/usr/share/gap/lib/ideal.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 | #############################################################################
##
#W ideal.gi GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
##
#############################################################################
##
#F TwoSidedIdeal( <R>, <gens> )
#F TwoSidedIdeal( <R>, <gens>, "basis" )
##
InstallGlobalFunction( TwoSidedIdeal, function( arg )
local I;
if Length( arg ) <= 1
or not IsRing( arg[1] )
or not IsHomogeneousList( arg[2] ) then
Error( "first argument must be a ring,\n",
"second argument must be a list of generators" );
elif IsEmpty( arg[2] ) then
return TwoSidedIdealNC( arg[1], arg[2] );
elif IsIdenticalObj( FamilyObj( arg[1] ),
FamilyObj( arg[2] ) )
and ForAll( arg[2], v -> v in arg[1] ) then
I:= IdealByGenerators( arg[1], arg[2] );
if Length( arg ) = 3 and arg[3] = "basis" then
UseBasis( I, arg[2] );
fi;
UseSubsetRelation( arg[1], I );
return I;
fi;
Error( "usage: TwoSidedIdeal( <R>, <gens> [, \"basis\"] )" );
end );
#############################################################################
##
#F TwoSidedIdealNC( <R>, <gens>, "basis" )
#F TwoSidedIdealNC( <R>, <gens> )
##
InstallGlobalFunction( TwoSidedIdealNC, function( arg )
local I;
if IsEmpty( arg[2] ) then
# If <R> is a FLMLOR then also the ideal is a FLMLOR.
if IsFLMLOR( arg[1] ) then
I:= SubFLMLORNC( arg[1], arg[2] );
else
I:= Objectify( NewType( FamilyObj( arg[1] ),
IsRing
and IsTrivial
and IsAttributeStoringRep ),
rec() );
fi;
SetGeneratorsOfRing( I, AsList( arg[2] ) );
SetLeftActingRingOfIdeal( I, arg[1] );
SetRightActingRingOfIdeal( I, arg[1] );
else
I:= TwoSidedIdealByGenerators( arg[1], arg[2] );
fi;
if Length( arg ) = 3 and arg[3] = "basis" then
UseBasis( I, arg[2] );
fi;
UseSubsetRelation( arg[1], I );
return I;
end );
#############################################################################
##
#F LeftIdeal( <R>, <gens> )
#F LeftIdeal( <R>, <gens>, "basis" )
##
InstallGlobalFunction( LeftIdeal, function( arg )
local I;
if Length( arg ) <= 1
or not IsRing( arg[1] )
or not IsHomogeneousList( arg[2] ) then
Error( "first argument must be a ring,\n",
"second argument must be a list of generators" );
elif IsEmpty( arg[2] ) then
return TwoSidedIdealNC( arg[1], arg[2] );
elif IsIdenticalObj( FamilyObj( arg[1] ),
FamilyObj( arg[2] ) )
and ForAll( arg[2], v -> v in arg[1] ) then
I:= LeftIdealByGenerators( arg[1], arg[2] );
if Length( arg ) = 3 and arg[3] = "basis" then
UseBasis( I, arg[2] );
fi;
UseSubsetRelation( arg[1], I );
return I;
fi;
Error( "usage: LeftIdeal( <R>, <gens> [, \"basis\"] )" );
end );
#############################################################################
##
#F LeftIdealNC( <R>, <gens>, "basis" )
#F LeftIdealNC( <R>, <gens> )
##
InstallGlobalFunction( LeftIdealNC, function( arg )
local I;
if IsEmpty( arg[2] ) then
return TwoSidedIdealNC( arg[1], arg[2] );
fi;
I:= LeftIdealByGenerators( arg[1], arg[2] );
if Length( arg ) = 3 and arg[3] = "basis" then
UseBasis( I, arg[2] );
fi;
UseSubsetRelation( arg[1], I );
return I;
end );
#############################################################################
##
#F RightIdeal( <R>, <gens> )
#F RightIdeal( <R>, <gens>, "basis" )
##
InstallGlobalFunction( RightIdeal, function( arg )
local I;
if Length( arg ) <= 1
or not IsRing( arg[1] )
or not IsHomogeneousList( arg[2] ) then
Error( "first argument must be a ring,\n",
"second argument must be a list of generators" );
