end );
#############################################################################
##
#F PerfectCSPG() . . . . . . . . . . . . prefect case of composition series
##
## Computes maximal normal subgroup of perfect primitive group K and adds
## its factor group to factors.
## Output is the maximal normal subgroup NN. In case NN=1 (i.e. K simple),
## the kernel of homomorphism which produced K is returned
##
InstallGlobalFunction( PerfectCSPG,
function( homlist, normals, factors, auxiliary,
factorsize, index, K )
local whichcase, # var indicating to which case of the O'Nan-Scott
# theorem K belongs. When Size(K) and degree do not
# determine the case without ambiguity, whichcase
# has value as in case of unique nonregular
# minimal normal subgroup
N, # normal subgroup of K
prime, # prime dividing order of degree of K
stab1, # stabilizer of first base point in K
stab2, # stabilizer of first two base points in K
kerelement, # element of normal subgroup
ker2, # conjugate of kerelement
word, # random element of stab1 as word
x,y, # first two base points of K
i,j, # loop variables
H, # normalizer, and then centralizer of stab2
L, # set of moved points of stab2
op, # operation of H on N
tchom, # restriction of H to L
g, # generator of subgroups
lenhomlist, # length of homlist
kernel, # output
ready, # boolean variable indicating whether normal subgroup
# was found
chainK,
list;
while not IsSimpleGroup(K) do
whichcase := CasesCSPG(K);
# becomes true if we find proper normal subgroup by first method
ready := false;
# whichcase[1] is true in nonregular minimal normal subgroup case
if whichcase[1]=1 then
N := FindNormalCSPG(K, whichcase);
# check size of result to terminate fast in ambiguous cases
if 1 < Size(N) and Size(N) < Size(K) then
# K is a factor group with N in the kernel
K := NinKernelCSPG(K,N,homlist,auxiliary);
SetDerivedSubgroup( K, K );
#T better set that K is perfect?
ready := true;
fi;
fi;
# apply regular normal subgroup with nontrivial centralizer method
if not ready then
chainK:= StabChainMutable( K );
stab2 := Stabilizer(K,[ chainK.orbit[1],
chainK.stabilizer.orbit[1]],
OnTuples);
if IsTrivial(stab2) then
prime := FactorsInt(whichcase[2])[1];
N:=Group(One(K));
repeat
kerelement:=Random(K);
if NrMovedPoints(kerelement)=LargestMovedPoint(K) and
IsOne(kerelement^prime) then
ker2:=kerelement^Random(K);
if Comm(kerelement,ker2)=One(K) then
N := NormalClosure(K, SubgroupNC(K,[kerelement]));
fi;
fi;
until Size(N)=whichcase[2];
else
list := NormalizerStabCSPG(K);
H := list[1];
chainK := list[2];
if whichcase[1] = 2 then
stab2 := Stabilizer( K, [ chainK.orbit[1],
chainK.stabilizer.orbit[1] ],
OnTuples);
H := CentralizerNormalCSPG( H, stab2 );
else
L := Orbit( H, StabChainMutable( H ).orbit[1] );
tchom := ActionHomomorphism(H,L,"surjective");
op := Image( tchom );
H := PreImage(tchom,PCore(op,FactorsInt(whichcase[2])[1]));
H := Centre(H);
SetIsAbelian( H, true );
fi;
N := FindRegularNormalCSPG(K,H,whichcase);
fi;
K := NinKernelCSPG(K,N,homlist,auxiliary);
SetDerivedSubgroup( K, K );
#T better set that K is perfect?
fi;
od;
# add next entry to the CompositionSeries output lists
factors[index] := [];
normals[index] := [];
factorsize[index] := Size(K);
for g in StabChainMutable( K ).generators do
Add(factors[index],g); # store generators for image
Add(normals[index],PullbackCSPG(g,homlist));
od;
# add generators for kernel to normals
PullbackKernelCSPG(homlist,normals,factors,auxiliary,index);
lenhomlist := Length(homlist);
# determine output of routine
if lenhomlist > 0 then
kernel := KernelOfMultiplicativeGeneralMapping(homlist[lenhomlist]);
if IsBound(auxiliary[lenhomlist]) then
kernel := auxiliary[lenhomlist]; # faster to add this way
kernel := ClosureGroup( kernel,
KernelOfMultiplicativeGeneralMapping(homlist[lenhomlist]) );
fi;
Unbind(homlist[lenhomlist]);
Unbind(auxiliary[lenhomlist]);
# case when we found last factor of original group
else
kernel := GroupByGenerators( [], () );
fi;
return kernel;
end );
#############################################################################
##
#F CasesCSPG() . . . . . . . . . . . . determine case of O'Nan Scott theorem
##
## Input: primitive, perfect, nonsimple group G.
## CasesCSPG determines whether there is a normal subgroup with
## nontrivial centralizer (output[1] := 2 or 3) or decomposes the
## degree of G into the form output[2]^output[3], output[1] := 1 (case
## of nonregular minimal normal subgroup).
## There are some ambiguous cases, (e.g. degree=2^15) when Size(G)
## and degree do not determine which case G belongs to. In these cases,
## the output is as in case of nonregular minimal normal subgroup.
## This computation duplicates some of what is done in IsSimple.
##
InstallGlobalFunction( CasesCSPG, function(G)
local degree, # degree of G
g, # order of G
primes, # list of primes in prime decomposition of degree
output, # output of routine
n,m,o,p, # loop variables
tab1, # table of orders of primitive groups
tab2, # table of orders of perfect transitive groups
base; # prime occuring in order of outer automorphism
# group of some group in tab1
g := Size(G);
degree := LargestMovedPoint(G);
if degree>2^20 then
# see comment before the composition series method
Error("degree too big");
fi;
output := [];
# case of two regular normal subgroups
if Size(G)=degree^2 then
output[1] := 2;
output[2] := degree;
return output;
fi;
# degree is not prime power
primes := FactorsInt(degree);
if primes[1] < primes[Length(primes)] then
output[1] := 1;
# only case when index of primitive group in socle is not 2*prime
if Length(primes)=15 then
output[2] := 12;
output[3] := 5;
else
output[2] := primes[1]*primes[Length(primes)];
output[3] := Length(primes)/2;
fi;
return output;
# in case of prime power degree, we have to determine the possible
# orders of G with nonabelian socle. See IsSimple for identification
# of groups in tab1,tab2
else
tab1 := [ ,,,,[60],,[168,2520],[168,20160],[504,181440],,
[660,7920,19958400],,[5616,3113510400]];
tab2 := [ ,,,,[60],[60,360],[168,2520],[168,1344,20160]];
for n in [5,7,8,9,11,13] do
for m in [5..8] do
for o in [1..Length(tab1[n])] do
for p in [1..Length(tab2[m])] do
if tab1[n][o]=504 then
base := 3;
else
base := 2;
fi;
if degree=n^m
and g mod (tab1[n][o]^m*tab2[m][p]) = 0
and (tab1[n][o]^m*tab2[m][p]*base^m) mod g = 0
then
output[1] := 1;
output[2] := n;
output[3] := m;
return output;
fi;
od;
od;
od;
od;
# if the order of G did not satisfy any of the nonabelian socle
# possibilities, output the abelian socle message
output[1] := 3;
output[2] := degree;
return output;
fi;
end );
#############################################################################
##
#F FindNormalCSPG() . . . . . . . . . . . . . find a proper normal subgroup
##
## given perfect, primitive G with unique nonregular minimal normal
## subgroup, the routine returns a proper normal subgroup of G
##
InstallGlobalFunction( FindNormalCSPG, function ( G, whichcase )
local n, # degree of G
i, # loop variable
stabgroup, # stabilizer subgroup of first point
orbits, # list of orbits of stabgroup
where, # index of shortest orbit in orbits
len, # length of shortest orbit
tchom, # trans. constituent homom. of stabgroup
# to shortest orbit
bl, # blocks in action of stabgroup on shortest orbit
bhom, # block homomorphism for the action on bl
K, # homomorph image of stabgroup at tchom, bhom
kernel, # kernel of bhom
N; # output; normal subgroup of G
# whichcase[1]=1 if G has no normal subgroup with nontrivial
# centralizer or we cannot determine this fact from Size(G)
n := LargestMovedPoint(G);
stabgroup := Stabilizer(G, StabChainMutable( G ).orbit[1],OnPoints);
orbits := OrbitsDomain(stabgroup,[1..n]);
# find shortest orbit of stabgroup
len := n; where := 1;
for i in [1..Length(orbits)] do
if (1<Length(orbits[i])) and (Length(orbits[i])< len) then
where := i;
len := Length(orbits[i]);
fi;
od;
# check arith. conditions in order to terminate fast in ambiguous cases
if len mod whichcase[3] = 0 and len <= whichcase[3]*(whichcase[2]-1) then
# take action of stabgroup on shortest orbit
tchom := ActionHomomorphism(stabgroup,orbits[where],"surjective");
K := Image(tchom,stabgroup);
bl := MaximalBlocks(K,[1..len]);
# take action on blocks
if Length(bl) > 1 then
bhom := ActionHomomorphism(K,bl,OnSets,"surjective");
K := Image(bhom,K);
kernel := KernelOfMultiplicativeGeneralMapping(
CompositionMapping(bhom,tchom));
N := NormalClosure(G,kernel);
# another check for ambiguous cases
if Size(N) < Size(G) then
return N;
fi;
fi;
fi;
# in ambiguous case, return trivial subgroup
N := TrivialSubgroup( Parent(G) );
return N;
end );
#############################################################################
##
#F FindRegularNormalCSPG() . . . . . . . . . . find a proper normal subgroup
##
## given perfect, primitive G with regular minimal normal
## subgroup(s), the routine returns one
##
InstallGlobalFunction( FindRegularNormalCSPG, function ( G, H, whichcase )
local core, # p-core of H
cosetrep, # a cosetrep of H.stabilizer
candidates, # list of perms; one element is in regular normal sbgrp
ready, # boolean to exit loop
i, # loop variable
N, # regular normal subgroup, output
chain;
# case of abelian normal subgroup
if whichcase[1] <> 2 then
core := PCore( H, FactorsInt(whichcase[2])[1] );
chain:=StabChainOp(core,rec(base:=BaseOfGroup(G),reduced:=false));
cosetrep := chain.transversal[chain.orbit[2]];
candidates := AsList(Stabilizer(core,BaseOfGroup(G)[1]))*cosetrep;
ready := false;
i:= 0;
while not ready do
i := i+1;
N := NormalClosure(G, SubgroupNC(G, [candidates[i]]) );
if Size(N) = whichcase[2] then
ready := true;
fi;
od;
# case of two simple regular normal subgroups
else
chain := StabChainOp(H, rec(base := BaseOfGroup(G), reduced := false) );
cosetrep := chain.transversal[chain.orbit[2]];
candidates := cosetrep*AsList(Stabilizer(H,BaseOfGroup(G)[1]));
ready := false;
i:= 0;
while not ready do
i := i+1;
N := NormalClosure(G, SubgroupNC(G, [candidates[i]]) );
if Size(N) = whichcase[2] then
ready := true;
fi;
od;
fi;
return N;
end );
