This file is indexed.

/usr/share/gap/lib/integer.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
#############################################################################
##
#W  integer.gd                  GAP library                       Stefan Kohl
#W                                                            & Werner Nickel
#W                                                           & Alice Niemeyer
#W                                                         & Martin Schönert
#W                                                              & Alex Wegner
##
##
#Y  Copyright (C)  1996,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file declares the operations for integers.
##


#############################################################################
##
#C  IsIntegers( <obj> )
#C  IsPositiveIntegers( <obj> )
#C  IsNonnegativeIntegers( <obj> )
##
##  <#GAPDoc Label="IsIntegers">
##  <ManSection>
##  <Filt Name="IsIntegers" Arg='obj' Type='Category'/>
##  <Filt Name="IsPositiveIntegers" Arg='obj' Type='Category'/>
##  <Filt Name="IsNonnegativeIntegers" Arg='obj' Type='Category'/>
##
##  <Description>
##  are the defining categories for the domains
##  <Ref Var="Integers" Label="global variable"/>,
##  <Ref Var="PositiveIntegers"/>, and <Ref Var="NonnegativeIntegers"/>.
##  <Example><![CDATA[
##  gap> IsIntegers( Integers );  IsIntegers( Rationals );  IsIntegers( 7 );
##  true
##  false
##  false
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsIntegers", IsEuclideanRing and IsFLMLOR );

DeclareCategory( "IsPositiveIntegers", IsSemiringWithOne );

DeclareCategory( "IsNonnegativeIntegers", IsSemiringWithOneAndZero );


#############################################################################
##
#V  Integers  . . . . . . . . . . . . . . . . . . . . .  ring of the integers
#V  PositiveIntegers  . . . . . . . . . . . . . semiring of positive integers
#V  NonnegativeIntegers . . . . . . . . . .  semiring of nonnegative integers
##
##  <#GAPDoc Label="IntegersGlobalVars">
##  <ManSection>
##  <Var Name="Integers" Label="global variable"/>
##  <Var Name="PositiveIntegers"/>
##  <Var Name="NonnegativeIntegers"/>
##
##  <Description>
##  These global variables represent the ring of integers and the semirings
##  of positive and nonnegative integers, respectively.
##  <Example><![CDATA[
##  gap> Size( Integers ); 2 in Integers;
##  infinity
##  true
##  ]]></Example>
##  <P/>
##  <Ref Var="Integers" Label="global variable"/> is a subset of
##  <Ref Var="Rationals"/>, which is a subset of <Ref Var="Cyclotomics"/>.
##  See Chapter&nbsp;<Ref Chap="Cyclotomic Numbers"/>
##  for arithmetic operations and comparison of integers.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalVariable( "Integers", "ring of integers" );

DeclareGlobalVariable( "PositiveIntegers", "semiring of positive integers" );

DeclareGlobalVariable( "NonnegativeIntegers",
    "semiring of nonnegative integers" );


#############################################################################
##
#C  IsGaussianIntegers( <obj> )
##
##  <#GAPDoc Label="IsGaussianIntegers">
##  <ManSection>
##  <Filt Name="IsGaussianIntegers" Arg='obj' Type='Category'/>
##
##  <Description>
##  is the defining category for the domain <Ref Var="GaussianIntegers"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsGaussianIntegers", IsEuclideanRing and IsFLMLOR 
  and IsFiniteDimensional );


#############################################################################
##
#V  GaussianIntegers  . . . . . . . . . . . . . . . ring of Gaussian integers
##
##  <#GAPDoc Label="GaussianIntegers">
##  <ManSection>
##  <Var Name="GaussianIntegers"/>
##
##  <Description>
##  <Ref Var="GaussianIntegers"/> is the ring <M>&ZZ;[\sqrt{{-1}}]</M>
##  of Gaussian integers.
##  This is a subring of the cyclotomic field
##  <Ref Func="GaussianRationals"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalVariable( "GaussianIntegers", "ring of Gaussian integers" );


#############################################################################
##
#V  Primes  . . . . . . . . . . . . . . . . . . . . . .  list of small primes
##
##  <#GAPDoc Label="Primes">
##  <ManSection>
##  <Var Name="Primes"/>
##
##  <Description>
##  <Ref Var="Primes"/> is a strictly sorted list of the 168 primes less than
##  1000.
##  <P/>
##  This is used in <Ref Func="IsPrimeInt"/> and <Ref Func="FactorsInt"/>
##  to cast out small primes quickly.
##  <Example><![CDATA[
##  gap> Primes[1];
##  2
##  gap> Primes[100];
##  541
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalVariable( "Primes", "list of the 168 primes less than 1000" );


