This file is indexed.

/usr/share/gap/lib/ideal.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#############################################################################
##
#W  ideal.gd                    GAP library                     Thomas Breuer
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for ideals.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{ideal}">
##  A <E>left ideal</E> in a ring <M>R</M> is a subring of <M>R</M> that
##  is closed under multiplication with elements of <M>R</M> from the left.
##  <P/>
##  A <E>right ideal</E> in a ring <M>R</M> is a subring of <M>R</M> that
##  is closed under multiplication with elements of <M>R</M> from the right.
##  <P/>
##  A <E>two-sided ideal</E> or simply <E>ideal</E> in a ring <M>R</M>
##  is both a left ideal and a right ideal in <M>R</M>.
##  <P/>
##  So being a (left/right/two-sided) ideal is not a property of a domain
##  but refers to the acting ring(s).
##  Hence we must ask, e.&nbsp;g., <C>IsIdeal( </C><M>R, I</M><C> )</C> if we
##  want to know whether the ring <M>I</M> is an ideal in the ring <M>R</M>.
##  The property <Ref Func="IsTwoSidedIdealInParent"/> can be used to store
##  whether a ring is an ideal in its parent.
##  <P/>
##  (Whenever the term <C>"Ideal"</C> occurs in an identifier without a
##  specifying prefix <C>"Left"</C> or <C>"Right"</C>,
##  this means the same as <C>"TwoSidedIdeal"</C>.
##  Conversely, any occurrence of <C>"TwoSidedIdeal"</C> can be substituted
##  by <C>"Ideal"</C>.)
##  <P/>
##  For any of the above kinds of ideals, there is a notion of generators,
##  namely <Ref Func="GeneratorsOfLeftIdeal"/>,
##  <Ref Func="GeneratorsOfRightIdeal"/>, and
##  <Ref Func="GeneratorsOfTwoSidedIdeal"/>.
##  The acting rings can be accessed as <Ref Func="LeftActingRingOfIdeal"/>
##  and <Ref Func="RightActingRingOfIdeal"/>, respectively.
##  Note that ideals are detected from known values of these attributes,
##  especially it is assumed that whenever a domain has both a left and a
##  right acting ring then these two are equal.
##  <P/>
##  Note that we cannot use <Ref Func="LeftActingDomain"/> and
##  <C>RightActingDomain</C> here,
##  since ideals in algebras are themselves vector spaces, and such a space
##  can of course also be a module for an action from the right.
##  In order to make the usual vector space functionality automatically
##  available for ideals, we have to distinguish the left and right module
##  structure from the additional closure properties of the ideal.
##  <P/>
##  Further note that the attributes denoting ideal generators and acting
##  ring are used to create ideals if this is explicitly wanted, but the
##  ideal relation in the sense of <Ref Func="IsTwoSidedIdeal"/> is of course
##  independent of the presence of the attribute values.
##  <P/>
##  Ideals are constructed with <Ref Func="LeftIdeal"/>,
##  <Ref Func="RightIdeal"/>, <Ref Func="TwoSidedIdeal"/>.
##  Principal ideals of the form <M>x * R</M>, <M>R * x</M>, <M>R * x * R</M>
##  can also be constructed with a simple multiplication.
##  <P/>
##  Currently many methods for dealing with ideals need linear algebra to
##  work, so they are mainly applicable to ideals in algebras.
##  <P/>
##  <#/GAPDoc>
#T  The sum of two left/right/two-sided ideals with same acting ring can be
#T  formed, it is again an ideal.
#T  The product of two ideals ...
##