#############################################################################
##
#F NinKernelCSPG() . . . . . find homomorphism that contains N in the kernel
##
## Given a normal subgroup N of G, creates a subgroup H such that the
## homomorphism to the action on cosets of H contains N in the kernel.
## Actually, only the image of a subgroup is computed, and we store
## N in auxiliary to remember that N should be added to kernel of
## homomorphism.
## Output is the image at homomorphism
##
InstallGlobalFunction( NinKernelCSPG,
function ( G, N, homlist, auxiliary )
local i,j, # loop variables
base, # base of G
stab, # stabilizer of first two base points
H,HOld, # subgroups of G
G1,H1, # stabilizer chains of G, HOld
block, # set of cosets of G1[i]; G1[i] is represented on
# images of block
newrep, # blocks of imprimitivity in
bhom, # block hom. and
tchom; # transisitive const. hom. applied to G1[i]
j := Length(homlist)+1;
auxiliary[j] := N;
# find smallest subgroup of G in stabilizer chain which, together with N,
# generates G
G1:=StabChainMutable(G);
base := BaseStabChain(G1);
G1 := ListStabChain( G1 );
i := Length(base)+1;
# first try the stabilizer of first two points
if Size(N) = LargestMovedPoint(G) then
stab := AsSubgroup(Parent(G),Stabilizer(G,[base[1],base[2]],OnTuples));
H := ClosureGroup
( stab, GeneratorsOfGroup( N ), rec(size:=Size(N)*Size(stab)) );
else
H := ClosureGroup( N, G1[3].generators );
fi;
if Size(H) < Size(G) then
HOld := H;
i := 2;
else
# if did not work, start from bottom of stabilizer chain
H := N;
repeat
HOld := H;
i := i-1;
H := ClosureGroup( H, G1[i].generators );
until Size(H) = Size(G);
fi;
# represent G1[i] on cosets of H1[i] := G1[i+1]N \cap G1[i]
H1 := ListStabChain( StabChainOp( HOld, rec( base := base,
reduced := false ) ) );
# G1[i] will be represented on images of block
block := Set( H1[i].orbit );
G := Stabilizer(G,List([1 .. i-1], x->base[x]),OnTuples);
# now G is the previous G1[i]
# find primitive action on images of block
newrep := MaximalBlocks( G, StabChainMutable( G ).orbit, block );
if Length(newrep) > 1 then
bhom := ActionHomomorphism(G,newrep,OnSets,"surjective");
Add(homlist,bhom);
G := Image(bhom,G);
else
tchom:=ActionHomomorphism(G, StabChainMutable( G ).orbit,"surjective");
Add(homlist,tchom);
G := Image(tchom,G);
fi;
return G;
end );
#############################################################################
##
#F RegularNinKernelCSPG() . . . . action of G on H and on maximal subgroup
##
## H is transitive and contains the stabilizer of the first two
## base points; we want to find the action of G on cosets of H, and
## then the action of G on cosets of a maximal subgroup K containing H
## reference: Beals-Seress Lemma 4.3.
##
InstallGlobalFunction( RegularNinKernelCSPG,
function ( G, H, homlist )
local i,j,k, # loop variables
base, # base of G
chainG, # stabilizer chain of `G'
chainH, # stabilizer chain of `H'
G1,H1, # stabilizer chain of G,H
x,y, # first two base points of G
stabgroup, # stabilizer of x in G
chainstabgroup,
Ginverses, # list of inverses of generators of G
hgens, # list of generators of H
Hinverses, # list of inverses of generators of H
stabgens, # list of generators of stabgroup
stabinverses, # list of inverses of generators of stabgroup
block, # orbit of y in H_x
orbits, # images of block in G_x=stabgroup
a, # cardinality of orbits
b, # cardinality of block
reprlist, # for z in stabgroup.orbit, reprlist[z] tells which
# element of orbits z belongs to
reps, # for representatives z of sets in orbits, reps
# contains the cosetrep carrying z to y in stabgroup
# (as a word in generators of stabgroup)
inversereps,# the inverses of words in reps
# (as words in stabinverses)
images, # list containing the images of generators of G,
# acting on cosets of H (there are $a$ cosets,
# represented by the elements of orbits)
v, # point of permutation domain
tau, # the cosetrep of H carrying v to x
# (as a word in H.gen's)
tauinverse, # the inverse of tau (as a word in Hinverses)
word, # list of permutations coding a cosetrep of H
K, # the factor group of G generated by images
newrep, # block system from cosets of K
c, # cardinality of newrep
d, # size of one block
newimages, # list containing the action of generators of G, on
# newrep
hom; # the homomorphism G->K
chainG:= StabChainMutable( G );
base := BaseStabChain(chainG);
G1 := ListStabChain( chainG );
H1 := ListStabChain( StabChainOp( H, rec( base := base,
reduced := false ) ) );
block := Set( H1[2].orbit );
x := chainG.orbit[1];
stabgroup := Stabilizer( G, x, OnPoints );
orbits := Orbit(stabgroup,block,OnSets);
chainstabgroup:= StabChainMutable( stabgroup );
y := chainstabgroup.orbit[1];
a := Length(orbits);
b := Length(block);
reprlist := [];
for i in [1..a] do
for k in [1..b] do
reprlist[orbits[i][k]] := i;
od;
od;
Ginverses := GInverses( chainG );
chainH:= StabChainMutable( H );
Hinverses := GInverses( chainH );
hgens := chainH.generators;
stabinverses := GInverses( chainstabgroup );
stabgens := chainstabgroup.generators;
reps := []; inversereps := [];
for i in [1..a] do
reps[i] := CosetRepAsWord( y, orbits[i][1],
chainstabgroup.transversal );
inversereps[i] := InverseAsWord(reps[i],stabgens,stabinverses);
od;
# construct action of G-generators on cosets of H. Each coset of H has a
# representative in orbits; to find the image of an H coset
# at multiplication by G.generators[i], take element of H coset such that
# the product with G.generators[i] fixes x. Then the image of the coset
# can be read from the position in orbits (cf. Lemma 4.3)
images := [];
for i in [1..Length( chainG.generators )] do
images[i] := [];
for j in [1..a] do
v := ImageInWord(x^Ginverses[i],reps[j]);
tau := CosetRepAsWord( x, v, chainH.transversal );
tauinverse := InverseAsWord(tau,hgens,Hinverses);
word := Concatenation(tauinverse,inversereps[j],
[ chainG.generators[i] ]);
images[i][j] := reprlist[ImageInWord(y,word)];
od;
images[i] := PermList(images[i]);
od;
K := GroupByGenerators(images,());
# check whether new representation is primitive. If not, construct action
# on maximal block system
newrep := MaximalBlocks(K,[1..a]);
if Length(newrep) > 1 then
c := Length(newrep);
d := Length(newrep[1]);
reprlist := [];
for i in [1..c] do
for k in [1..d] do
reprlist[newrep[i][k]] := i;
od;
od;
newimages := [];
for i in [1..Length( chainG.generators )] do
newimages[i] := [];
for k in [1..c] do
newimages[i][k] := reprlist[newrep[k][1]^images[i]];
od;
newimages[i] := PermList(newimages[i]);
od;
K := GroupByGenerators(newimages,());
hom := GroupHomomorphismByImagesNC( G, K,
chainG.generators, newimages );
else
hom := GroupHomomorphismByImagesNC( G, K,
chainG.generators, images );
fi;
j := Length(homlist)+1;
homlist[j] := hom;
K := Image(homlist[j],G);
SetDerivedSubgroup( K, K );
#T better set that K is perfect?