#############################################################################
##
#V  Primes2 . . . . . . . . . . . . . . . . . . . . . . additional prime list
#V  ProbablePrimes2 . . . . . . . . . . .  additional list of probable primes
#V  InfoPrimeInt  . . . . . info class for usage of probable primes as primes
##
##  <ManSection>
##  <Var Name="Primes2"/>
##  <Var Name="ProbablePrimes2"/>
##  <InfoClass Name="InfoPrimeInt"/>
##
##  <Description>
##  <Ref Var="Primes2"/> contains those primes found by
##  <Ref Func="IsPrimeInt"/> that are not in <Ref Var="Primes"/>.
##  <Ref Var="Primes2"/> is kept sorted, but may contain holes.
##  <P/>
##  Similarly, <Ref Var="ProbablePrimes2"/> is used to store found
##  probable primes,
##  which are not strictly proven to be prime. When numbers from this list
##  are used (e.g., to factor numbers), a sensible warning should be printed
##  with <Ref InfoClass="InfoPrimeInt"/> in its standard level 1.
##  <P/>
##  <Ref Func="IsPrimeInt"/> and <Ref Func="FactorsInt"/> use this list
##  to cast out already found primes quickly.
##  If <Ref Func="IsPrimeInt"/> is called only for random integers
##  this list would be quite useless.
##  However, users do not behave randomly.
##  Instead, it is not uncommon to factor the same integer twice.
##  Likewise, once we have tested that <M>2^{31}-1</M> is prime, factoring
##  <M>2^{62}-1</M> is very cheap, because the former divides the latter.
##  <P/>
##  This list is initialized to contain at least all those prime factors of
##  the integers <M>2^n-1</M> with <M>n &lt; 201</M>,
##  <M>3^n-1</M> with <M>n &lt; 101</M>,
##  <M>5^n-1</M> with <M>n &lt; 101</M>,
##  <M>7^n-1</M> with <M>n &lt; 91</M>,
##  <M>11^n-1</M> with <M>n &lt; 79</M>,
##  and <M>13^n-1</M> with <M>n &lt; 37</M> that are larger than <M>10^7</M>.
##  </Description>
##  </ManSection>
##
DeclareGlobalVariable( "Primes2", "sorted list of large primes" );
DeclareGlobalVariable( "ProbablePrimes2", "sorted list of probable primes" );
DeclareInfoClass( "InfoPrimeInt" );
SetInfoLevel( InfoPrimeInt, 1 );


#############################################################################
##
#F  AbsInt( <n> ) . . . . . . . . . . . . . . .  absolute value of an integer
##
##  <#GAPDoc Label="AbsInt">
##  <ManSection>
##  <Func Name="AbsInt" Arg='n'/>
##
##  <Description>
##  <Index>absolute value of an integer</Index>
##  <Ref Func="AbsInt"/> returns the absolute value of the integer <A>n</A>,
##  i.e., <A>n</A> if <A>n</A> is positive,
##  -<A>n</A> if <A>n</A> is negative and 0 if <A>n</A> is 0.
##  <P/>
##  <Ref Func="AbsInt"/> is a special case of the general operation
##  <Ref Func="EuclideanDegree"/>.
##  <P/>
##  See also <Ref Func="AbsoluteValue"/>.
##
##  <Example><![CDATA[
##  gap> AbsInt( 33 );
##  33
##  gap> AbsInt( -214378 );
##  214378
##  gap> AbsInt( 0 );
##  0
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "AbsInt" );


#############################################################################
##
#F  BestQuoInt( <n>, <m> )
##
##  <#GAPDoc Label="BestQuoInt">
##  <ManSection>
##  <Func Name="BestQuoInt" Arg='n, m'/>
##
##  <Description>
##  <Ref Func="BestQuoInt"/> returns the best quotient <M>q</M>
##  of the integers <A>n</A> and <A>m</A>.
##  This is the quotient such that <M><A>n</A>-q*<A>m</A></M>
##  has minimal absolute value.
##  If there are two quotients whose remainders have the same absolute value,
##  then the quotient with the smaller absolute value is chosen.
##  <Example><![CDATA[
##  gap> BestQuoInt( 5, 3 );  BestQuoInt( -5, 3 );
##  2
##  -2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BestQuoInt" );