#############################################################################
##
#F  TwoSidedIdeal( <R>, <gens>[, "basis"] )
#F  Ideal( <R>, <gens>[, "basis"] )
#F  LeftIdeal( <R>, <gens>[, "basis"] )  . . left ideal in <R> gen. by <gens>
#F  RightIdeal( <R>, <gens>[, "basis"] ) .  right ideal in <R> gen. by <gens>
##
##  <#GAPDoc Label="TwoSidedIdeal">
##  <ManSection>
##  <Func Name="TwoSidedIdeal" Arg='R, gens[, "basis"]'/>
##  <Func Name="Ideal" Arg='R, gens[, "basis"]'/>
##  <Func Name="LeftIdeal" Arg='R, gens[, "basis"]'/>
##  <Func Name="RightIdeal" Arg='R, gens[, "basis"]'/>
##
##  <Description>
##  Let <A>R</A> be a ring, and <A>gens</A> a list of collection of elements
##  in <A>R</A>.
##  <Ref Func="TwoSidedIdeal"/>, <Ref Func="LeftIdeal"/>,
##  and <Ref Func="RightIdeal"/> return the two-sided,
##  left, or right ideal, respectively,
##  <M>I</M> in <A>R</A> that is generated by <A>gens</A>.
##  The ring <A>R</A> can be accessed as <Ref Func="LeftActingRingOfIdeal"/>
##  or <Ref Func="RightActingRingOfIdeal"/> (or both) of <M>I</M>.
##  <P/>
##  If <A>R</A> is a left <M>F</M>-module then also <M>I</M> is a left
##  <M>F</M>-module,
##  in particular the <Ref Func="LeftActingDomain"/> values of
##  <A>R</A> and <M>I</M> are equal.
##  <P/>
##  If the optional argument <C>"basis"</C> is given then <A>gens</A> are
##  assumed to be a list of basis vectors of
##  <M>I</M> viewed as a free <M>F</M>-module.
##  (This is mainly applicable to ideals in algebras.)
##  In this case, it is <E>not</E> checked whether <A>gens</A> really is
##  linearly independent and whether <A>gens</A> is a subset of <A>R</A>.
##  <P/>
##  <Ref Func="Ideal"/> is simply a synonym of <Ref Func="TwoSidedIdeal"/>.
##  <P/>
##  <Example><![CDATA[
##  gap> R:= Integers;;
##  gap> I:= Ideal( R, [ 2 ] );
##  <two-sided ideal in Integers, (1 generators)>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "TwoSidedIdeal" );
DeclareSynonym( "Ideal", TwoSidedIdeal );
DeclareGlobalFunction( "LeftIdeal" );
DeclareGlobalFunction( "RightIdeal" );


#############################################################################
##
#F  TwoSidedIdealNC( <R>, <gens>[, "basis"] )
#F  IdealNC( <R>, <gens>[, "basis"] )
#F  LeftIdealNC( <R>, <gens>[, "basis"] )
#F  RightIdealNC( <R>, <gens>[, "basis"] )
##
##  <#GAPDoc Label="TwoSidedIdealNC">
##  <ManSection>
##  <Func Name="TwoSidedIdealNC" Arg='R, gens[, "basis"]'/>
##  <Func Name="IdealNC" Arg='R, gens[, "basis"]'/>
##  <Func Name="LeftIdealNC" Arg='R, gens[, "basis"]'/>
##  <Func Name="RightIdealNC" Arg='R, gens[, "basis"]'/>
##
##  <Description>
##  The effects of <Ref Func="TwoSidedIdealNC"/>, <Ref Func="LeftIdealNC"/>,
##  and <Ref Func="RightIdealNC"/> are the same as
##  <Ref Func="TwoSidedIdeal"/>, <Ref Func="LeftIdeal"/>,
##  and <Ref Func="RightIdeal"/>, respectively,
##  but they do not check whether all entries of <A>gens</A> lie in <A>R</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "TwoSidedIdealNC" );
DeclareSynonym( "IdealNC", TwoSidedIdealNC );
DeclareGlobalFunction( "LeftIdealNC" );
DeclareGlobalFunction( "RightIdealNC" );


#############################################################################
##
#O  IsTwoSidedIdeal( <R>, <I> )
#O  IsLeftIdeal( <R>, <I> )
#O  IsRightIdeal( <R>, <I> )
#P  IsTwoSidedIdealInParent( <I> )
#P  IsLeftIdealInParent( <I> )
#P  IsRightIdealInParent( <I> )
##
##  <#GAPDoc Label="IsTwoSidedIdeal">
##  <ManSection>
##  <Oper Name="IsTwoSidedIdeal" Arg='R, I'/>
##  <Oper Name="IsLeftIdeal" Arg='R, I'/>
##  <Oper Name="IsRightIdeal" Arg='R, I'/>
##  <Prop Name="IsTwoSidedIdealInParent" Arg='I'/>
##  <Prop Name="IsLeftIdealInParent" Arg='I'/>
##  <Prop Name="IsRightIdealInParent" Arg='I'/>
##
##  <Description>
##  The properties <Ref Func="IsTwoSidedIdealInParent"/> etc., are attributes
##  of the ideal, and once known they are stored in the ideal.
##  <Example><![CDATA[
##  gap> A:= FullMatrixAlgebra( Rationals, 3 );
##  ( Rationals^[ 3, 3 ] )
##  gap> I:= Ideal( A, [ Random( A ) ] );
##  <two-sided ideal in ( Rationals^[ 3, 3 ] ), (1 generators)>
##  gap> IsTwoSidedIdeal( A, I );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
InParentFOA( "IsTwoSidedIdeal", IsRing, IsRing, DeclareProperty );
InParentFOA( "IsLeftIdeal", IsRing, IsRing, DeclareProperty );
InParentFOA( "IsRightIdeal", IsRing, IsRing, DeclareProperty );