return K;
end );
#############################################################################
##
#F NormalizerStabCSPG( <G> ) . . . . . . . normalizer of 2 point stabilizer
##
## Given a primitive, perfect group <G> which has a regular normal subgroup
## with nontrivial centralizer,
## the output is a list of length two, the first entry being N_G(G_{xy})
## and the second entry being a stabilizer chain of <G>.
##
InstallGlobalFunction( NormalizerStabCSPG, function(G)
local n, # degree of G
chainG, # stabilizer chain of `G'
chainstab, # stabilizer chain of a point stabilizer in `G'
orbits, # orbits of stabgroup
len, # minimal length of stabgroup orbits
where, # index of minimal length orbit
i, # loop variable
base, # base of G
chainstab2, # chain of stabilizer of first two base points in G
x,y, # first two base points
normalizer, # output group N_G(G_{xy})
L, # fixed points of stabgroup2
yL, # intersection of L and y-orbit in stabgroup
orbity, # orbit of y in normalizer_x;
# eventually, orbity must be yL
orbitx, # orbit of x in normalizer;
# eventually, orbitx must be L
u,v, # points in permutation domain
tau,sigma,p,# cosetreps of G, stabgroup
Ltau; # image of L under tau
n := LargestMovedPoint(G);
chainG:= StabChainMutable( G );
chainstab := chainG.stabilizer;
base := BaseStabChain(chainG);
# If necessary, make base change to achieve that second base point is
# in smallest orbit of stabilizer.
orbits := OrbitsPerms( chainstab.generators, [1..n] );
len := n; where := 1;
for i in [1..Length(orbits)] do
if (1<Length(orbits[i])) and (Length(orbits[i])< len) then
where := i;
len := Length(orbits[i]);
fi;
od;
if Length( chainstab.orbit ) > len then
chainG:= StabChainOp( G, [ chainG.orbit[1], orbits[where][1] ] );
chainstab:= chainG.stabilizer;
fi;
x := chainG.orbit[1];
y := chainstab.orbit[1];
chainstab2 := chainstab.stabilizer;
# compute normalizer. Method: Beals-Seress, Lemma 7.1
L := Difference( [1..n], MovedPoints( chainstab2.generators ) );
yL := Intersection( L, chainstab.orbit );
# initialize normalizer to G_{xy}
normalizer := rec( generators := ShallowCopy( chainstab2.generators) );
orbity := OrbitPerms(normalizer.generators,y);
while Length(orbity) < Length(yL) do
v := Difference(yL,orbity)[1];
p := Product( CosetRepAsWord( y, v, chainstab.transversal ) );
Add(normalizer.generators,p);
orbity := OrbitPerms(normalizer.generators,y);
od;
normalizer.stabChain2 := EmptyStabChain( [ ], (), y );
AddGeneratorsExtendSchreierTree(normalizer.stabChain2,normalizer.generators);
normalizer.stabChain2.stabilizer:= chainstab2;
orbitx := OrbitPerms(normalizer.generators,x);
while Length(orbitx) < Length(L) do
v := Difference(L,orbitx)[1];
tau := Product( CosetRepAsWord( x, v, chainG.transversal ) );
Ltau := OnSets(L,tau);
u := Intersection( Ltau, chainstab.orbit )[1];
sigma := Product( CosetRepAsWord( y, u, chainstab.transversal ) );
Add(normalizer.generators,tau*sigma);
orbitx := OrbitPerms(normalizer.generators,x);
od;
normalizer.stabChain := EmptyStabChain( [ ], (), x );
AddGeneratorsExtendSchreierTree(normalizer.stabChain,normalizer.generators);
normalizer.stabChain.stabilizer:=normalizer.stabChain2;
normalizer := GroupStabChain( Parent( G ), normalizer.stabChain, true );
return [normalizer, chainG];
end );
#############################################################################
##
#F TransStabCSPG() . . . embed a 2 point stabilizer in a transitive subgroup
##
## given a subgroup H of G which contains G_{xy}, the stabilizer of the
## first two points in G, and a theoretical guarantee that there is a
## proper transitive subgroup K containing H, the routine finds such K
##
InstallGlobalFunction( TransStabCSPG, function(G,H)
local n, # degree of G
chainG, # stabilizer chain of `G'
chainH, # stabilizer chain of `H'
x,y, # first two points of the base of G
stabgroup, # stabilizer of x in G
chainstabgroup,
hstabgroup, # stabilizer of x in H
chainhstabgroup,
u,v, # indices of points in G.orbit, stabgroup.orbit
g, # list of permutations whose product is
# (semi)random element of G
notinH, # boolean; true if g is not in H
word, # list of permutations whose product is
# (semi)random element of <H,g>
len, # length of word
hword, # list of permutations giving random element of H
tau,sigma, # lists of permutations whose
tau1,sigma1,# products are coset representatives
i,j,k, # loop variables
K; # K=<H,g>
#Print(Size(G),",",Size(H));
n := LargestMovedPoint(G);
chainG:= StabChainMutable( G );
x := chainG.orbit[1];
stabgroup := Stabilizer(G,x,OnPoints);
chainstabgroup := StabChainMutable( stabgroup );
y := chainstabgroup.orbit[1];
hstabgroup := Stabilizer(H,x,OnPoints);
chainhstabgroup:= StabChainMutable( hstabgroup );
chainH:= StabChainMutable( H );
ExtendStabChain( chainH, BaseStabChain(chainG) );
ExtendStabChain( chainhstabgroup, BaseStabChain( chainstabgroup ) );
# try to embed H into bigger subgroups; stop when result is transitive
repeat
# Print("brum");
# first, take random element of G\H
repeat
v := Random([1..Length( chainG.orbit )]);
g := CosetRepAsWord( x, chainG.orbit[v], chainG.transversal );
u := Random([1..Length( chainstabgroup.orbit )]);
Append(g,CosetRepAsWord( y, chainstabgroup.orbit[u],
chainstabgroup.transversal ));
notinH := false;
v := ImageInWord(x,g);
if not IsBound( chainH.transversal[v] ) then
notinH := true;
else
u := ImageInWord(y,g);
u := ImageInWord( u, CosetRepAsWord( x, v,
chainH.transversal ) );
if not IsBound( chainhstabgroup.transversal[u] ) then
notinH := true;
fi;
fi;
until notinH;
for i in [1..n] do
# construct semirandom element of <H,g>
word := [];
for j in [1..5] do
len := Length(word);
for k in [1..Length(g)] do
word[len+k] := g[k];
od;
len := Length(word);
hword := RandomElmAsWord(H);
for k in [1..Length(hword)] do
word[len+k] := hword[k];
od;
od;
# check whether word is in H;
# if not, then let g=cosetrep of word in G_{xy}
v := ImageInWord(x,word);
tau := CosetRepAsWord( x, v, chainH.transversal );
if tau = [] then
tau1 := CosetRepAsWord( x, v, chainG.transversal );
u := ImageInWord(y,word);
u := ImageInWord(u,tau1);
sigma1 := CosetRepAsWord( y, u, chainstabgroup.transversal );
g := Concatenation(tau1,sigma1);
else
u := ImageInWord(y,word);
u := ImageInWord(u,tau);
sigma := CosetRepAsWord( y, u, chainhstabgroup.transversal );
if sigma = [] then
tau1 := CosetRepAsWord( x, v, chainG.transversal );
u := ImageInWord(y,word);
u := ImageInWord(u,tau1);
sigma1 := CosetRepAsWord( y, u,
chainstabgroup.transversal );
g := Concatenation(tau1,sigma1);
fi;
fi;
od;
# check whether H,g generate a proper subgroup of G
K := ClosureGroup(H,Product(g));
if 1 < Size(G)/Size(K) then
H := K;
chainH:= StabChainMutable( H );
#Print(Size(H));
hstabgroup := Stabilizer(H,x,OnPoints);
chainhstabgroup:= StabChainMutable( hstabgroup );
ExtendStabChain( chainhstabgroup, BaseStabChain(chainstabgroup) );
ExtendStabChain( chainH, BaseStabChain(chainG) );
fi;
until Length( chainH.orbit ) = n;
return H;
end );
#############################################################################
##
#F PullbackKernelCSPG() . . . . . . . . . . . . . . . pull back the kernels
##
InstallGlobalFunction( PullbackKernelCSPG,
function( homlist, normals, factors, auxiliary, index )
local lenhomlist, # length of homlist
i, j, # loop variables
gens, # list of generators in kernels
# of homomorphisms in homlist
k, # kernel
kg, # kernel generators
g; # a member of gens
# for each kernel, compute preimages of the kernel generators in the
# input group add these to generators of the current subnormal subgroup
# in the composition series
lenhomlist := Length(homlist);
for i in [1..lenhomlist] do
k:=KernelOfMultiplicativeGeneralMapping(homlist[i]);
kg:=GeneratorsOfGroup(k);
if IsBound(auxiliary[i]) then
gens := Union( GeneratorsOfGroup( k ),
StabChainMutable( auxiliary[i] ).generators);
if Length(gens)>6 then
g:=Group(gens,());
if IsSubset(auxiliary[i],k) then
SetSize(g,Size(auxiliary[i]));
else
StabChainOptions(g).limit:=Size(k)*Size(auxiliary[i]);
fi;
gens:=SmallGeneratingSet(g);
fi;
else
if Length(kg)>5 then
gens:=SmallGeneratingSet(k);
else
gens := kg;
fi;
fi;
for g in gens do
for j in [1..i-1] do
g := PreImagesRepresentative(homlist[i-j],g);
od;
Add(normals[index],g);
Add(factors[index],());
od;
od;
end );
#############################################################################
##
#F PullbackCSPG() . . . . . . . . . . . . . . . . . . . . . . . . pull back
##
InstallGlobalFunction( PullbackCSPG, function(p,homlist)
local i, # loop variable
lenhomlist; # length of homlist
# compute a preimage of the permutation p in the input group
lenhomlist := Length(homlist);
for i in [1..lenhomlist] do
p := PreImagesRepresentative(homlist[lenhomlist+1-i],p);
od;
return p;
end );
#############################################################################
##
#F CosetRepAsWord() . . . . . . . . . write a coset representative as word
##
## returns the cosetrep carrying y to the base point x as a word in the
## generators. If y is not in the orbit of x, returns []
##
InstallGlobalFunction( CosetRepAsWord, function(x,y,transversal)
local word, # list of permutations
point; # element of permutation domain
word := [];
if IsBound(transversal[y]) then
point := y;
repeat
word[Length(word)+1] := transversal[point];
point := point^transversal[point];
until point = x;
fi;
return word;
end );
#############################################################################
##
#F ImageInWord() . . . image of a point under a permutation written as word
##
## computes the image of x when the list of permutations word is applied
##
InstallGlobalFunction( ImageInWord, function(x,word)
local i, # loop variable
value; # element of permutation domain
value := x;
for i in [1..Length(word)] do
value := value^word[i];
od;
return value;
end );
#############################################################################
##
#F SiftAsWord( <chain>, <perm> ) . . . . sift a permutation written as word
##
## given a list <perm> of permutations and a stabilizer chain <chain> for
## the group $G$, the routine computes the residue at the sifting of perm
## through the SGS of $G$.
## The output is a list of length 2: the first component is the siftee,
## as a word, the second component is 0 if perm in $G$, and i if the siftee
## on the i^th level could not be computed.
##
#T <perm> is changed!