#############################################################################
##
#F  ChineseRem( <moduli>, <residues> )  . . . . . . . . . . chinese remainder
##
##  <#GAPDoc Label="ChineseRem">
##  <ManSection>
##  <Func Name="ChineseRem" Arg='moduli, residues'/>
##
##  <Description>
##  <Index>Chinese remainder</Index>
##  <Ref Func="ChineseRem"/> returns the combination of the <A>residues</A>
##  modulo the <A>moduli</A>, i.e.,
##  the unique integer <C>c</C>  from <C>[0..Lcm(<A>moduli</A>)-1]</C>
##  such that
##  <C>c = <A>residues</A>[i]</C> modulo <C><A>moduli</A>[i]</C>
##  for all <C>i</C>, if it exists.
##  If no such combination exists <Ref Func="ChineseRem"/> signals an error.
##  <P/>
##  Such a combination does exist if and only if
##  <C><A>residues</A>[i] = <A>residues</A>[k] mod Gcd( <A>moduli</A>[i], <A>moduli</A>[k] )</C>
##  for every pair <C>i</C>, <C>k</C>.
##  Note that this implies that such a combination exists
##  if the moduli are pairwise relatively prime.
##  This is called the Chinese remainder theorem.
##  <Example><![CDATA[
##  gap> ChineseRem( [ 2, 3, 5, 7 ], [ 1, 2, 3, 4 ] );
##  53
##  gap> ChineseRem( [ 6, 10, 14 ], [ 1, 3, 5 ] );
##  103
##  ]]></Example>
##  <Log><![CDATA[
##  gap> ChineseRem( [ 6, 10, 14 ], [ 1, 2, 3 ] );
##  Error, the residues must be equal modulo 2 called from
##  <function>( <arguments> ) called from read-eval-loop
##  Entering break read-eval-print loop ...
##  you can 'quit;' to quit to outer loop, or
##  you can 'return;' to continue
##  brk> gap> 
##  ]]></Log>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ChineseRem" );


#############################################################################
##
#F  CoefficientsQadic( <i>, <q> ) . . . . . .  <q>-adic representation of <i>
##
##  <#GAPDoc Label="CoefficientsQadic">
##  <ManSection>
##  <Oper Name="CoefficientsQadic" Arg='i, q'/>
##
##  <Description>
##  returns the <A>q</A>-adic representation of the integer <A>i</A>
##  as a list <M>l</M> of coefficients satisfying the equality
##  <M><A>i</A> = \sum_{{j = 0}} <A>q</A>^j \cdot l[j+1]</M>
##  for an integer <M><A>q</A> > 1</M>.
##  <Example><![CDATA[
##  gap> l:=CoefficientsQadic(462,3);
##  [ 0, 1, 0, 2, 2, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CoefficientsQadic", [ IsInt, IsInt ] );


#############################################################################
##
#F  CoefficientsMultiadic( <ints>, <int> )
##
##  <#GAPDoc Label="CoefficientsMultiadic">
##  <ManSection>
##  <Func Name="CoefficientsMultiadic" Arg='ints, int'/>
##
##  <Description>
##  returns the multiadic expansion of the integer <A>int</A>
##  modulo the integers given in <A>ints</A> (in ascending order).
##  It returns a list of coefficients in the <E>reverse</E> order
##  to that in <A>ints</A>.
##  <!-- The syntax is quite weird and should be adapted according to
##  CoefficientsQadic. -->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CoefficientsMultiadic" );


#############################################################################
##
#F  DivisorsInt( <n> )  . . . . . . . . . . . . . . .  divisors of an integer
##
##  <#GAPDoc Label="DivisorsInt">
##  <ManSection>
##  <Func Name="DivisorsInt" Arg='n'/>
##
##  <Description>
##  <Index Subkey="of an integer">divisors</Index>
##  <Ref Func="DivisorsInt"/> returns a list of all divisors of the integer
##  <A>n</A>.
##  The list is sorted, so that it starts with 1 and ends with <A>n</A>.
##  We  define that <C>DivisorsInt( -<A>n</A> ) = DivisorsInt( <A>n</A> )</C>.
##  <P/>
##  Since the  set of divisors of 0 is infinite
##  calling <C>DivisorsInt( 0 )</C> causes an error.
##  <P/>
##  <Ref Func="DivisorsInt"/> may call <Ref Func="FactorsInt"/>
##  to obtain the prime factors.
##  <Ref Func="Sigma"/> and <Ref Func="Tau"/> compute the sum and the
##  number of positive divisors, respectively.
##  <Example><![CDATA[
##  gap> DivisorsInt( 1 ); DivisorsInt( 20 ); DivisorsInt( 541 );
##  [ 1 ]
##  [ 1, 2, 4, 5, 10, 20 ]
##  [ 1, 541 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DivisorsInt");