DeclareSynonym( "IsIdeal", IsTwoSidedIdeal );
DeclareSynonym( "IsIdealOp", IsTwoSidedIdealOp );
DeclareSynonymAttr( "IsIdealInParent", IsTwoSidedIdealInParent );

InstallTrueMethod( IsLeftIdealInParent, IsTwoSidedIdealInParent );
InstallTrueMethod( IsRightIdealInParent, IsTwoSidedIdealInParent );
InstallTrueMethod( IsTwoSidedIdealInParent,
    IsLeftIdealInParent and IsRightIdealInParent );


#############################################################################
##
#O  TwoSidedIdealByGenerators( <R>, <gens> )  . . ideal in <R> gen. by <gens>
#O  IdealByGenerators( <R>, <gens> )
##
##  <#GAPDoc Label="TwoSidedIdealByGenerators">
##  <ManSection>
##  <Oper Name="TwoSidedIdealByGenerators" Arg='R, gens'/>
##  <Oper Name="IdealByGenerators" Arg='R, gens'/>
##
##  <Description>
##  <Ref Func="TwoSidedIdealByGenerators"/> returns the ring that is
##  generated by the elements of the collection <A>gens</A> under addition,
##  multiplication, and multiplication with elements of the ring <A>R</A>
##  from the left and from the right.
##  <P/>
##  <A>R</A> can be accessed by <Ref Func="LeftActingRingOfIdeal"/> or
##  <Ref Func="RightActingRingOfIdeal"/>,
##  <A>gens</A> can be accessed by <Ref Func="GeneratorsOfTwoSidedIdeal"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TwoSidedIdealByGenerators", [ IsRing, IsCollection ] );

DeclareSynonym( "IdealByGenerators", TwoSidedIdealByGenerators );


#############################################################################
##
#O  LeftIdealByGenerators( <R>, <gens> )
##
##  <#GAPDoc Label="LeftIdealByGenerators">
##  <ManSection>
##  <Oper Name="LeftIdealByGenerators" Arg='R, gens'/>
##
##  <Description>
##  <Ref Func="LeftIdealByGenerators"/> returns the ring that is generated by
##  the elements of the collection <A>gens</A> under addition,
##  multiplication, and multiplication with elements of the ring <A>R</A>
##  from the left.
##  <P/>
##  <A>R</A> can be accessed by <Ref Func="LeftActingRingOfIdeal"/>,
##  <A>gens</A> can be accessed by <Ref Func="GeneratorsOfLeftIdeal"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "LeftIdealByGenerators", [ IsRing, IsCollection ] );


#############################################################################
##
#O  RightIdealByGenerators( <R>, <gens> )
##
##  <#GAPDoc Label="RightIdealByGenerators">
##  <ManSection>
##  <Oper Name="RightIdealByGenerators" Arg='R, gens'/>
##
##  <Description>
##  <Ref Func="RightIdealByGenerators"/> returns the ring that is generated
##  by the elements of the collection <A>gens</A> under addition,
##  multiplication, and multiplication with elements of the ring <A>R</A>
##  from the right.
##  <P/>
##  <A>R</A> can be accessed by <Ref Func="RightActingRingOfIdeal"/>,
##  <A>gens</A> can be accessed by <Ref Func="GeneratorsOfRightIdeal"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "RightIdealByGenerators", [ IsRing, IsCollection ] );