elif IsEmpty( arg[2] ) then
return TwoSidedIdealNC( arg[1], arg[2] );
elif IsIdenticalObj( FamilyObj( arg[1] ),
FamilyObj( arg[2] ) )
and ForAll( arg[2], v -> v in arg[1] ) then
I:= RightIdealByGenerators( arg[1], arg[2] );
if Length( arg ) = 3 and arg[3] = "basis" then
UseBasis( I, arg[2] );
fi;
UseSubsetRelation( arg[1], I );
return I;
fi;
Error( "usage: RightIdeal( <R>, <gens> [, \"basis\"] )" );
end );
#############################################################################
##
#F RightIdealNC( <R>, <gens>, "basis" )
#F RightIdealNC( <R>, <gens> )
##
InstallGlobalFunction( RightIdealNC, function( arg )
local I;
if IsEmpty( arg[2] ) then
return TwoSidedIdealNC( arg[1], arg[2] );
fi;
I:= RightIdealByGenerators( arg[1], arg[2] );
if Length( arg ) = 3 and arg[3] = "basis" then
UseBasis( I, arg[2] );
fi;
UseSubsetRelation( arg[1], I );
return I;
end );
#############################################################################
##
#M TwoSidedIdealByGenerators( <R>, <gens> ) . . . create an ideal in a ring
##
InstallMethod( TwoSidedIdealByGenerators,
"for ring and collection",
IsIdenticalObj,
[ IsRing, IsCollection ], 0,
function( R, gens )
local I;
I:= Objectify( NewType( FamilyObj( R ),
IsRing
and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfTwoSidedIdeal( I, gens );
SetLeftActingRingOfIdeal( I, R );
SetRightActingRingOfIdeal( I, R );
return I;
end );
#############################################################################
##
#M LeftIdealByGenerators( <R>, <gens> ) . . . create a left ideal in a ring
##
InstallMethod( LeftIdealByGenerators,
"for ring and collection",
IsIdenticalObj,
[ IsRing, IsCollection ], 0,
function( R, gens )
local I;
I:= Objectify( NewType( FamilyObj( R ),
IsRing
and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfLeftIdeal( I, gens );
SetLeftActingRingOfIdeal( I, R );
return I;
end );
#############################################################################
##
#M RightIdealByGenerators( <R>, <gens> ) . . create a right ideal in a ring
##
InstallMethod( RightIdealByGenerators,
"for ring and collection",
IsIdenticalObj,
[ IsRing, IsCollection ], 0,
function( R, gens )
local I;
I:= Objectify( NewType( FamilyObj( R ),
IsRing
and IsAttributeStoringRep ),
rec() );
SetGeneratorsOfRightIdeal( I, gens );
SetRightActingRingOfIdeal( I, R );
return I;
end );
#############################################################################
##
#M LeftIdealByGenerators( <R>, <gens> ) . . . . . . for commutative rings
#M RightIdealByGenerators( <R>, <gens> ) . . . . . . for commutative rings
##
## If R is a commutative ring, then we create a two-sided ideal in a ring R
## instead of its left or right ideal
##
InstallMethod( LeftIdealByGenerators,
"to construct ideals of commutative rings",
true,
[ IsFLMLOR and IsCommutative, IsCollection ],
0,
function( R, gens )
return TwoSidedIdealByGenerators( R, gens );
end );
InstallMethod( RightIdealByGenerators,
"to construct ideals of commutative rings",
true,
[ IsFLMLOR and IsCommutative, IsCollection ],
0,
function( R, gens )
return TwoSidedIdealByGenerators( R, gens );
end );
#############################################################################
##
#M IsIdealInParent(<I>) . for left resp. right ideals in a commutative ring
##
InstallImmediateMethod( IsIdealInParent,
IsLeftIdealInParent and HasParent, 10,
function( I )
I:= Parent( I );
if ( HasIsCommutative( I ) and IsCommutative( I ) )
