/usr/share/gap/lib/liefam.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | #############################################################################
##
#W liefam.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains the definition of the family of Lie elements of a
## family of ring elements.
#############################################################################
##
## <#GAPDoc Label="[1]{liefam}">
## Let <C>x</C> be a ring element, then <C>LieObject(x)</C>
## (see <Ref Func="LieObject"/>) wraps <C>x</C> up into an
## object that contains the same data (namely <C>x</C>). The multiplication
## <C>*</C> for Lie objects is formed by taking the commutator. More exactly,
## if <C>l1</C> and <C>l2</C> are the Lie objects corresponding to
## the ring elements <C>r1</C> and <C>r2</C>, then <C>l1 * l2</C>
## is equal to the Lie object corresponding to <C>r1 * r2 - r2 * r1</C>.
## Two rules for Lie objects are worth noting:
## <P/>
## <List>
## <Item>
## An element is <E>not</E> equal to its Lie element.
## </Item>
## <Item>
## If we take the Lie object of an ordinary (associative) matrix
## then this is again a matrix;
## it is therefore a collection (of its rows) and a list.
## But it is <E>not</E> a collection of collections of its entries,
## and its family is <E>not</E> a collections family.
## </Item>
## </List>
## <P/>
## Given a family <C>F</C> of ring elements, we can form its Lie family
## <C>L</C>. The elements of <C>F</C> and <C>L</C> are in bijection, only
## the multiplications via <C>*</C> differ for both families.
## More exactly, if <C>l1</C> and <C>l2</C> are the Lie elements
## corresponding to the elements <C>f1</C> and <C>f2</C> in <C>F</C>,
## we have <C>l1 * l2</C> equal to the Lie element corresponding to
## <C>f1 * f2 - f2 * f1</C>.
## Furthermore, the product of Lie elements <C>l1</C>, <C>l2</C> and
## <C>l3</C> is left-normed, that is <C>l1*l2*l3</C> is equal to
## <C>(l1*l2)*l3</C>.
## <P/>
## The main reason to distinguish elements and Lie elements on the family
## level is that this helps to avoid forming domains that contain
## elements of both types.
## For example, if we could form vector spaces of matrices then at first
## glance it would be no problem to have both ordinary and Lie matrices
## in it, but as soon as we find out that the space is in fact an algebra
## (e.g., because its dimension is that of the full matrix algebra),
## we would run into strange problems.
## <P/>
## Note that the family situation with Lie families may be not familiar.
## <P/>
## <List>
## <Item>
## We have to be careful when installing methods for certain types
## of domains that may involve Lie elements.
## For example, the zero element of a matrix space is either an ordinary
## matrix or its Lie element, depending on the space.
## So either the method must be aware of both cases, or the method
## selection must distinguish the two cases.
## In the latter situation, only one method may be applicable to each
## case; this means that it is not sufficient to treat the Lie case
## with the additional requirement <C>IsLieObjectCollection</C> but that
## we must explicitly require non-Lie elements for the non-Lie case.
## </Item>
## <Item>
## Being a full matrix space is a property that may hold for a space
## of ordinary matrices or a space of Lie matrices.
## So methods for full matrix spaces must also be aware of Lie matrices.
## </Item>
## </List>
## <#/GAPDoc>
##
#############################################################################
##
#C IsLieObject( <obj> )
#C IsLieObjectCollection( <obj> )
##
## <#GAPDoc Label="IsLieObject">
## <ManSection>
## <Filt Name="IsLieObject" Arg='obj' Type='Category'/>
## <Filt Name="IsLieObjectCollection" Arg='obj' Type='Category'/>
## <Filt Name="IsRestrictedLieObject" Arg='obj' Type='Category'/>
## <Filt Name="IsRestrictedLieObjectCollection" Arg='obj' Type='Category'/>
##
## <Description>
## An object lies in <Ref Filt="IsLieObject"/> if and only if
## it lies in a family constructed by <Ref Attr="LieFamily"/>.
## <Example><![CDATA[
## gap> m:= [ [ 1, 0 ], [ 0, 1 ] ];;
## gap> lo:= LieObject( m );
## LieObject( [ [ 1, 0 ], [ 0, 1 ] ] )
## gap> IsLieObject( m );
## false
## gap> IsLieObject( lo );
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsLieObject",
IsRingElement
and IsZeroSquaredElement
and IsJacobianElement );
DeclareCategoryCollections( "IsLieObject" );
DeclareSynonym( "IsRestrictedLieObject",
IsLieObject and IsRestrictedJacobianElement);
DeclareCategoryCollections( "IsRestrictedLieObject" );
#############################################################################
##
#A LieFamily( <Fam> )