##
InstallGlobalFunction( SiftAsWord, function( chain, perm )
local i, # loop variable
y, # element of permutation domain
word, # the list collecting the siftee of perm
len, # length of word
coset, # word representing a coset in a stabilizer
index, # the level where the siftee cannot be computed
stb; # the stabilizer group we currently work with
# perm must be a list of permutations itself!
stb := chain;
word := perm;
index := 0;
while IsBound(stb.stabilizer) do
index:=index+1;
y:=ImageInWord(stb.orbit[1],word);
if IsBound(stb.transversal[y]) then
coset := CosetRepAsWord(stb.orbit[1],y,stb.transversal);
len := Length(word);
for i in [1..Length(coset)] do
word[len+i] := coset[i];
od;
stb:=stb.stabilizer;
else
return([word,index]);
fi;
od;
index := 0;
return [word,index];
end );
#############################################################################
##
#F InverseAsWord() . . . . . . . . . . invert a permutation written as word
##
## given a list of permutations "list", the inverses of these permutations
## in inverselist, and a list of permutations "word" with elements from
## list, returns the inverse of word as a list of inverses from inverselist
##
InstallGlobalFunction( InverseAsWord, function(word,list,inverselist)
local i, # loop variable
p, # position
inverse; # the inverse of word
if word = [ () ] then
return word;
fi;
inverse := [];
for i in [1..Length(word)] do
# identity tests are cheaper if the degree gets bigger.
p:=PositionProperty(list,j->IsIdenticalObj(j,word[Length(word)+1-i]));
if p=fail then
# this is very unlikely to happen.
p:=Position(list,word[Length(word)+1-i]);
fi;
inverse[i] := inverselist[p];
od;
return inverse;
end );
#############################################################################
##
#F RandomElmAsWord( <chain> ) . . . . . . . random element written as word
##
## given an stabilizer chain <chain> for the group $G$, returns a uniformly
## distributed random element of $G$,
## as a word in the strong generators
##
InstallGlobalFunction( RandomElmAsWord, function( chain )
local i, # loop variable
word, # the random element
len, # length of word
stb, # the stabilizer group we currently work with
v, # index of random element of stb.orbit
coset; # word representing a coset
word:=[];
stb:= chain;
while IsBound(stb.stabilizer) do
v := Random([1..Length(stb.orbit)]);
coset := CosetRepAsWord(stb.orbit[1],stb.orbit[v],stb.transversal);
len := Length(word);
for i in [1..Length(coset)] do
word[len+i] := coset[i];
od;
stb:=stb.stabilizer;
od;
return word;
end );
#############################################################################
##
#M PCore() . . . . . . . . . . . . . . . . . . p core of a permutation group
##
## O_p(G), the p-core of G, is the maximal normal p-subgroup
## Output of routine: the subgroup O_p(workgroup)
## reference: Luks-Seress
##
InstallMethod( PCoreOp,
"for a permutation group, and a positive integer",
true,
[ IsPermGroup, IsPosInt ], 0,
function(workgroup,p)
local n, # degree of workgroup
G, # a factor group of workgroup
list, # the record workgroup.compositionSeries
normals, # gens for the subgroups in the composition series
factorsize, # the sizes of factor groups in composition series
index, # loop variable running through the indices of
# subgroups in the composition series
pri,primes, # list of primes in the factorization of numbers
ppart, # p-part of Size(G)
homlist, # list of homomorphisms applied to workgroup
lenhomlist, # length of homlist
K, N, # subnormal subgroups of G from composition series
g, # generator of K
C, # centralizer of N in K
D, # the p-part of C
order, # order of a generator of C
H, # first solvable, then also
# abelian normal p-subgroup of G
series, # the derived series of H; H becomes abelian when it
# is redefined as last nontrivial term of series
actionlist, # record of G action on transitive
# constituent pieces of H
Ggens, # generators of stab. chain of `G'
i, j, # loop variables
image, # list of images of generators of G
# acting on pieces of H
GG, # the image of G at this action
hom, # the homomorphism from G to GG
pgenlist; # list of generators for the p-core
# handle trivial cases
pri := FactorsInt(p);
if Length(pri) > 1 then
return TrivialSubgroup(workgroup);
fi;
if IsTrivial(workgroup) then
return TrivialSubgroup(workgroup);
fi;
if Size(workgroup) mod p <> 0 then
# p does not divide Size(workgroup)
return TrivialSubgroup(workgroup);
fi;
#handle nilpotent case directly
if IsNilpotentGroup( workgroup ) then
# compute the p-part of generators of workgroup
primes := Collected( Factors( Size(workgroup) ) );
ppart := p^primes[PositionProperty( primes, x->x[1]=p )][2];
pgenlist := [];
for g in StabChainMutable( workgroup ).generators do
Add( pgenlist, g^( Size(workgroup)/( ppart ) ) );
od;
D := SubgroupNC( workgroup, pgenlist );
if ppart > 1 then
SetIsPGroup( D, true );
SetPrimePGroup( D, p );
fi;
return D;
fi;
n := LargestMovedPoint(workgroup);
G := workgroup;
list := CompositionSeries(G);
# normals := Copy(list[1]);
# factorsize := list[3];
normals := List( [1..Length(list)-1],
i->ShallowCopy(StabChainMutable(list[i]).generators));
factorsize := List([1..Length(list)-1],i->Size(list[i])/Size(list[i+1]));
Add(normals, [()]);
homlist := [];
index := Length(factorsize);
# try to find smallest subgroup in composition series with nontrivial
# p-core. The normal closure of this p-core is a solvable normal
# p-subgroup of G; taking commutator subgroups, find abelian normal
# p-subgroup of G.
# represent G acting on transitive constituent pieces of abelian normal
# p-subgroup; kernel is abelian p-group. Take image at this action, and
# repeat
while index > 0 do
if factorsize[index] <> p then
index := index-1;
else
N := SubgroupNC(Parent(G),normals[index+1]);
# define K := SubGroup(Parent(G),normals[index]);
# N has trivial p-core; check whether K has nontrivial one
# K=N is possible when we work in homomorphic images of original
if ForAll(normals[index], x -> x in N) then
index := index-1;
else
K := ClosureGroup( N,normals[index],
rec( size:=p*Size(N) ) );
C := CentralizerNormalCSPG(K,N);
# O_p(K) is cyclic or trivial; it must show up in C
# C is always abelian; check whether it has p-part
D := [];
C:= GeneratorsOfGroup( C );
for i in [1..Length( C )] do
order := Order(C[i]);
if order mod p = 0 then
D[i] := C[i]^(order/p);
else
D[i] := ();
fi;
od;
# redefine C as the p-core of C
C := SubgroupNC(Parent(K),D);
if IsTrivial(C) then
index := index-1;
else
H := NormalClosure(G,C);
series := DerivedSeriesOfGroup(H);
H := series[Length(series)-1];
# at that moment, H is abelian normal in G
# define new action of G with H in the kernel
actionlist := ActionAbelianCSPG(H,n);
Ggens:= StabChainMutable( G ).generators;
image:= List( Ggens,
g -> ImageOnAbelianCSPG( g, actionlist ) );
# take homomorphic image of G
GG := GroupByGenerators(image,());
hom:=GroupHomomorphismByImagesNC(G,GG,Ggens,image);
Add(homlist,hom);
#force makemapping
KernelOfMultiplicativeGeneralMapping( hom );
# find new action of subgroups in composition series
for i in [1..index] do
for j in [1..Length(normals[i])] do
normals[i][j] :=
# ImageOnAbelianCSPG(normals[i][j],actionlist);
Image(hom,normals[i][j]);
od;
od;
G := GG;
index := index-1;
fi; # IsTrivial(C)
fi; # K = N
fi; # factorsize[index] <> p
od;
# create output;
# the p-core is the kernel of homomorphisms applied to workgroup
lenhomlist := Length(homlist);
if lenhomlist = 0 then
pgenlist := [()];
else
pgenlist := [];
for i in [1..lenhomlist] do
for g in GeneratorsOfGroup( KernelOfMultiplicativeGeneralMapping(
homlist[i] ) ) do
for j in [1..i-1] do
g := PreImagesRepresentative(homlist[i-j],g);
od;
Add(pgenlist,g);
od;
od;
fi;
D := SubgroupNC(workgroup,pgenlist);
if not ForAll(pgenlist,IsOne) then
SetIsPGroup( D, true );
SetPrimePGroup( D, p );
fi;
return D;
end );
#############################################################################
##
#M RadicalGroup() . . . . . . . . . . . . . radical of a permutation group
##
## the radical is the maximal solvable normal subgroup
## output of routine: the subgroup radical of workgroup
## reference: Luks-Seress
##
InstallMethod( RadicalGroup,
" for a permutation group",
true,
[ IsPermGroup ], 0,
function(workgroup)
local n, # degree of workgroup
G, # a factor group of workgroup
list, # the record workgroup.compositionSeries
normals, # gens for the subgroups in the composition series
factorsize, # the sizes of factor groups in composition series
index, # loop variable running through the indices of
# subgroups in the composition series
primes, # list of primes in the factorization of numbers
homlist, # list of homomorphisms applied to workgroup
lenhomlist, # length of homlist
K, N, # subnormal subgroups of G from composition series
g, # generator of K
C, # centralizer of N in K
H, # first solvable,
# then also abelian normal subgroup of G
series, # the derived series of H; H becomes abelian when it
# is redefined as last nontrivial term of series
actionlist, # record of G action on transitive
# constituent pieces of H
Ggens, # generators of stab. chain of `G'
i, j, # loop variables
image, # list of images of generators of G
# acting on pieces of H
GG, # the image of G at this action
hom, # the homomorphism from G to GG
map, # natural homomorphism for radical.