or ( HasIsAnticommutative( I ) and IsAnticommutative( I ) ) then
return true;
else
TryNextMethod();
fi;
end );
InstallImmediateMethod( IsIdealInParent,
IsRightIdealInParent and HasParent, 10,
function( I )
I:= Parent( I );
if ( HasIsCommutative( I ) and IsCommutative( I ) )
or ( HasIsAnticommutative( I ) and IsAnticommutative( I ) ) then
return true;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M PrintObj( <I> ) . . . . . . . . . . . . . . . . . . . . . . for an ideal
##
InstallMethod( PrintObj,
"for a left ideal with known generators",
true,
[ IsRing and HasLeftActingRingOfIdeal and HasGeneratorsOfLeftIdeal ],
0,
function( I )
Print( "LeftIdeal( ", LeftActingRingOfIdeal( I ), ", ",
GeneratorsOfLeftIdeal( I ), " )" );
end );
InstallMethod( PrintObj,
"for a right ideal with known generators",
true,
[ IsRing and HasRightActingRingOfIdeal and HasGeneratorsOfRightIdeal ],
0,
function( I )
Print( "RightIdeal( ", RightActingRingOfIdeal( I ), ", ",
GeneratorsOfRightIdeal( I ), " )" );
end );
InstallMethod( PrintObj,
"for a two-sided ideal with known generators",
true,
[ IsRing and HasLeftActingRingOfIdeal and HasRightActingRingOfIdeal
and HasGeneratorsOfTwoSidedIdeal ],
0,
function( I )
Print( "TwoSidedIdeal( ", RightActingRingOfIdeal( I ), ", ",
GeneratorsOfTwoSidedIdeal( I ), " )" );
end );
#############################################################################
##
#M ViewObj( <I> ) . . . . . . . . . . . . . . . . . . . . . . for an ideal
##
InstallMethod( ViewObj,
"for a left ideal with known generators",
true,
[ IsRing and HasLeftActingRingOfIdeal and HasGeneratorsOfLeftIdeal ],
100, # stronger than methods for the different kinds of algebras
function( I )
Print( "\>\><left ideal in \>\>" );
View( LeftActingRingOfIdeal( I ) );
if HasDimension( I ) then
Print( "\<,\< \>\>(dimension ", Dimension( I ), "\<\<\<\<)>" );
else
Print( "\<,\< \>\>(", Length( GeneratorsOfLeftIdeal( I ) ),
" generators)\<\<\<\<>" );
fi;
end );
InstallMethod( ViewObj,
"for a right ideal with known generators",
true,
[ IsRing and HasRightActingRingOfIdeal and HasGeneratorsOfRightIdeal ],
100, # stronger than methods for the different kinds of algebras
function( I )
Print( "\>\><right ideal in \>\>" );
View( RightActingRingOfIdeal( I ) );
if HasDimension( I ) then
Print( "\<,\< \>\>(dimension ", Dimension( I ), "\<\<\<\<)>" );
else
Print( "\<,\< \>\>(", Length( GeneratorsOfRightIdeal( I ) ),
" generators)\<\<\<\<>" );
fi;
end );
InstallMethod( ViewObj,
"for a two-sided ideal with known generators",
true,
[ IsRing and HasLeftActingRingOfIdeal and HasRightActingRingOfIdeal
and HasGeneratorsOfTwoSidedIdeal ],
100, # stronger than methods for the different kinds of algebras
function( I )
Print( "\>\><two-sided ideal in \>\>" );
View( RightActingRingOfIdeal( I ) );
if HasDimension( I ) then
Print( "\<,\< \>\>(dimension ", Dimension( I ), "\<\<\<\<)>" );
else
Print( "\<,\< \>\>(", Length( GeneratorsOfTwoSidedIdeal( I ) ),
" generators)\<\<\<\<>" );
fi;
end );
#############################################################################
##
#M Zero( <I> ) . . . . . . . . . . . . . . . . . . . . . . . . for an ideal
##
InstallOtherMethod( Zero,
"for a left ideal",
true,
[ IsRing and HasLeftActingRingOfIdeal ], 0,
I -> Zero( LeftActingRingOfIdeal( I ) ) );
InstallOtherMethod( Zero,
"for a right ideal",
true,
[ IsRing and HasRightActingRingOfIdeal ], 0,
I -> Zero( RightActingRingOfIdeal( I ) ) );