##
## <#GAPDoc Label="LieFamily">
## <ManSection>
## <Attr Name="LieFamily" Arg='Fam'/>
##
## <Description>
## is a family <C>F</C> in bijection with the family <A>Fam</A>,
## but with the Lie bracket as infix multiplication.
## That is, for <C>x</C>, <C>y</C> in <A>Fam</A>, the product of
## the images in <C>F</C> will be the image of <C>x * y - y * x</C>.
## <P/>
## The standard type of objects in a Lie family <C>F</C> is
## <C><A>F</A>!.packedType</C>.
## <P/>
## <Index Key="Embedding" Subkey="for Lie algebras"><C>Embedding</C></Index>
## The bijection from <A>Fam</A> to <C>F</C> is given by
## <C>Embedding( <A>Fam</A>, F )</C>
## (see <Ref Oper="Embedding" Label="for two domains"/>);
## this bijection respects addition and additive inverses.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LieFamily", IsFamily );
#############################################################################
##
#A UnderlyingFamily( <Fam> )
##
## <#GAPDoc Label="UnderlyingFamily">
## <ManSection>
## <Attr Name="UnderlyingFamily" Arg='Fam'/>
##
## <Description>
## If <A>Fam</A> is a Lie family then <C>UnderlyingFamily( <A>Fam</A> )</C>
## is a family <C>F</C> such that <C><A>Fam</A> = LieFamily( F )</C>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UnderlyingFamily", IsObject );
#############################################################################
##
#A LieObject( <obj> )
##
## <#GAPDoc Label="LieObject">
## <ManSection>
## <Attr Name="LieObject" Arg='obj'/>
##
## <Description>
## Let <A>obj</A> be a ring element. Then <C>LieObject( <A>obj</A> )</C> is the
## corresponding Lie object. If <A>obj</A> lies in the family <C>F</C>,
## then <C>LieObject( <A>obj</A> )</C> lies in the family <C>LieFamily( F )</C>
## (see <Ref Func="LieFamily"/>).
## <Example><![CDATA[
## gap> m:= [ [ 1, 0 ], [ 0, 1 ] ];;
## gap> lo:= LieObject( m );
## LieObject( [ [ 1, 0 ], [ 0, 1 ] ] )
## gap> m*m;
## [ [ 1, 0 ], [ 0, 1 ] ]
## gap> lo*lo;
## LieObject( [ [ 0, 0 ], [ 0, 0 ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "LieObject", IsRingElement );
#############################################################################
##
#A UnderlyingRingElement( <obj> )
##
## <#GAPDoc Label="UnderlyingRingElement">
## <ManSection>
## <Attr Name="UnderlyingRingElement" Arg='obj'/>
##
## <Description>
## Let <A>obj</A> be a Lie object constructed from a ring element
## <C>r</C> by calling <C>LieObject( r )</C>.
## Then <C>UnderlyingRingElement( <A>obj</A> )</C> returns
## the ring element <C>r</C> used to construct <A>obj</A>.
## If <C>r</C> lies in the family <C>F</C>, then <A>obj</A>
## lies in the family <C>LieFamily( F )</C>
## (see <Ref Func="LieFamily"/>).
## <Example><![CDATA[
## gap> lo:= LieObject( [ [ 1, 0 ], [ 0, 1 ] ] );
## LieObject( [ [ 1, 0 ], [ 0, 1 ] ] )
## gap> m:=UnderlyingRingElement(lo);
## [ [ 1, 0 ], [ 0, 1 ] ]
## gap> lo*lo;
## LieObject( [ [ 0, 0 ], [ 0, 0 ] ] )
## gap> m*m;
## [ [ 1, 0 ], [ 0, 1 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "UnderlyingRingElement", IsLieObject );
#############################################################################
##
#F IsLieObjectsModule( <V> )
##
## <ManSection>
## <Func Name="IsLieObjectsModule" Arg='V'/>
##
## <Description>
## If a free <M>F</M>-module <A>V</A> is in the filter <C>IsLieObjectsModule</C> then
## this expresses that <A>V</A> consists of Lie objects (see <Ref ???="..."/>),
## and that <A>V</A> is handled via the mechanism of nice bases (see <Ref ???="..."/>)
## in the following way.
## Let <M>K</M> be the default field generated by the vector space generators of
## <A>V</A>.
## Then the <C>NiceFreeLeftModuleInfo</C> value of <A>V</A> is irrelevant,
## and the <C>NiceVector</C> value of <M>v \in <A>V</A></M> is defined as the underlying
## element for which <A>v</A> is obtained as <C>LieObject</C> value.
## </Description>
## </ManSection>
##
DeclareHandlingByNiceBasis( "IsLieObjectsModule",
"for free left modules of Lie objects" );
#############################################################################
##
#E
|