solvable, # list of generators for the radical
o, # orbits of G
b, # blocks
TryReduction;# function to test whether a hom. can reduce
if IsTrivial(workgroup) then
return TrivialSubgroup(workgroup);
fi;
if IsSolvableGroup(workgroup) then
return workgroup;
fi;
n := LargestMovedPoint(workgroup);
G := workgroup;
# if the degree is big, try to reduce it in a first step
if n>1000 then
TryReduction:=function(hom)
local s,f,k,map;
s:=Size(G)/Size(Image(hom)); # kernel size
# is the kernel solvable? If yes we can go to the image
f:=Collected(Factors(s));
# at most 2 primes or all primes to power 1 -> Solvable
if Length(f)<3 or ForAll(f,i->i[2]=1) then
Info(InfoGroup,1,"solvable kernel size ",f);
# OK, transfer result back
k:=RadicalGroup(Image(hom));
solvable:=PreImage(hom,k);
map:=hom*NaturalHomomorphismByNormalSubgroup(Image(hom),k);
SetKernelOfMultiplicativeGeneralMapping(map,solvable);
AddNaturalHomomorphismsPool(G,solvable,map);
return solvable;
fi;
return fail;
end;
# try orbits
o:=ShallowCopy(Orbits(G,MovedPoints(G)));
if Length(o)>1 then
Sort(o,function(a,b)return Length(a)<Length(b);end);
for i in o do
Info(InfoGroup,1,"trying orbit length ",Length(o));
hom:=ActionHomomorphism(G,i,"surjective");
K:=TryReduction(hom);
if K<>fail then
return K;
fi;
od;
fi;
# try blocks on orbits
for i in o do
b:=Blocks(G,i);
if Length(b)>1 then
Info(InfoGroup,1,"trying blocks length ",Length(b));
hom:=ActionHomomorphism(G,b,OnSets,"surjective");
K:=TryReduction(hom);
if K<>fail then
return K;
fi;
fi;
od;
fi;
list := CompositionSeries(G);
# normals := Copy(list[1]);
# factorsize := list[3];
#was:
#normals := List( [1..Length(list)-1],
# i->ShallowCopy(StabChainMutable(list[i]).generators));
# but not all subgroups in the comp.ser have their own stabchain.
normals:=[];
for i in [1..Length(list)-1] do
if HasStabChainMutable(list[i]) then
normals[i]:=ShallowCopy(StabChainMutable(list[i]).generators);
else
normals[i]:=ShallowCopy(GeneratorsOfGroup(list[i]));
fi;
od;
factorsize := List([1..Length(list)-1],i->Size(list[i])/Size(list[i+1]));
Add(normals, [()]);
homlist := [];
index := Length(factorsize);
# try to find smallest subgroup in composition series with nontrivial
# radical. The normal closure of this radical is a solvable normal
# subgroup of G; taking commutator subgroups, find abelian normal
# subgroup of G.
# represent G acting on transitive constituent pieces of abelian normal
# subgroup; kernel is abelian normal.
# Take image at this action, and repeat
while index > 0 do
primes := FactorsInt(factorsize[index]);
# if the factor group is not cyclic, no chance for nontrivial radical
if Length(primes) > 1 then
index := index-1;
else
N := SubgroupNC(Parent(G),normals[index+1]);
# define K := SubGroup(Parent(G),normals[index]);
# N has trivial radical; check whether K has nontrivial one
# K=N is possible when we work in homomorphic images of original
if ForAll(normals[index], x -> x in N) then
index := index-1;
else
K := ClosureGroup( N,normals[index],
rec( size:=factorsize[index]*Size(N) ) );
C := CentralizerNormalCSPG(K,N);
# radical of K is cyclic or trivial; it has to show up in C
if IsTrivial(C) then
index := index-1;
else
H := NormalClosure(G,C);
series := DerivedSeriesOfGroup(H);
H := series[Length(series)-1];
# at that moment, H is abelian normal in G
# define new action of G with H in the kernel
actionlist := ActionAbelianCSPG(H,n);
Ggens:= StabChainMutable( G ).generators;
if Length(Ggens)>5*Length(GeneratorsOfGroup(G)) then
Ggens:=GeneratorsOfGroup(G);
fi;
image:= List( Ggens,
g -> ImageOnAbelianCSPG( g, actionlist ) );
# take homomorphic image of G
GG := GroupByGenerators(image,());
hom := GroupHomomorphismByImagesNC(G,GG,
Ggens,image);
Add(homlist,hom);
#force makemapping
KernelOfMultiplicativeGeneralMapping( hom );
# find new action of subgroups in composition series
for i in [1..index] do
for j in [1..Length(normals[i])] do
normals[i][j] :=
# ImageOnAbelianCSPG(normals[i][j],actionlist);
Image(hom,normals[i][j]);
od;
od;
Unbind(actionlist); # big object that is not needed later
G := GG;
index := index-1;
fi; # IsTrivial(C)
fi; # K = N
fi; # Length(primes)>1
od;
# create output;
# the radical is the kernel of homomorphisms applied to workgroup
lenhomlist := Length(homlist);
if lenhomlist = 0 then
return TrivialSubgroup(workgroup);
else
solvable := [];
for i in [1..lenhomlist] do
for g in GeneratorsOfGroup( KernelOfMultiplicativeGeneralMapping(
homlist[i] ) ) do
for j in [1..i-1] do
g := PreImagesRepresentative(homlist[i-j],g);
od;
Add(solvable,g);
od;
od;
fi;
# construct the natural hom.
map:=[];
for i in GeneratorsOfGroup(workgroup) do
g:=i;
for j in [1..lenhomlist] do
g:=ImageElm(homlist[j],g);
od;
Add(map,g);
od;
solvable:=SubgroupNC(workgroup,solvable);
g:=Group(map,());
SetSize(g,Index(workgroup,solvable));
SetRadicalGroup(g,TrivialSubgroup(g));
map:=GroupHomomorphismByImagesNC(workgroup,g,
GeneratorsOfGroup(workgroup),map);
SetKernelOfMultiplicativeGeneralMapping(map,solvable);
AddNaturalHomomorphismsPool(workgroup,solvable,map);
return solvable;
end );
#############################################################################
##
#M Centre( <G> ) . . . . . . . . . . . . . . . center of a permutation group
##
## constructs the center of G.
## Reference: Beals-Seress, 24th Symp. on Theory of Computing 1992, sect. 9
##
InstallMethod( Centre,
"for a permutation group",
[ IsPermGroup ],
function(G)
local n, # degree of G
orbits, # list of orbits of G
base, # lexicographically smallest (in list) base of G
i,j, # loop variables
reps, # array recording which orbit of G the points in
# perm. domain belong to
domain, # union of G orbits which contain base points
significant,# indices of orbits in "orbits" that belong to domain
max, # loop variable, used at definition of significant
len, # length of domain
tchom, # trans. const. homom, restricting G to domain
GG, # the image of tchom
chainGG, # stabilizer chain of `GG'
chainGGG, # stabilizer chain of `GGG'
orbit, # an orbit of GG
tchom2, # trans. const. homom, restricting GG to orbit
GGG, # the image of GG at tchom2
hgens, # list of generators for the direct product of
# centralizers of GG in Sym(orbit), for orbits of GG
order, # order of `GroupByGenerators( hgens, () )'
centr, # the centralizer of GG in Sym(orbit)
inverse2, # inverse of the conjugating permutation of tchom2
g, # generator of centr
cent; # center of GG
if IsTrivial(G) then
return TrivialSubgroup(G);
fi;
base := BaseStabChain(StabChainMutable(G));
n := Maximum( Maximum( base ), LargestMovedPoint(G) );
orbits := OrbitsDomain(G,[1..n]);
# orbits := List( orbits, Set );
# handle case of transitive G directly
if Length(orbits) = 1 then
centr := CentralizerTransSymmCSPG( G, StabChainMutable( G ) );
if IsEmpty( GeneratorsOfGroup( centr ) ) then
return TrivialSubgroup( G );
else
order := Size(centr);
cent := IntersectionNormalClosurePermGroup(G,centr,order*Size(G));
Assert( 1, IsAbelian( cent ) );
SetIsAbelian( cent, true );
return cent;
fi;
fi;
# for intransitive G, find which orbit contains which
# points of permutation domain
reps := [];
for i in [1..Length(orbits)] do
for j in [1..Length(orbits[i])] do
reps[orbits[i][j]] := i;
od;
od;
# take union of significant orbits which contain base points
max := reps[base[1]];
significant := [max];
domain := ShallowCopy(orbits[max]);
for i in [2..Length(base)] do
if not (reps[base[i]] in significant) then
max := reps[base[i]];
Append(domain,orbits[max]);
Add(significant,max);
fi;
od;
len := Length(domain);
# restrict G to significant orbits
if n = len then
GG := G;
else
tchom := ActionHomomorphism(G,domain,"surjective");
GG := Image(tchom,G);
fi;
# handle case of transitive GG directly
if Length(significant) = 1 then
centr := CentralizerTransSymmCSPG( GG, StabChainMutable( GG ) );
if IsEmpty( GeneratorsOfGroup( centr ) ) then
return TrivialSubgroup( G );
else
order := Size( centr );
cent := IntersectionNormalClosurePermGroup(GG,centr,order*Size(GG));
cent:= PreImages(tchom,cent);
Assert( 1, IsAbelian( cent ) );
SetIsAbelian( cent, true );
return cent;
fi;
fi;
# case of intransitive GG
# for each orbit of GG, construct generators of centralizer of GG in
# Sym(orbit). hgens is a list of generators for the direct product of
# these centralizers.
# the group generated by hgens contains the center of GG
hgens := [];
order := 1;
for i in significant do
if n = len then
orbit := orbits[i];
else
orbit := OnTuples(orbits[i],tchom!.conperm);
fi;
tchom2 := ActionHomomorphism(GG,orbit,"surjective");
GGG := Image(tchom2,GG);
chainGG:= StabChainOp( GG, [ orbit[1] ] );
chainGGG:= StabChainMutable( GGG );
chainGGG.stabFxdPnts:=[ orbit[1]^tchom2!.conperm,
OnTuples( Difference(orbit,
MovedPoints( chainGG.stabilizer.generators ) ),
tchom2!.conperm ) ];
centr := CentralizerTransSymmCSPG( GGG, chainGGG );
if not IsEmpty( GeneratorsOfGroup( centr ) ) then
order := order * Size( centr );
inverse2 := tchom2!.conperm^(-1);
for g in StabChainMutable( centr ).generators do
Add(hgens,g^inverse2);
od;
fi;
od;
if order = 1 then
return TrivialSubgroup( G );
else
cent := IntersectionNormalClosurePermGroup
( GG, GroupByGenerators(hgens,()), order*Size(GG) );
if n <> len then
cent:= PreImages( tchom, cent );
fi;
Assert( 1, IsAbelian( cent ) );
SetIsAbelian( cent, true );
return cent;
fi;
end );