#############################################################################
##
#A  GeneratorsOfTwoSidedIdeal( <I> )
#A  GeneratorsOfIdeal( <I> )
##
##  <#GAPDoc Label="GeneratorsOfTwoSidedIdeal">
##  <ManSection>
##  <Attr Name="GeneratorsOfTwoSidedIdeal" Arg='I'/>
##  <Attr Name="GeneratorsOfIdeal" Arg='I'/>
##
##  <Description>
##  is a list of generators for the ideal <A>I</A>, with respect to
##  the action of the rings that are stored as the values of
##  <Ref Func="LeftActingRingOfIdeal"/> and
##  <Ref Func="RightActingRingOfIdeal"/>, from the left and from the right,
##  respectively.
##  <P/>
##  <Example><![CDATA[
##  gap> A:= FullMatrixAlgebra( Rationals, 3 );;
##  gap> I:= Ideal( A, [ One( A ) ] );;
##  gap> GeneratorsOfIdeal( I );
##  [ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfTwoSidedIdeal", IsRing );

DeclareSynonymAttr( "GeneratorsOfIdeal", GeneratorsOfTwoSidedIdeal );


#############################################################################
##
#A  GeneratorsOfLeftIdeal( <I> )
##
##  <#GAPDoc Label="GeneratorsOfLeftIdeal">
##  <ManSection>
##  <Attr Name="GeneratorsOfLeftIdeal" Arg='I'/>
##
##  <Description>
##  is a list of generators for the left ideal <A>I</A>, with respect to the
##  action from the left of the ring that is stored as the value of
##  <Ref Func="LeftActingRingOfIdeal"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfLeftIdeal", IsRing );


#############################################################################
##
#A  GeneratorsOfRightIdeal( <I> )
##
##  <#GAPDoc Label="GeneratorsOfRightIdeal">
##  <ManSection>
##  <Attr Name="GeneratorsOfRightIdeal" Arg='I'/>
##
##  <Description>
##  is a list of generators for the right ideal <A>I</A>, with respect to the
##  action from the right of the ring that is stored as the value of
##  <Ref Func="RightActingRingOfIdeal"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfRightIdeal", IsRing );


#############################################################################
##
#A  LeftActingRingOfIdeal( <I> )
#A  RightActingRingOfIdeal( <I> )
##
##  <#GAPDoc Label="LeftActingRingOfIdeal">
##  <ManSection>
##  <Attr Name="LeftActingRingOfIdeal" Arg='I'/>
##  <Attr Name="RightActingRingOfIdeal" Arg='I'/>
##
##  <Description>
##  returns the left (resp. right) acting ring of an ideal <A>I</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LeftActingRingOfIdeal", IsRing );

DeclareAttribute( "RightActingRingOfIdeal", IsRing );


#############################################################################
##
#O  AsLeftIdeal( <R>, <S> )
#O  AsRightIdeal( <R>, <S> )
#O  AsTwoSidedIdeal( <R>, <S> )
##
##  <#GAPDoc Label="AsLeftIdeal">
##  <ManSection>
##  <Oper Name="AsLeftIdeal" Arg='R, S'/>
##  <Oper Name="AsRightIdeal" Arg='R, S'/>
##  <Oper Name="AsTwoSidedIdeal" Arg='R, S'/>
##
##  <Description>
##  Let <A>S</A> be a subring of the ring <A>R</A>.
##  <P/>
##  If <A>S</A> is a left ideal in <A>R</A> then <Ref Func="AsLeftIdeal"/>
##  returns this left ideal, otherwise <K>fail</K> is returned.
##  <P/>
##  If <A>S</A> is a right ideal in <A>R</A> then <Ref Func="AsRightIdeal"/>
##  returns this right ideal, otherwise <K>fail</K> is returned.
##  <P/>
##  If <A>S</A> is a two-sided ideal in <A>R</A> then
##  <Ref Func="AsTwoSidedIdeal"/> returns this two-sided ideal,
##  otherwise <K>fail</K> is returned.
##  <P/>
##  <Example><![CDATA[
##  gap> A:= FullMatrixAlgebra( Rationals, 3 );;
##  gap> B:= DirectSumOfAlgebras( A, A );
##  <algebra over Rationals, with 6 generators>
##  gap> C:= Subalgebra( B, Basis( B ){[1..9]} );
##  <algebra over Rationals, with 9 generators>
##  gap> I:= AsTwoSidedIdeal( B, C );
##  <two-sided ideal in <algebra of dimension 18 over Rationals>, 
##    (9 generators)>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "AsLeftIdeal", [ IsRing, IsRing ] );
DeclareOperation( "AsRightIdeal", [ IsRing, IsRing ] );
DeclareOperation( "AsTwoSidedIdeal", [ IsRing, IsRing ] );


#############################################################################
##
#E