#############################################################################
##
#M Enumerator( <I> ) . . . . . . . . . . . . . . . . . . . . . for an ideal
##
EnumeratorOfIdeal := function( I )
local left, # we must multiply with ring elements from the left
right, # we must multiply with ring elements from the right
elms, # elements of <I>, result
set, # set corresponding to <elms>
Igens, # ideal generators of <I>
R, # the acting ring
Rgens, # ring generators of `R'
elmsgens, # additive generators
elm, # one element of <elms>
gen, # one generator of <I>
new; # product or sum of <elm> and <gen>
# check that we can handle this ideal
if HasIsFinite( I ) and not IsFinite( I ) then
TryNextMethod();
fi;
# Check from what sides we must multiply with ring elements.
if HasGeneratorsOfLeftIdeal( I ) then
Igens := GeneratorsOfLeftIdeal( I );
R := LeftActingRingOfIdeal( I );
left := true;
right := false;
elif HasGeneratorsOfRightIdeal( I ) then
Igens := GeneratorsOfRightIdeal( I );
R := RightActingRingOfIdeal( I );
left := false;
right := true;
elif HasGeneratorsOfTwoSidedIdeal( I ) then
Igens := GeneratorsOfTwoSidedIdeal( I );
R := LeftActingRingOfIdeal( I );
left := true;
right := true;
else
TryNextMethod();
fi;
# the elements of the ideal are sums of elements of the form r*g*s where
# g is an ideal generator and r and s are ring elements. Therefore
# *first* compute the ring multiples of the generators and then form the
# additive closure.
elms := Set(ShallowCopy(Igens));
set := ShallowCopy( elms );
# Compute the closure under the action of the acting ring
# from the left and from the right.
# If this ring is associative then it is sufficient to multiply
# with generators, otherwise we act with all elements.
if HasIsAssociative( R ) and IsAssociative( R ) then
Rgens:= GeneratorsOfRing( R );
else
Rgens:= Enumerator( R );
fi;
for elm in elms do
for gen in Rgens do
if left then
new := gen * elm;
if not new in set then
Add( elms, new );
AddSet( set, new );
fi;
fi;
if right then
new := elm * gen;
if not new in set then
Add( elms, new );
AddSet( set, new );
fi;
fi;
od;
od;
elms := set;
elmsgens:=ShallowCopy(elms);
set := ShallowCopy( elms );
# Use an orbit like algorithm.
# Compute the additive closure of elms
for elm in elms do
for gen in elmsgens do
new := elm + gen;
if not new in set then
Add( elms, new );
AddSet( set, new );
fi;
od;
od;
return set;
end;
InstallMethod( Enumerator,
"generic method for a left ideal with known generators",
true,
[ IsRing and HasGeneratorsOfLeftIdeal ], 0,
EnumeratorOfIdeal );
InstallMethod( Enumerator,
"generic method for a right ideal with known generators",
true,
[ IsRing and HasGeneratorsOfRightIdeal ], 0,
EnumeratorOfIdeal );
InstallMethod( Enumerator,
"generic method for a two-sided ideal with known generators",
true,
[ IsRing and HasGeneratorsOfIdeal ], 0,
EnumeratorOfIdeal );
#############################################################################
##
#M GeneratorsOfRing( <I> ) . . . . . . . . . . . . . . . . . . for an ideal
##
GeneratorsOfRingForIdeal := function( I )
local left, # we must multiply with ring elements from the left
right, # we must multiply with ring elements from the right
Igens, # ideal generators of <I>
R, # the acting ring
Rgens, # ring generators of `R'
gens, # generators list, result
S, # subring generated by `gens'
s, r, # loop over lists
prod; # product of `s' and `r'
# check that we can handle this ideal
if HasIsFinite( I ) and not IsFinite( I ) then
TryNextMethod();
fi;