#############################################################################
##
#F CentralizerNormalCSPG() . . . . . . . . centralizer of a normal subgroup
##
## computes the centralizer of a NORMAL subgroup N in G.
## Reference: Luks-Seress
##
InstallGlobalFunction( CentralizerNormalCSPG, function(G,N)
local n, # degree of G
orbits, # list of orbits of G
list, # ordering of permutation domain
# such that G orbits are consecutive
base, # lexicographically smallest (in list) base of G
i,j, # loop variables
reps, # array recording which orbit of G the points in
# perm. domain belong to
domain, # union of G orbits which contain base points
significant,# indices of orbits in "orbits" that belong to domain
max, # loop variable, used at definition of significant
len, # length of domain
tchom, # trans. const. homom, restricting G to domain
GG, # the image of G at tchom
NN, # the image of N at tchom
orbit, # an orbit of GG
tchom2, # trans. const. homom, restricting GG to orbit
GGG, # the image of GG at tchom2
NNN, # the image of NN at tchom2
hgens, # list of generators for the direct product of
# centralizers of NN in GG restricted to Sym(orbit),
# for orbits of GG
order, # order of Group(hgens,())
centrnorm, # centralizer of NN in GG restricted to Sym(orbit)
inverse2, # inverse of the conjugating permutation of tchom2
g, # loop variable for generators
image, # generator of centrnorm, as it acts on domain
central; # centralizer of NN in GG
if IsTrivial(N) then
return G;
fi;
n := LargestMovedPoint(G);
orbits := OrbitsDomain(G,[1..n]);
#orbits := List( orbits, Set );
# handle case of transitive G directly
if Length(orbits) = 1 then
centrnorm := CentralizerNormalTransCSPG(G,N);
return centrnorm;
fi;
# for intransitive G, find which orbit contains which
#points of permutation domain
reps := [];
for i in [1..Length(orbits)] do
for j in [1..Length(orbits[i])] do
reps[orbits[i][j]] := i;
od;
od;
#list := Concatenation(orbits);
#MakeStabChain(G,list);
# take union of significant orbits which contain base points
base := BaseStabChain(StabChainMutable(G));
max := reps[base[1]];
significant := [max];
domain := ShallowCopy(orbits[max]);
for i in [2..Length(base)] do
if not (reps[base[i]] in significant) then
max := reps[base[i]];
Append(domain,orbits[max]);
Add(significant,max);
fi;
od;
len := Length(domain);
# restrict G,N to significant orbits
if n = len then
GG := G;
NN := N;
else
tchom := ActionHomomorphism(G,domain,"surjective");
GG := Image(tchom,G);
NN := Image(tchom,N);
fi;
# handle case of transitive GG directly
if Length(significant) = 1 then
centrnorm := CentralizerNormalTransCSPG(GG,NN);
return PreImages(tchom,centrnorm);
fi;
# case of intransitive GG
# for each GG orbit, compute the centralizer of NN in GG, restricted to
# the orbit. hgens contains generators for the direct product of these
# centralizers; the group generated by hgens contains the centralizer of
# NN in GG
hgens := [];
order := 1;
for i in significant do
if n = len then
orbit := orbits[i];
else
orbit := OnTuples(orbits[i],tchom!.conperm);
fi;
# restrict GG, NN to orbit
tchom2 := ActionHomomorphism(GG,orbit,"surjective");
GGG := Image(tchom2,GG);
NNN := Image(tchom2,NN);
# compute centralizer of NNN in GGG
centrnorm := CentralizerNormalTransCSPG(GGG,NNN);
inverse2 := tchom2!.conperm^(-1);
order := order * Size(centrnorm);
# determine how the centralizer acts on domain
for g in StabChainMutable( centrnorm ).generators do
Add(hgens,g^inverse2);
od;
od;
if order = 1 then
return TrivialSubgroup( Parent(G) );
else
central := IntersectionNormalClosurePermGroup
( GG, GroupByGenerators(hgens,()), order*Size(GG) );
fi;
if n = len then
return central;
else
return PreImages(tchom,central);
fi;
end );
#############################################################################
##
#F CentralizerNormalTransCSPG() . . . centralizer of normal in transitive G
##
## computes C_G(N) with G transitive, N normal in G
## reference: Luks-Seress
##
InstallGlobalFunction( CentralizerNormalTransCSPG, function(G,N)
local chainG, # stabilizer chain of `G'
chainN, # stabilizer chain of `N'
n, # degree of G
x, # the first base point of G
stabgroup, # stabilizer of x in N
U, # an orbit of centralizer of N in S_n
orbits, # list of orbits of centralizer of N is S_n
bhom, # block homomorphism from G to action on orbits
GG, # the kernel of bhom
GGgens, # generators of a stabilizer chain of `GG'
Ginverses, # list of inverses of generators of G
Ninverses, # list of inverses of generators of N
norbits, # list of orbits of N
orbitlength,# the length of the N orbits
# (all are of the same size)
reprlist, # list recording which orbit of N contains a point of
# permutation domain
positionlist,
# list recording the position of a point within its
# N orbit
positiongenlist,
# list of length orbitlength; i^th entry records
# the position of the generator in N.generators
# which occurs in N.transversal at N.orbit[i]
len, # number of N orbits intersecting U
diff, # loop variable denoting a subset of U
# used at creation of N orbits which intersect U
new, # an orbit of N intersecting U
i,j,k,m, # loop variables
y,u,s, # points of permutation domain
set, # loop variable denoting subset of [1..n], used at
# creation of covering of [1..n] by orbits of N
newlen, # loop variable counting the total length of N orbits
# at the covering of [1..n]
word, # a coset representative of G or N, as a word
tchom, # transitive constituent homomorphism restricting
# N to N.orbit
inverse, # the inverse of tchom.conperm
img, # image of `N' under `tchom'
centr, # the centralizer of N in Sym(N.orbit)
chaincentr, # stabilizer chain of `centr'
hom, # homomorphism of GG whose kernel is C_G(N)
images, # list of images of generators of GG at hom
top,bottom,g,
# permutations used at the creation of images
K; # image of GG at hom
if IsTrivial(N) then
return G;
fi;
chainG:= StabChainMutable( G );
x := chainG.orbit[1];
chainN:= StabChainOp( N, [x] );
# handle transitive N directly
if Length( chainN.orbit ) = Length( chainG.orbit ) then
centr := CentralizerTransSymmCSPG( N, chainN );
if Size(centr) > 1 then
return IntersectionNormalClosurePermGroup( G, centr,
Size( centr ) * Size( G ) );
else
return TrivialSubgroup( Parent(G) );
fi;
fi;
n := LargestMovedPoint(G);
stabgroup := Stabilizer(N,x,OnPoints);
U := Difference([1..n],MovedPoints(stabgroup));
if Length(U) = 1 then
return TrivialSubgroup( Parent(G) );
fi;
orbits:=Blocks(G,[1..n],U);
# orbits contains the orbits of the centralizer of N in S_n;
# so C_G(N) must fix setwise the elements of orbits
bhom := ActionHomomorphism(G,orbits,OnSets,"surjective");
GG := KernelOfMultiplicativeGeneralMapping( bhom );
if IsTrivial(GG) then
return TrivialSubgroup( Parent(G) );
fi;
Ginverses := GInverses( chainG );
Ninverses := GInverses( chainN );
# we partition [1..n] into the orbits of N, and compute the
# identification between equivalent orbits (equivalent in the sense
# that the centralizer of N in S_n exchanges them). After that, we
# conjugate the union of equivalent orbits to cover [1..n]
norbits := [ chainN.orbit ];
orbitlength := Length( chainN.orbit );
positionlist := [];
reprlist := [];
positiongenlist := [];
for i in [1..orbitlength] do
positionlist[ chainN.orbit[i] ] := i;
reprlist[ chainN.orbit[i] ] := 1;
positiongenlist[i]:= Position( chainN.generators,
chainN.transversal[ chainN.orbit[i] ] );
od;
diff := Difference(U,norbits[1]);
len := 1;
# create the orbits of N equivalent to the first one
while diff <> [] do
len := len+1;
y := diff[1];
new := [y];
positionlist[y] := 1;
reprlist[y] := len;
for i in [2..orbitlength] do
u := chainN.orbit[i] ^ chainN.generators[ positiongenlist[i] ];
new[i] := new[positionlist[u]]^Ninverses[positiongenlist[i]];
positionlist[new[i]] := i;
reprlist[new[i]] := len;
od;
Add(norbits,new);
diff := Difference(diff,new);
od;
# if the domain is not covered, create further orbits of N
if len*orbitlength < n then
set := Difference([1..n],Union(norbits));
for k in [2..n/(len*orbitlength)] do
newlen := (k-1)*len;
y := set[1];
word := CosetRepAsWord( x, y, chainG.transversal );
word := InverseAsWord( word, chainG.generators, Ginverses );
for i in [1..len] do
norbits[newlen+i] := [];
for j in [1..orbitlength] do
norbits[newlen+i][j] := ImageInWord(norbits[i][j],word);
positionlist[norbits[newlen+i][j]] := j;
reprlist[norbits[newlen+i][j]] := newlen+i;
od;
set := Difference(set,norbits[newlen+i]);
od;
od;
fi;
# compute centralizer of N in first orbit; centralizer in other orbits
# is obtained from identification between orbits
tchom := ActionHomomorphism( N, chainN.orbit,"surjective" );
inverse := tchom!.conperm^(-1);
img:= Image( tchom, N );
centr := CentralizerTransSymmCSPG( img, StabChainMutable( img ) );
# compute (and store) transversal of centr
chaincentr:= EmptyStabChain( [ ], (), x^tchom!.conperm );
AddGeneratorsExtendSchreierTree( chaincentr, GeneratorsOfGroup(centr));
# compute images at homomorphism of GG, g -> g c_g^{-1} (cf. Luks-Seress)
# the kernel of this homomorphism is C_G(N)
images := [];
GGgens := StabChainMutable( GG ).generators;
for i in [1..Length( GGgens)] do
images[i] := [];