#############################################################################
##
#F  FactorsInt( <n> ) . . . . . . . . . . . . . . prime factors of an integer
#F  FactorsInt( <n> : RhoTrials := <trials>)
##
##  <#GAPDoc Label="FactorsInt">
##  <ManSection>
##  <Func Name="FactorsInt" Arg='n'/>
##  <Func Name="FactorsInt" Arg='n:RhoTrials:=trials' Label="using Pollard's Rho"/>
##
##  <Description>
##  <Ref Func="FactorsInt"/> returns a list of factors of a given integer 
##  <A>n</A> such that <C>Product( FactorsInt( <A>n</A> ) ) = <A>n</A></C>.
##  If <M>|n| \leq 1</M> the list <C>[<A>n</A>]</C> is returned. Otherwise
##  the result contains probable primes, sorted by absolute value. The
##  entries will all be positive except for the first one in case of
##  a negative <A>n</A>.
##  <P/>
##  See <Ref Attr="PrimeDivisors"/> for a function that returns a set of
##  (probable) primes dividing <A>n</A>.
##  <P/>
##  Note that <Ref Func="FactorsInt"/> uses a probable-primality test
##  (see&nbsp;<Ref Func="IsPrimeInt"/>).
##  Thus <Ref Func="FactorsInt"/> might return a list which contains
##  composite integers.
##  In such a case you will get a warning about the use of a probable prime.
##  You can switch off these warnings by
##  <C>SetInfoLevel( InfoPrimeInt, 0 );</C> 
##  (also see <Ref Oper="SetInfoLevel"/>).
##  <P/>
##  The time taken by <Ref Func="FactorsInt"/> is approximately proportional
##  to the square root of the second largest prime factor of <A>n</A>,
##  which is the last one that <Ref Func="FactorsInt"/> has to find,
##  since the largest factor is simply
##  what remains when all others have been removed.  Thus the time is roughly
##  bounded by the fourth root of <A>n</A>.
##  <Ref Func="FactorsInt"/> is guaranteed to find all factors less than
##  <M>10^6</M> and will find most factors less than <M>10^{10}</M>.
##  If <A>n</A> contains multiple factors larger than that
##  <Ref Func="FactorsInt"/> may not be able to factor <A>n</A>
##  and will then signal an error.
##  <P/>
##  <Ref Func="FactorsInt"/> is used in a method for the general operation
##  <Ref Oper="Factors"/>.
##  <P/>
##  In the second form, <Ref Func="FactorsInt"/> calls
##  <C>FactorsRho</C> with a limit of <A>trials</A>
##  on the number of trials it performs. The default is 8192.
##  Note that Pollard's Rho is the fastest method for finding prime
##  factors with roughly 5-10 decimal digits, but becomes more and more
##  inferior to other factorization techniques like e.g. the Elliptic
##  Curves Method (ECM) the bigger the prime factors are. Therefore
##  instead of performing a huge number of Rho <A>trials</A>, it is usually
##  more advisable to install the <Package>FactInt</Package> package and
##  then simply to use the operation <Ref Oper="Factors"/>. The factorization
##  of the 8-th Fermat number by Pollard's Rho below takes already a while.
##  
##  <Example><![CDATA[
##  gap> FactorsInt( -Factorial(6) );
##  [ -2, 2, 2, 2, 3, 3, 5 ]
##  gap> Set( FactorsInt( Factorial(13)/11 ) );
##  [ 2, 3, 5, 7, 13 ]
##  gap> FactorsInt( 2^63 - 1 );
##  [ 7, 7, 73, 127, 337, 92737, 649657 ]
##  gap> FactorsInt( 10^42 + 1 );
##  [ 29, 101, 281, 9901, 226549, 121499449, 4458192223320340849 ]
##  gap> FactorsInt(2^256+1:RhoTrials:=100000000);
##  [ 1238926361552897, 
##    93461639715357977769163558199606896584051237541638188580280321 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "FactorsInt" );

#############################################################################
##
#F  PrimeDivisors( <n> ) . . . . . . . . . . . . . . . list of prime factors
##  
##  <#GAPDoc Label="PrimeDivisors">
##  <ManSection>
##  <Attr Name="PrimeDivisors" Arg='n'/>
##  <Description>
##  <Ref Attr="PrimeDivisors"/> returns for a non-zero integer <A>n</A> a set 
##  of its positive (probable) primes divisors. In rare cases the result could 
##  contain a composite number which passed certain primality tests, see 
##  <Ref Func="IsProbablyPrimeInt"/> and <Ref Func="FactorsInt"/> for more details.
##  <Example>
##  gap> PrimeDivisors(-12);
##  [ 2, 3 ]
##  gap> PrimeDivisors(1);
##  [  ]
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##  
DeclareAttribute("PrimeDivisors", IsInt);