# Check from what sides we must multiply with elements
# of the acting ring.
if HasGeneratorsOfLeftIdeal( I ) then
Igens := GeneratorsOfLeftIdeal( I );
R := LeftActingRingOfIdeal( I );
left := true;
right := false;
elif HasGeneratorsOfRightIdeal( I ) then
Igens := GeneratorsOfRightIdeal( I );
R := RightActingRingOfIdeal( I );
left := false;
right := true;
elif HasGeneratorsOfTwoSidedIdeal( I ) then
Igens := GeneratorsOfTwoSidedIdeal( I );
R := LeftActingRingOfIdeal( I );
left := true;
right := true;
else
Error( "no ideal generators of <I> known" );
fi;
# Handle the case of trivial ideals.
if IsEmpty( Igens ) then
return [];
fi;
# Start with the ring generated by the ideal generators,
# and close it until it becomes stable.
S := SubringNC( R, Igens );
gens := ShallowCopy( Igens );
Rgens := GeneratorsOfRing( R );
for s in gens do
for r in Rgens do
if left then
prod:= r * s;
if not prod in S then
S:= ClosureRing( S, prod );
Add( gens, prod );
fi;
fi;
if right then
prod:= s * r;
if not prod in S then
S:= ClosureRing( S, prod );
Add( gens, prod );
fi;
fi;
od;
od;
return gens;
end;
InstallMethod( GeneratorsOfRing,
"generic method for a left ideal with known generators",
true,
[ IsRing and HasGeneratorsOfLeftIdeal ], 0,
GeneratorsOfRingForIdeal );
InstallMethod( GeneratorsOfRing,
"generic method for a right ideal with known generators",
true,
[ IsRing and HasGeneratorsOfRightIdeal ], 0,
GeneratorsOfRingForIdeal );
InstallMethod( GeneratorsOfRing,
"generic method for a two-sided ideal with known generators",
true,
[ IsRing and HasGeneratorsOfTwoSidedIdeal ], 0,
GeneratorsOfRingForIdeal );
#############################################################################
##
#M GeneratorsOfTwoSidedIdeal( <I> ) . . . for known left/right ideal gens.
#M GeneratorsOfLeftIdeal( <I> ) . . . . . . for known two-sided ideal gens.
#M GeneratorsOfRightIdeal( <I> ) . . . . . . for known two-sided ideal gens.