# top is the permutation in the wreath product which pulls back g to
# orbits of N
top := [];
for j in [1..Length(norbits)] do
k := reprlist[norbits[j][1]^GGgens[i]];
for m in [1..orbitlength] do
top[norbits[k][m]] := norbits[j][m];
od;
od;
top := PermList(top);
g := GGgens[i]*top;
# pull back each leading point in norbits by centralizer of N
bottom := [];
for j in [1..Length(norbits)] do
k := positionlist[norbits[j][1]^g];
word := CosetRepAsWord( x^tchom!.conperm,
chainN.orbit[k]^tchom!.conperm,
chaincentr.transversal);
for m in [1..orbitlength] do
s := (ImageInWord( chainN.orbit[m]^tchom!.conperm,
word ))^inverse;
bottom[norbits[j][m]] := norbits[j][positionlist[s]];
od;
od;
bottom := PermList(bottom);
images[i] := g*bottom;
od;
K := GroupByGenerators(images,());
hom := GroupHomomorphismByImagesNC(GG,K,GGgens,images);
return KernelOfMultiplicativeGeneralMapping( hom );
end );
#############################################################################
##
#F CentralizerTransSymmCSPG() . . . . . centralizer of transitive G in S_n
##
## computes the centralizer of a transitive group G in S_n
##
InstallGlobalFunction( CentralizerTransSymmCSPG, function( G, chainG )
local n, # the degree of G
x, # the first base point
L, # the set of fixed points of stabgroup
orbitx, # the orbit of x in the centralizer;
# eventually, orbitx=L
y, # a point in L
z, # loop variable running through permutation domain
h, # a coset representative of G, written as word in the
# generators
gens, # list of generators for the centralizer
gen, # an element of gens
Ggens, # generators of G
Ginverses, # list of inverses for the generators of G
H; # output group
if IsTrivial(G) then
return TrivialSubgroup( Parent(G) );
fi;
if IsBound( chainG.stabFxdPnts ) then
x := chainG.stabFxdPnts[1];
L := chainG.stabFxdPnts[2];
n := LargestMovedPoint(G);
if not IsBound( chainG.orbit ) or chainG.orbit[1] <> x then
chainG := EmptyStabChain( [ ], (), x );
AddGeneratorsExtendSchreierTree( chainG, GeneratorsOfGroup(G) );
fi;
else
n := LargestMovedPoint(G);
x := chainG.orbit[1];
L := Difference( [ 1 .. n ],
MovedPoints( chainG.stabilizer.generators ) );
fi;
Ginverses := GInverses( chainG );
Ggens := chainG.generators;
# the centralizer of G is semiregular, acting transitively on L
orbitx := [x];
gens := [];
while Length(orbitx) < Length(L) do
# construct element of centralizer which carries x to new point in L
gen := [];
y := Difference(L,orbitx)[1];
for z in [1..n] do
h := CosetRepAsWord( x, z, chainG.transversal );
h := InverseAsWord(h,Ggens,Ginverses);
gen[z] := ImageInWord(y,h);
od;
Add(gens,PermList(gen));
orbitx := OrbitPerms(gens,x);
od;
H := SubgroupNC( G, gens );
SetSize( H, Length( L ) );
return H;
end );
#############################################################################
##
#F IntersectionNormalClosurePermGroup(<G>,<H>[,order]) . . . intersection of
#F normal closure of <H> under <G> with <G>
##
## computes $H^G \cap G$ as subgroup of Parent(G)
##
InstallGlobalFunction( IntersectionNormalClosurePermGroup,
function(arg)
local G,H, # the groups to be handled
n, # maximum of degrees of G,H
i,j, # loop variables
conperm, # perm exchanging first and second n points
newgens, # set of extended generators
options, # options record for stabilizer computation
group; # the group generated by newgens
# stabilizing the second n points, we get H^G \cap G
G := arg[1];
H := arg[2];
if IsTrivial(G) or IsTrivial(H) then
return TrivialSubgroup( Parent(G) );
fi;
n := Maximum(LargestMovedPoint(G),
LargestMovedPoint(H));
conperm := PermList( Concatenation( [n+1 .. 2*n] , [1 .. n] ) );
# extend the generators of G acting on [n+1..2n] exactly as on [1..n]
newgens := List( StabChainMutable( G ).generators,
g -> g * ( g^conperm ) );
# from the generators of H, create permutations which act on [n+1..2n]
# as the original generator on [1..n] and which act trivially on [1..n]
for i in StabChainMutable( H ).generators do
Add( newgens, i^conperm );
od;
group := GroupByGenerators(newgens,());
# create options record for stabilizer chain computation
options := rec( base := [n+1..2*n] );
#if size of group is part of input, use it
if Length(arg) = 3 then
options.size := arg[3];
# if H is normalized by G and G,H already have stabilizer chains
# then compute base for group
#if ( IsBound(G.size) or IsBound(G.stabChain) ) and
# ( IsBound(H.size) or IsBound(H.stabChain) ) then
# if Size(G) * Size(H) = arg[3] then
# options.knownBase :=
# Concatenation( List( Base(H), x -> n + x ), Base(G) ) ;
# fi;
#fi;
fi;
StabChain(group,options);
#T is this meaningful ??
group := Stabilizer(group,[n+1 .. 2*n],OnTuples);
return AsSubgroup( Parent(G),group);
end );
#############################################################################
##
#F ActionAbelianCSPG() . . . . . . . . . action of abelian permutation group
##
## given an abelian subgroup H of S_n, the routine codes the action of
## H on its orbits. The output is an array of length 7, describing this
## action; the components of this array are described at the local variable
## section
##
InstallGlobalFunction( ActionAbelianCSPG, function(H,n)
local i,j,k, # loop variables
orbits, # list of orbits of H; 6th element of output
action, # list; the i^th element contains a list of
# generators for the action of H on i^th orbit
inverse, # inverse[i][k] is the inverse of action[i][k]
# 1st element of output
Hgens, # generators of `H'
C, # C[i] is the stabilizer chain of the group
# generated by action[i]
# 2nd element of output
chainC, # one stabilizer chain in `C'
positionlist,
# for i in [1..n], positionlist[i] gives the position
# of i in its H orbit. 3rd element of output
reprlist, # for i in [1..n], reprlist[i] gives the position of
# the H orbit of i in orbits. 4th element of output
cpositiongenlist,
# cpositionlength[i][k] gives the position in
# action[i] of the C[i] generator which occurs in
# C[i].transversal[k]. 5th element of output
cumulativelength;
# cumulativelength[i] is the sum of lengths of first
# i-1 elements of orbits. 7th element of output
orbits := OrbitsDomain(H,[1..n]);
cumulativelength := [0];
for i in [1..Length(orbits)-1] do
cumulativelength[i+1] := cumulativelength[i]+Length(orbits[i]);
od;
positionlist := [];
reprlist := [];
for i in [1..Length(orbits)] do
for j in [1..Length(orbits[i])] do
positionlist[orbits[i][j]] := j;
reprlist[orbits[i][j]] := i;
od;
od;
# action[i][k] is the action of H.generators[k] on the i^th orbit of H,
# viewed as a permutation on [1..Length(orbits[i])]
action := [];
inverse := [];
Hgens:= StabChainMutable( H ).generators;
for i in [1..Length(orbits)] do
action[i] := [];
inverse[i] := [];
for k in [1..Length(Hgens)] do
action[i][k] := [];
for j in [1..Length(orbits[i])] do
action[i][k][j]:=positionlist[orbits[i][j]^Hgens[k]];
od;
action[i][k] := PermList(action[i][k]);
inverse[i][k] := action[i][k]^(-1);
od;
od;
C := [];
cpositiongenlist := [];
for i in [1..Length(orbits)] do
cpositiongenlist[i] := [];
# create stabilizer chain C[i]
chainC := EmptyStabChain( [ ], (), 1 );
AddGeneratorsExtendSchreierTree( chainC, action[i] );
C[i]:= chainC;
Add(action[i],());
Add(inverse[i],());
# determine position of generators occuring in transversal
for j in [1..Length( chainC.orbit )] do
cpositiongenlist[i][j]:=Position(action[i],chainC.transversal[j]);
od;
od;
return [inverse,C,positionlist,reprlist,
cpositiongenlist,orbits,cumulativelength];
end );
#############################################################################
##
#F ImageOnAbelianCSPG( <g>, <actionlist> ) . . image of normalizing element
#F . . . . . . . . . . . . . . . . . . . . . . . . . . on orbits of abelian
##
## Given the action of an abelian group $H$ encoded in <actionlist> by the
## subroutine `ActionAbelianCSPG', and a permutation <g> normalizing H,
## this subroutine computes the conjugation action of <g> on the transitive
## constituent pieces of $H$.
##
InstallGlobalFunction( ImageOnAbelianCSPG, function(g,actionlist)
local i,s, # loop variables
orbits, # list of orbits of H
# let action denote the list with the i^th element containing a list of
# generators for the action of H on i^th orbit
inverse, # inverse[i][k] is the inverse of action[i][k]
C, # C[i] is a stabilizer chain of the group generated
# by action[i]
positionlist,
# for i in [1..n], positionlist[i] gives the position
# of i in its H orbit
reprlist, # for i in [1..n], reprlist[i] gives the position of
# the H orbit of i in orbits
cpositiongenlist,
# cpositionlength[i][k] gives the position in
# action[i] of the C[i] generator which occurs in
# C[i].transversal[k]
cumulativelength,
# cumulativelength[i] is the sum of lengths of first
# i-1 elements of orbits
j, # index of H-orbit in orbits which is the image of
# the i^th H-orbit
x, # position of element of i^th orbit which is mapped
# by g to first element of j^th orbit
inv, # the inverse of g
gimage, # output of the routine; conjugation action of g
image,t; # see explanation in body of routine
inv := g^(-1);
gimage := [];
inverse := actionlist[1];
C := actionlist[2];
positionlist := actionlist[3];
reprlist := actionlist[4];
cpositiongenlist := actionlist[5];
orbits := actionlist[6];
cumulativelength := actionlist[7];