#############################################################################
##
#O  PartialFactorization( <n> ) . . . . . partial factorization of an integer
#O  PartialFactorization( <n>, <effort> )
##
##  <#GAPDoc Label="PartialFactorization">
##  <ManSection>
##  <Oper Name="PartialFactorization" Arg='n[, effort]'/>
##
##  <Description>
##  <Ref Oper="PartialFactorization"/> returns a partial factorization of the
##  integer <A>n</A>.
##  No assertions are made about the primality of the factors,
##  except of those mentioned below.
##  <P/>
##  The argument <A>effort</A>, if given, specifies how intensively the
##  function should try to determine factors of <A>n</A>.
##  The default is <A>effort</A>&nbsp;=&nbsp;5.
##  <P/>
##  <List>
##  <Item>
##   If <A>effort</A>&nbsp;=&nbsp;0, trial division by the primes below 100
##   is done.
##   Returned factors below <M>10^4</M> are guaranteed to be prime.
##  </Item>
##  <Item>
##   If <A>effort</A>&nbsp;=&nbsp;1, trial division by the primes below 1000
##   is done.
##   Returned factors below <M>10^6</M> are guaranteed to be prime.
##  </Item>
##  <Item>
##   If <A>effort</A>&nbsp;=&nbsp;2, additionally trial division by the
##   numbers in the lists <C>Primes2</C> and
##   <C>ProbablePrimes2</C> is done, and perfect powers are detected.
##   Returned factors below <M>10^6</M> are guaranteed to be prime.
##  </Item>
##  <Item>
##   If <A>effort</A>&nbsp;=&nbsp;3, additionally <C>FactorsRho</C>
##   (Pollard's Rho) with <C>RhoTrials</C> = 256 is used.
##  </Item>
##  <Item>
##   If <A>effort</A>&nbsp;=&nbsp;4, as above, but <C>RhoTrials</C> = 2048.
##  </Item>
##  <Item>
##   If <A>effort</A>&nbsp;=&nbsp;5, as above, but <C>RhoTrials</C> = 8192.
##   Returned factors below <M>10^{12}</M> are guaranteed to be prime,
##   and all prime factors below <M>10^6</M> are guaranteed to be found.
##  </Item>
##  <Item>
##   If <A>effort</A>&nbsp;=&nbsp;6 and the package <Package>FactInt</Package>
##   is loaded, in addition to the above quite a number of special cases are
##   handled.
##  </Item>
##  <Item>
##   If <A>effort</A>&nbsp;=&nbsp;7 and the package <Package>FactInt</Package>
##   is loaded, the only thing which is not attempted to obtain a full
##   factorization into Baillie-Pomerance-Selfridge-Wagstaff pseudoprimes
##   is the application of the MPQS to a remaining composite with more
##   than 50 decimal digits.
##  </Item>
##  </List>
##  <P/>
##  Increasing the value of the argument <A>effort</A> by one usually results
##  in an increase of the runtime requirements by a factor of (very roughly!)
##  3 to&nbsp;10.
##  (Also see <Ref Func="CheapFactorsInt" BookName="EDIM"/>).
##  <Example><![CDATA[
##  gap> List([0..5],i->PartialFactorization(97^35-1,i)); 
##  [ [ 2, 2, 2, 2, 2, 3, 11, 31, 43, 
##        2446338959059521520901826365168917110105972824229555319002965029 ], 
##    [ 2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 
##        2529823122088440042297648774735177983563570655873376751812787 ],
##    [ 2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 
##        2529823122088440042297648774735177983563570655873376751812787 ],
##    [ 2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 39761, 262321, 
##        242549173950325921859769421435653153445616962914227 ], 
##    [ 2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 39761, 262321, 687121, 
##        352993394104278463123335513593170858474150787 ], 
##    [ 2, 2, 2, 2, 2, 3, 11, 31, 43, 967, 39761, 262321, 687121, 
##        20241187, 504769301, 34549173843451574629911361501 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "PartialFactorization",
                  [ IsMultiplicativeElement, IsInt ] );