##
InstallMethod( GeneratorsOfTwoSidedIdeal,
"for a two-sided ideal with known `GeneratorsOfLeftIdeal'",
true,
[ IsRing and HasLeftActingRingOfIdeal and HasRightActingRingOfIdeal
and HasGeneratorsOfLeftIdeal ], 0,
GeneratorsOfLeftIdeal );
InstallMethod( GeneratorsOfTwoSidedIdeal,
"for a two-sided ideal with known `GeneratorsOfRightIdeal'",
true,
[ IsRing and HasLeftActingRingOfIdeal and HasRightActingRingOfIdeal
and HasGeneratorsOfRightIdeal ], 0,
GeneratorsOfRightIdeal );
InstallMethod( GeneratorsOfLeftIdeal,
"for an ideal with known `GeneratorsOfTwoSidedIdeal'",
true,
[ IsRing and HasLeftActingRingOfIdeal and HasRightActingRingOfIdeal
and HasGeneratorsOfTwoSidedIdeal ], 0,
GeneratorsOfRing );
InstallMethod( GeneratorsOfRightIdeal,
"for an ideal with known `GeneratorsOfTwoSidedIdeal'",
true,
[ IsRing and HasLeftActingRingOfIdeal and HasRightActingRingOfIdeal
and HasGeneratorsOfTwoSidedIdeal ], 0,
GeneratorsOfRing );
#############################################################################
##
#M \+( <I1>, <I2> ) . . . . . . . . . . . . . . . . . . . sum of two ideals
##
InstallMethod( \+,
"method for two left ideals",
IsIdenticalObj,
[ IsRing and HasLeftActingRingOfIdeal,
IsRing and HasLeftActingRingOfIdeal ], 0,
function( I1, I2 )
if LeftActingRingOfIdeal( I1 ) <> LeftActingRingOfIdeal( I2 ) then
TryNextMethod();
else
return LeftIdealByGenerators( LeftActingRingOfIdeal( I1 ),
Concatenation( GeneratorsOfLeftIdeal( I1 ),
GeneratorsOfLeftIdeal( I2 ) ) );
fi;
end );
InstallMethod( \+,
"method for two right ideals",
IsIdenticalObj,
[ IsRing and HasRightActingRingOfIdeal,
IsRing and HasRightActingRingOfIdeal ], 0,
function( I1, I2 )
if RightActingRingOfIdeal( I1 ) <> RightActingRingOfIdeal( I2 ) then
TryNextMethod();
else
return RightIdealByGenerators( RightActingRingOfIdeal( I1 ),
Concatenation( GeneratorsOfRightIdeal( I1 ),
GeneratorsOfRightIdeal( I2 ) ) );
fi;
end );
InstallMethod( \+,
"method for two two-sided ideals",
IsIdenticalObj,
[ IsRing and HasLeftActingRingOfIdeal and HasRightActingRingOfIdeal,
IsRing and HasLeftActingRingOfIdeal and HasRightActingRingOfIdeal ], 0,
function( I1, I2 )
if RightActingRingOfIdeal( I1 ) <> RightActingRingOfIdeal( I2 ) then
TryNextMethod();
else
return TwoSidedIdealByGenerators( RightActingRingOfIdeal( I1 ),
Concatenation( GeneratorsOfTwoSidedIdeal( I1 ),
GeneratorsOfTwoSidedIdeal( I2 ) ) );
fi;
end );