# the transitive constituent pieces of H are regarded as a list of
# length n; the (unique) piece carrying the first point of i^th orbit
# to k^th point of i^th orbit is in the position cumulativelength[i]+k.
# gimage will contain the conjugation action of g on the elements of
# this list
for i in [1..Length(orbits)] do
# determine which orbit contains the images of pieces from i^th orbit
j := reprlist[orbits[i][1]^g];
# for each piece h from i^th orbit, we have to determine the image of
# orbits[j][1] at the permutation g^(-1)*h*g
# from regularity of action on orbits, this image determines the
# conjugate first, compute the images of orbits[j][1] in g^(-1)*h,
# and store the result in the array image. Then determine the
# g-image of the result and store it in gimage.
# This way, elements in "image" can be used more times,
# and the running time is linear (no hidden log factors).
x := positionlist[orbits[j][1]^inv];
image := [x];
gimage[cumulativelength[i]+1] := cumulativelength[j]+1;
for s in [2..Length(C[i].orbit)] do
# t is the predecessor in Schreier tree of C[i].orbit[s]
t := C[i].orbit[s]^C[i].transversal[C[i].orbit[s]];
image[C[i].orbit[s]] :=
image[t]^inverse[i][cpositiongenlist[i][C[i].orbit[s]]];
gimage[cumulativelength[i]+C[i].orbit[s]] :=
cumulativelength[j]
+positionlist[orbits[i][image[C[i].orbit[s]]]^g];
od;
od;
gimage := PermList(gimage);
return gimage;
end );
# ser is descending subnormal series, nt a descending series of normal subs
BindGlobal("ChangeSeriesThrough",function(ser,nt)
local new,start,n,i,tail, up,u,v;
new:=Reversed(ser); # we step up (closure is easier than intersection)
# make nt also increasing
nt:=ShallowCopy(nt);
Sort(nt,function(a,b) return Size(a)<Size(b);end);
#Print(List(nt,Size),"\n");
start:=1;
while Length(nt)>0 do
n:=nt[1];
nt:=nt{[2..Length(nt)]};
ser:=new;
new:=ser{[1..start-1]};
i:=start;
while i<=Length(ser) and IsSubset(n,ser[i]) do
Add(new,ser[i]);
i:=i+1;
od;
# now n does not contain ser[i]
# was n actually in the series?
if new[Length(new)]=n then
# yes, go on and add the rest of the series
start:=i; # next time start from next step
else
# no generate/intersect
# in each step either we ascend in intersection with n or in closure with
# n
tail:=[];
up:=[n];
u:=ClosureGroup(n,ser[i]);
Add(up,u);
i:=i+1;
while not IsSubset(ser[i],n) do
v:=ClosureGroup(n,ser[i]);
if Size(v)=Size(u) then
# no increase, need for tail
Add(tail,i);
else
Add(up,v);
u:=v;
fi;
i:=i+1;
od;
#Print("A",List([1..Length(new)-1],x->Size(new[x+1])/Size(new[x])),"\n");
# now ser[i] contains n.
for i in tail do
Add(new,NormalIntersection(n,ser[i]));
od;
#Print("B",List([1..Length(new)-1],x->Size(new[x+1])/Size(new[x])),"\n");
start:=Length(new)+1;
Append(new,up);
#Print("C",List([1..Length(new)-1],x->Size(new[x+1])/Size(new[x])),"\n");
i:=i+1;
while i<=Length(ser) and Size(new[Length(new)])>=Size(ser[i]) do
i:=i+1;
od;
fi;
# add the rest
while i<=Length(ser) do
Add(new,ser[i]);
i:=i+1;
od;
#Print("D",List([1..Length(new)-1],x->Size(new[x+1])/Size(new[x])),"\n");
od;
return Reversed(new);
end);
#############################################################################
##
#F ChiefSeriesOfGroup( [<H>, ]<G>[, <through>] )
##
InstallGlobalFunction( ChiefSeriesOfGroup, function(arg)
local G,H,nser,U,i,j,k,cs,n,mat,mats,row,p,one,m,v,ser,gens,r,dim,im,
through,ocs;
G:=arg[1];
H:=G;
through:=[];
if Length(arg)=2 then
if IsGroup(arg[2]) then
H:=arg[1];
G:=arg[2];
else
through:=arg[2];
fi;
elif Length(arg)>2 then
H:=arg[1];
G:=arg[2];
through:=arg[3];
fi;
if Length(through)>0 then
nser:=ChiefSeriesOfGroup(G,H);
nser:=ChangeSeriesThrough(nser,through);
return nser;
fi;
nser:=[G];
U:=G;
while Size(U)>1 do
# get maximal normal subgroup
if Size(U)<Size(G) and Size(ocs[1])/Size(U)<1000 then
n:=List(ocs,i->Intersection(U,i));
cs:=[U];
for i in [2..Length(n)] do
if Size(cs[Length(cs)])>Size(n[i]) then
Add(cs,n[i]);
fi;
od;
else
cs:=CompositionSeries(U);
fi;
ocs:=cs;
# add composition factors which are normal
n:=2;
while n<=Length(cs) and Length(through)=0 and
# IsNormal(H,cs[n]) do
ForAll(GeneratorsOfGroup(H),x->ForAll(GeneratorsOfGroup(cs[n]),
y->y^x in cs[n])) do
U:=cs[n];
Add(nser,U);
n:=n+1;
od;
if n<=Length(cs) then
cs:=cs[n];
if Length(through)>0 then
if Size(U)=Size(through[1]) then
through:=through{[2..Length(through)]};
fi;
if Length(through)>0 and not IsSubgroup(cs,through[1]) then
# enforce way through
Info(InfoGroup,1,"force");
n:=NaturalHomomorphismByNormalSubgroup(U,through[1]);
cs:=CompositionSeries(Image(n));
cs:=cs[2];
cs:=PreImage(n,cs);
fi;
fi;
#n:=Core(H,cs);
n:=cs;
i:=1;
gens:=GeneratorsOfGroup(H);
while i<=Length(gens) do
if not ForAll(GeneratorsOfGroup(n), x->x^gens[i] in n) then
if IsIdenticalObj(FamilyObj(One(n)),FamilyObj(gens[i])) then
n:=Intersection(n,n^gens[i]);
else
n:=Intersection(n,Image(gens[i],n));
fi;
i:=1;
else
i:=i+1;
fi;
od;
#o:=GroupOnSubgroupsOrbit(H,cs);
#Info(InfoGroup,1,"orblen=",Length(o));
#n:=Intersection(o);
#n:=o[1];
#for i in o{[2..Length(o)]} do
#n:=IntersectionNormalClosurePermGroup(n,i);
#od;
if HasAbelianFactorGroup(U,cs) then
# abelian case, utilize MeatAxe to chop
p:=Index(U,cs);
one:=One(GF(p));
# first get series
v:=n;
ser:=[n];
gens:=[];
while Size(v)<Size(U) do
repeat
r:=Random(U);
until not r in v;
Add(gens,r);
v:=ClosureGroup(v,r);
Add(ser,v);
od;
dim:=Length(gens);
ser:=Reversed(ser);
gens:=Reversed(gens);
# now construct matrices for operation
mats:=[];
for i in GeneratorsOfGroup(H) do
mat:=[];
for j in gens do
im:=j^i;
row:=[];
for k in [1..dim] do
if not im in ser[k+1] then
# test power which does
# Ug^l=U im
r:=First([1..p],l->im/gens[k]^l in ser[k+1]);
Add(row,r);
im:=im/gens[k]^r;
else
Add(row,0);
fi;
od;
row:=row*one;
Add(mat,row);
od;
Add(mats,mat);
od;
m:=GModuleByMats(mats,GF(p));
r:=MTX.BasesCompositionSeries(m);
v:=[];
for i in r do
im:=n;
for j in i do
im:=ClosureGroup(im,Product([1..dim],k->gens[k]^IntFFE(j[k])));
od;
# only intermediates
if Size(im)<Size(U) then
Add(v,im);
fi;
od;
v:=Reversed(v); # MTX sorts already
#Sort(v,function(a,b) return Size(a)>Size(b);end);
Info(InfoGroup,2,"i:",List(v,Size));
#note the intermediates
nser:=Concatenation(nser,v);
else
# nonabelian, as transitive operation on the components no proper
# intermediate normal subgroup possible
Add(nser,n);
fi;
else
n:=cs[n-1];
fi;
Info(InfoGroup,1,"Step ",Index(U,n));
U:=n;
od;
return nser;
end );
#############################################################################
##
#M ChiefSeries( <G> )
##
InstallMethod( ChiefSeries,
"generic method for a group",
true,
[ IsGroup ], 0,
ChiefSeriesOfGroup );
#############################################################################
##
#M ChiefSeriesUnderAction( <G>, <H> )
##
InstallMethod( ChiefSeriesUnderAction,
"generic method for two groups",
true,
[ IsGroup, IsGroup ], 0,
ChiefSeriesOfGroup );
#############################################################################
##
#M ChiefSeriesThrough( <G>, <list> )
#M ChiefSeriesThrough( <G>, <H>, <list> )
##
InstallMethod( ChiefSeriesThrough,
"generic method for a group and a list",
true,
[ IsGroup, IsList ], 0,
ChiefSeriesOfGroup );
InstallOtherMethod( ChiefSeriesThrough,
"generic method for two groups and a list",
true,
[ IsGroup, IsGroup, IsList ], 0,
ChiefSeriesOfGroup );
#############################################################################
##
#E
|