#############################################################################
##
#F  Gcdex( <m>, <n> ) . . . . . . . . . . greatest common divisor of integers
##
##  <#GAPDoc Label="Gcdex">
##  <ManSection>
##  <Func Name="Gcdex" Arg='m, n'/>
##
##  <Description>
##  returns a record <C>g</C> describing the extended greatest common divisor
##  of <A>m</A> and <A>n</A>.
##  The component <C>gcd</C> is this gcd,
##  the components <C>coeff1</C> and <C>coeff2</C> are integer cofactors
##  such that <C>g.gcd = g.coeff1 * <A>m</A> + g.coeff2 * <A>n</A></C>,
##  and the components <C>coeff3</C> and <C>coeff4</C> are integer cofactors
##  such that <C>0 = g.coeff3 * <A>m</A> + g.coeff4 * <A>n</A></C>.
##  <P/>
##  If <A>m</A> and <A>n</A> both are nonzero,
##  <C>AbsInt( g.coeff1 )</C> is less than or
##  equal to <C>AbsInt(<A>n</A>) / (2 * g.gcd)</C>,
##  and <C>AbsInt( g.coeff2 )</C> is less
##  than or equal to <C>AbsInt(<A>m</A>) / (2 * g.gcd)</C>.
##  <P/>
##  If <A>m</A> or <A>n</A> or both are zero
##  <C>coeff3</C> is <C>-<A>n</A> / g.gcd</C> and
##  <C>coeff4</C> is <C><A>m</A> / g.gcd</C>.
##  <P/>
##  The coefficients always form a unimodular matrix, i.e.,
##  the determinant
##  <C>g.coeff1 * g.coeff4 - g.coeff3 * g.coeff2</C>
##  is <M>1</M> or <M>-1</M>.
##  <Example><![CDATA[
##  gap> Gcdex( 123, 66 );
##  rec( coeff1 := 7, coeff2 := -13, coeff3 := -22, coeff4 := 41, 
##    gcd := 3 )
##  ]]></Example>
##  This means <M>3 = 7 * 123 - 13 * 66</M>, <M>0 = -22 * 123 + 41 * 66</M>.
##  <Example><![CDATA[
##  gap> Gcdex( 0, -3 );
##  rec( coeff1 := 0, coeff2 := -1, coeff3 := 1, coeff4 := 0, gcd := 3 )
##  gap> Gcdex( 0, 0 );
##  rec( coeff1 := 1, coeff2 := 0, coeff3 := 0, coeff4 := 1, gcd := 0 )
##  ]]></Example>
##  <P/>
##  <Ref Func="GcdRepresentation" Label="for (a ring and) several elements"/> 
##  provides similar functionality over arbitrary Euclidean rings.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "Gcdex" );


#############################################################################
##
#F  IsEvenInt( <n> )  . . . . . . . . . . . . . . . . . . test if <n> is even
##
##  <#GAPDoc Label="IsEvenInt">
##  <ManSection>
##  <Func Name="IsEvenInt" Arg='n'/>
##
##  <Description>
##  tests if the integer <A>n</A> is divisible by 2.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IsEvenInt" );


#############################################################################
##
#F  IsOddInt( <n> ) . . . . . . . . . . . . . . . . . . .  test if <n> is odd
##
##  <#GAPDoc Label="IsOddInt">
##  <ManSection>
##  <Func Name="IsOddInt" Arg='n'/>
##
##  <Description>
##  tests if the integer <A>n</A> is not divisible by 2.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IsOddInt" );


DeclareGlobalFunction( "IsPrimeIntOld" ); # old method still available


#############################################################################
##
#F  IsPrimePowerInt( <n> )  . . . . . . . . . . . test for a power of a prime
##
##  <#GAPDoc Label="IsPrimePowerInt">
##  <ManSection>
##  <Func Name="IsPrimePowerInt" Arg='n'/>
##
##  <Description>
##  <Ref Func="IsPrimePowerInt"/> returns <K>true</K> if the integer <A>n</A>
##  is a prime power and <K>false</K> otherwise.
##  <P/>
##  An integer <M>n</M> is a <E>prime power</E> if there exists a prime <M>p</M> and a
##  positive integer <M>i</M> such that <M>p^i = n</M>.
##  If <M>n</M> is negative the condition is that there
##  must exist a negative prime <M>p</M> and an odd positive integer <M>i</M>
##  such that <M>p^i = n</M>.
##  The integers 1 and -1 are not prime powers.
##  <P/>
##  Note that <Ref Func="IsPrimePowerInt"/> uses
##  <Ref Func="SmallestRootInt"/>
##  and a probable-primality test (see <Ref Func="IsPrimeInt"/>).
##  <Example><![CDATA[
##  gap> IsPrimePowerInt( 31^5 );
##  true
##  gap> IsPrimePowerInt( 2^31-1 );  # 2^31-1 is actually a prime
##  true
##  gap> IsPrimePowerInt( 2^63-1 );
##  false
##  gap> Filtered( [-10..10], IsPrimePowerInt );
##  [ -8, -7, -5, -3, -2, 2, 3, 4, 5, 7, 8, 9 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IsPrimePowerInt" );