#############################################################################
##
#M \*( <r>, <R> ) . . . . . . . . . . . . . . . . . construct a right ideal
#M \*( <R>, <r> ) . . . . . . . . . . . . . . . . . construct a left ideal
##
## If <r> is an element in <R> then the result is the right or left ideal in
## <R> spanned by <r>.
## If <r> is not contained in <R> then the product is in general not closed
## under multiplication, and the default is to return the strictly sorted
## (note that the result shall be regarded as equal to the result of a
## method that returns a domain object) list of elements.
## (If <R> is trivial then the result is also trivial.)
##
InstallMethod( \*,
"for ring element and ring (construct a right ideal)",
IsElmsColls,
[ IsRingElement, IsRing ], 0,
function( r, R )
local z;
if r in R then
return RightIdealByGenerators( R, [ r ] );
fi;
if IsTrivial( R ) then
z:= Zero( R );
if r * z = z then
return R;
else
return [ r * z ];
fi;
elif IsFinite( R ) then
return Set( List( Enumerator( R ), elm -> r * elm ) );
else
TryNextMethod();
fi;
end );
InstallMethod( \*,
"for ring and ring element (construct a left ideal)",
IsCollsElms,
[ IsRing, IsRingElement ], 0,
function( R, r )
local z;
if r in R then
return LeftIdealByGenerators( R, [ r ] );
fi;
if IsTrivial( R ) then
z:= Zero( R );
if z * r = z then
return R;
else
return [ z * r ];
fi;
elif IsFinite( R ) then
return Set( List( Enumerator( R ), elm -> elm * r ) );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M \*( <I>, <R> ) . . . . . . . . . . . . . . . construct a two-sided ideal
#M \*( <R>, <I> ) . . . . . . . . . . . . . . . construct a two-sided ideal
##
InstallMethod( \*,
"for left ideal and ring (construct a two-sided ideal)",
IsIdenticalObj,
[ IsRing and HasLeftActingRingOfIdeal, IsRing ], 0,
function( I, R )
if HasRightActingRingOfIdeal( I ) then
if IsSubset( RightActingRingOfIdeal( I ), R ) and One(R) <> fail then
return I;
fi;
elif LeftActingRingOfIdeal( I ) = R then
return TwoSidedIdealByGenerators( R, GeneratorsOfLeftIdeal( I ) );
else
TryNextMethod();
fi;
end );
InstallMethod( \*,
"for ring and right ideal (construct a two-sided ideal)",
IsCollsElms,
[ IsRing, IsRing and HasRightActingRingOfIdeal ], 0,
function( R, I )
if HasLeftActingRingOfIdeal( I ) then
if IsSubset( LeftActingRingOfIdeal( I ), R ) and One(R) <> fail then
return I;
fi;
elif RightActingRingOfIdeal( I ) = R then
return TwoSidedIdealByGenerators( R, GeneratorsOfRightIdeal( I ) );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M AsLeftIdeal( <R>, <S> ) . . . . . . . . . . . . . . . . . . for two rings
#M AsRightIdeal( <R>, <S> ) . . . . . . . . . . . . . . . . . for two rings
#M AsTwoSidedIdeal( <R>, <S> ) . . . . . . . . . . . . . . . . for two rings
##
InstallMethod( AsLeftIdeal,
"for two rings",
IsIdenticalObj,
[ IsRing, IsRing ], 0,
function( R, S )
local I, gens;
if not IsLeftIdeal( R, S ) then
I:= fail;
else
gens:= GeneratorsOfRing( S );
I:= LeftIdealByGenerators( R, gens );
SetGeneratorsOfRing( I, gens );
fi;
return I;
end );
InstallMethod( AsRightIdeal,
"for two rings",
IsIdenticalObj,
[ IsRing, IsRing ], 0,
function( R, S )
local I, gens;
if not IsRightIdeal( R, S ) then
I:= fail;
else
gens:= GeneratorsOfRing( S );
I:= RightIdealByGenerators( R, gens );
SetGeneratorsOfRing( I, gens );
fi;
return I;
end );
InstallMethod( AsTwoSidedIdeal,
"for two rings",
IsIdenticalObj,
[ IsRing, IsRing ], 0,
function( R, S )
local I, gens;
if not IsTwoSidedIdeal( R, S ) then
I:= fail;
else
gens:= GeneratorsOfRing( S );
I:= TwoSidedIdealByGenerators( R, gens );
SetGeneratorsOfRing( I, gens );
fi;
return I;
end );
InstallMethod(IsSubset,"2-sided ideal in ring, naive",IsIdenticalObj,
[IsRing,IsRing and HasRightActingRingOfIdeal and HasLeftActingRingOfIdeal],
2*SIZE_FLAGS(FLAGS_FILTER(IsFLMLOR)),
function(R,I)
if IsIdenticalObj(R,RightActingRingOfIdeal(I)) and
IsIdenticalObj(R,LeftActingRingOfIdeal(I)) then
return IsSubset(R,GeneratorsOfTwoSidedIdeal(I));
fi;
TryNextMethod();
end);
InstallMethod(IsLeftIdeal,"left ideal in ring, naive",IsIdenticalObj,
[IsRing,IsRing and HasLeftActingRingOfIdeal],
2*SIZE_FLAGS(FLAGS_FILTER(IsFLMLOR)),
function(R,I)
if IsIdenticalObj(LeftActingRingOfIdeal(I),R) then
return true;
else
TryNextMethod();
fi;
end);
#############################################################################
##
#E
|