#############################################################################
##
#F  LcmInt( <m>, <n> )  . . . . . . . . . . least common multiple of integers
##
##  <#GAPDoc Label="LcmInt">
##  <ManSection>
##  <Func Name="LcmInt" Arg='m, n'/>
##
##  <Description>
##  returns the least common multiple of the integers <A>m</A> and <A>n</A>.
##  <P/>
##  <Ref Func="LcmInt"/> is a method used by the general operation
##  <Ref Oper="Lcm" Label="for (a ring and) several elements"/>.
##  <Example><![CDATA[
##  gap> LcmInt( 123, 66 );
##  2706
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LcmInt" );


#############################################################################
##
#F  LogInt( <n>, <base> ) . . . . . . . . . . . . . . logarithm of an integer
##
##  <#GAPDoc Label="LogInt">
##  <ManSection>
##  <Func Name="LogInt" Arg='n, base'/>
##
##  <Description>
##  <Ref Func="LogInt"/> returns the integer part of the logarithm of the
##  positive integer <A>n</A> with respect to the positive integer
##  <A>base</A>, i.e.,
##  the largest positive integer <M>e</M> such that
##  <M><A>base</A>^e \leq <A>n</A></M>. 
##  The function
##  <Ref Func="LogInt"/>
##  will signal an error if either <A>n</A> or <A>base</A> is not positive.
##  <P/>
##  For <A>base</A> <M>= 2</M> this is very efficient because the internal
##  binary representation of the integer is used. 
##  <P/>
##  <Example><![CDATA[
##  gap> LogInt( 1030, 2 );
##  10
##  gap> 2^10;
##  1024
##  gap> LogInt( 1, 10 );
##  0
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LogInt" );


#############################################################################
##
#F  NextPrimeInt( <n> ) . . . . . . . . . . . . . . . . . . next larger prime
##
##  <#GAPDoc Label="NextPrimeInt">
##  <ManSection>
##  <Func Name="NextPrimeInt" Arg='n'/>
##
##  <Description>
##  <Ref Func="NextPrimeInt"/> returns the smallest prime which is strictly
##  larger than the integer <A>n</A>.
##  <P/>
##  Note that <Ref Func="NextPrimeInt"/> uses a probable-primality test
##  (see <Ref Func="IsPrimeInt"/>).
##  <Example><![CDATA[
##  gap> NextPrimeInt( 541 ); NextPrimeInt( -1 );
##  547
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NextPrimeInt" );


#############################################################################
##
#F  PowerModInt( <r>, <e>, <m> )  . . . . power of one integer modulo another
##
##  <#GAPDoc Label="PowerModInt">
##  <ManSection>
##  <Func Name="PowerModInt" Arg='r, e, m'/>
##
##  <Description>
##  returns <M><A>r</A>^{<A>e</A>} \pmod{<A>m</A>}</M> for integers <A>r</A>,
##  <A>e</A> and <A>m</A> (<M><A>e</A> \geq 0</M>).
##  <P/>
##  Note that <Ref Func="PowerModInt"/> can reduce intermediate results and
##  thus will generally be faster than using
##  <A>r</A><C>^</C><A>e</A><C> mod </C><A>m</A>,
##  which would compute <M><A>r</A>^{<A>e</A>}</M> first and reduces
##  the result afterwards.
##  <P/>
##  <Ref Func="PowerModInt"/> is a method for the general operation
##  <Ref Oper="PowerMod"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PowerModInt" );


#############################################################################
##
#F  PrevPrimeInt( <n> ) . . . . . . . . . . . . . . .  previous smaller prime
##
##  <#GAPDoc Label="PrevPrimeInt">
##  <ManSection>
##  <Func Name="PrevPrimeInt" Arg='n'/>
##
##  <Description>
##  <Ref Func="PrevPrimeInt"/> returns the largest prime which is strictly
##  smaller than the integer <A>n</A>.
##  <P/>
##  Note that <Ref Func="PrevPrimeInt"/> uses a probable-primality test
##  (see <Ref Func="IsPrimeInt"/>).
##  <Example><![CDATA[
##  gap> PrevPrimeInt( 541 ); PrevPrimeInt( 1 );
##  523
##  -2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PrevPrimeInt" );


#############################################################################
##
#F  PrimePowersInt( <n> ) . . . . . . . . . . . . . . . . prime powers of <n>
##
##  <#GAPDoc Label="PrimePowersInt">
##  <ManSection>
##  <Func Name="PrimePowersInt" Arg='n'/>
##
##  <Description>
##  returns the prime factorization of the integer <A>n</A> as a list
##  <M>[ p_1, e_1, \ldots, p_k, e_k ]</M> with
##  <A>n</A> = <M>p_1^{{e_1}} \cdot p_2^{{e_2}} \cdot ... \cdot p_k^{{e_k}}</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> PrimePowersInt( Factorial( 7 ) );
##  [ 2, 4, 3, 2, 5, 1, 7, 1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PrimePowersInt" );


#############################################################################
##
#F  RootInt( <n> )  . . . . . . . . . . . . . . . . . . .  root of an integer
#F  RootInt( <n>, <k> )
##
##  <#GAPDoc Label="RootInt">
##  <ManSection>
##  <Func Name="RootInt" Arg='n[, k]'/>
##
##  <Description>
##  <Index Subkey="of an integer">root</Index>
##  <Index Subkey="of an integer">square root</Index>
##  <Ref Func="RootInt"/> returns the integer part of the <A>k</A>th root of
##  the integer <A>n</A>.
##  If the optional integer argument <A>k</A> is not given it defaults to 2,
##  i.e., <Ref Func="RootInt"/> returns the integer part of the square root
##  in this case.
##  <P/>
##  If <A>n</A> is positive, <Ref Func="RootInt"/> returns the largest
##  positive integer <M>r</M> such that <M>r^{<A>k</A>} \leq <A>n</A></M>.
##  If <A>n</A> is negative and <A>k</A> is odd <Ref Func="RootInt"/>
##  returns <C>-RootInt( -<A>n</A>,  <A>k</A> )</C>.
##  If <A>n</A> is negative and <A>k</A> is even
##  <Ref Func="RootInt"/> will cause an error.
##  <Ref Func="RootInt"/> will also cause an error if <A>k</A>
##  is 0 or negative.
##  <Example><![CDATA[
##  gap> RootInt( 361 );
##  19
##  gap> RootInt( 2 * 10^12 );
##  1414213
##  gap> RootInt( 17000, 5 );
##  7
##  gap> 7^5;
##  16807
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RootInt" );


#############################################################################
##
#F  SignInt( <n> )  . . . . . . . . . . . . . . . . . . .  sign of an integer
##
##  <#GAPDoc Label="SignInt">
##  <ManSection>
##  <Func Name="SignInt" Arg='n'/>
##
##  <Description>
##  <Index Subkey="of an integer">sign</Index>
##  <Ref Func="SignInt"/> returns the sign of the integer <A>n</A>,
##  i.e., 1 if <A>n</A> is positive,
##  -1 if <A>n</A> is negative and 0 if <A>n</A> is 0.
##  <Example><![CDATA[
##  gap> SignInt( 33 );
##  1
##  gap> SignInt( -214378 );
##  -1
##  gap> SignInt( 0 );
##  0
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SignInt" );
#T attribute `Sign' (also for e.g. permutations)?
#T should be internal method!


#############################################################################
##
#F  SmallestRootInt( <n> )  . . . . . . . . . . . smallest root of an integer
##
##  <#GAPDoc Label="SmallestRootInt">
##  <ManSection>
##  <Func Name="SmallestRootInt" Arg='n'/>
##
##  <Description>
##  <Index Subkey="of an integer, smallest">root</Index>
##  <Ref Func="SmallestRootInt"/> returns the smallest root of the integer
##  <A>n</A>.
##  <P/>
##  The smallest root of an integer <A>n</A> is the integer <M>r</M> of
##  smallest absolute value for which a positive integer <M>k</M> exists
##  such that <M><A>n</A> = r^k</M>.
##  <Example><![CDATA[
##  gap> SmallestRootInt( 2^30 );
##  2
##  gap> SmallestRootInt( -(2^30) );
##  -4
##  ]]></Example>
##  <P/>
##  Note that <M>(-2)^{30} = +(2^{30})</M>.
##  <P/>
##  <Example><![CDATA[
##  gap> SmallestRootInt( 279936 );
##  6
##  gap> LogInt( 279936, 6 );
##  7
##  gap> SmallestRootInt( 1001 );
##  1001
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SmallestRootInt" );


#############################################################################
##
#F  PrintFactorsInt( <n> )  . . . . . . . . print factorization of an integer
##
##  <#GAPDoc Label="PrintFactorsInt">
##  <ManSection>
##  <Func Name="PrintFactorsInt" Arg='n'/>
##
##  <Description>
##  prints the prime factorization of the integer <A>n</A> in human-readable
##  form.
##  <Example><![CDATA[
##  gap> PrintFactorsInt( Factorial( 7 ) ); Print( "\n" );
##  2^4*3^2*5*7
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PrintFactorsInt" );

#############################################################################
##
#F  PowerDecompositions( <n> )
##
##  <ManSection>
##  <Func Name="PowerDecompositions" Arg='n'/>
##
##  <Description>
##  returns a list of all nontrivial decompositions of the integer <A>n</A>
##  as a power of integers.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "PowerDecompositions" );

DeclareGlobalFunction( "TraceModQF" ); # forward declaration


#############################################################################
##
#E