This file is indexed.

/usr/share/gap/lib/lierep.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
#############################################################################
##
#W  lierep.gd                   GAP library               Willem de Graaf
#W                                                    and Craig A. Struble
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains the declaration of attributes, properties, and
##  operations for modules over Lie algebras.
##


#############################################################################
##
##  <#GAPDoc Label="[1]{lierep}">
##
##  An <M>s</M>-cochain of a module <M>V</M> over a Lie algebra <M>L</M>
##  is an <M>s</M>-linear map
##  <Display Mode="M">
##  c: L \times \cdots \times L \rightarrow V ,
##  </Display>
##  with <M>s</M> factors <M>L</M>,
##  that is skew-symmetric (meaning that if any of the arguments are
##  interchanged, <M>c</M> changes to <M>-c</M>).
##  <P/>
##  Let <M>(x_1, \ldots, x_n)</M> be a basis of <M>L</M>.
##  Then any <M>s</M>-cochain is 
##  determined by the values <M>c( x_{{i_1}}, \ldots, x_{{i_s}} )</M>,
##  where <M>1 \leq i_1 &lt; i_2 &lt; \cdots &lt; i_s \leq \dim L</M>.
##  Now this value again is a linear combination of basis elements of <M>V</M>:
##  <M>c( x_{{i_1}}, \ldots, x_{{i_s}} ) =
##  \sum \lambda^k_{{i_1,\ldots, i_s}} v_k</M>.
##  Denote the dimension of <M>V</M> by <M>r</M>.
##  Then we represent an <M>s</M>-cocycle by a list of <M>r</M> lists.
##  The <M>j</M>-th of those lists consists of entries of the form
##  <Display Mode="M">
##  [ [ i_1, i_2, \ldots, i_s ], \lambda^j_{{i_1, \ldots, i_s}} ]
##  </Display>
##  where the coefficient on the second position is non-zero.
##  (We only store those entries for which this coefficient is non-zero.)
##  It follows that every <M>s</M>-tuple <M>(i_1, \ldots, i_s)</M> gives rise
##  to <M>r</M>  basis elements.
##  <P/>
##  So the zero cochain is represented by a list of the form
##  <C>[ [ ], [ ], \ldots, [ ] ]</C>. Furthermore, if <M>V</M> is, e.g., 
##  <M>4</M>-dimensional, then the <M>2</M>-cochain represented by
##  <P/>
##  <Log><![CDATA[
##  [ [ [ [1,2], 2] ], [ ], [ [ [1,2], 1/2 ] ], [ ] ]
##  ]]></Log>
##  <P/>
##  maps the pair <M>(x_1, x_2)</M> to <M>2v_1 + 1/2 v_3</M>
##  (where <M>v_1</M> is the first basis element of <M>V</M>,
##  and <M>v_3</M> the third), and all other pairs to zero.
##  <P/>
##  By definition, <M>0</M>-cochains are constant maps
##  <M>c( x ) = v_c \in V</M> for all <M>x \in L</M>.
##  So <M>0</M>-cochains have a different representation: they are just
##  represented by the list <C>[ v_c ]</C>.
##  <P/>
##  Cochains are constructed using the function <Ref Func="Cochain"/>,
##  if <A>c</A> is a cochain, then its corresponding list is returned by
##  <C>ExtRepOfObj( <A>c</A> )</C>.
##  <#/GAPDoc>
##


##############################################################################
##
#C  IsCochain( <obj> )
#C  IsCochainCollection( <obj> )
##
##  <#GAPDoc Label="IsCochain">
##  <ManSection>
##  <Filt Name="IsCochain" Arg='obj' Type='Category'/>
##  <Filt Name="IsCochainCollection" Arg='obj' Type='Category'/>
##
##  <Description>
##  Categories of cochains and of collections of cochains.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsCochain", IsVector );
DeclareCategoryCollections( "IsCochain" );

#############################################################################
##
#O  Cochain( <V>, <s>, <obj> )
##
##  <#GAPDoc Label="Cochain">
##  <ManSection>
##  <Oper Name="Cochain" Arg='V, s, obj'/>
##
##  <Description>
##  Constructs a <A>s</A>-cochain given by the data in <A>obj</A>, with 
##  respect to the Lie algebra module <A>V</A>. If <A>s</A> is non-zero, 
##  then <A>obj</A> must be a list.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> V:= AdjointModule( L );
##  <3-dimensional left-module over <Lie algebra of dimension 
##  3 over Rationals>>
##  gap> c1:= Cochain( V, 2, 
##  >               [ [ [ [ 1, 3 ], -1 ] ], [ ], [ [ [ 2, 3 ], 1/2 ] ] ]);
##  <2-cochain>
##  gap> ExtRepOfObj( c1 );
##  [ [ [ [ 1, 3 ], -1 ] ], [  ], [ [ [ 2, 3 ], 1/2 ] ] ]
##  gap> c2:= Cochain( V, 0, Basis( V )[1] );
##  <0-cochain>
##  gap> ExtRepOfObj( c2 );
##  v.1
##  gap> IsCochain( c2 );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Cochain", [ IsLeftModule, IsInt, IsObject ] );

#############################################################################
##
#O  CochainSpace( <V>, <s> )
##
##  <#GAPDoc Label="CochainSpace">
##  <ManSection>
##  <Oper Name="CochainSpace" Arg='V, s'/>
##
##  <Description>
##  Returns the space of all <A>s</A>-cochains with respect to <A>V</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> V:= AdjointModule( L );;
##  gap> C:=CochainSpace( V, 2 );
##  <vector space of dimension 9 over Rationals>
##  gap> BasisVectors( Basis( C ) );
##  [ <2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>, <2-cochain>, 
##    <2-cochain>, <2-cochain>, <2-cochain>, <2-cochain> ]
##  gap> ExtRepOfObj( last[1] );
##  [ [ [ [ 1, 2 ], 1 ] ], [  ], [  ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CochainSpace", [ IsAlgebraModule, IS_INT ] );

#############################################################################
##
#F  ValueCochain( <c>, <y1>, <y2>,...,<ys> )
##
##  <#GAPDoc Label="ValueCochain">
##  <ManSection>
##  <Func Name="ValueCochain" Arg='c, y1, y2,...,ys'/>
##
##  <Description>
##  Here <A>c</A> is an <C>s</C>-cochain. This function returns the value of
##  <A>c</A> when applied to the <C>s</C> elements <A>y1</A> to <A>ys</A> 
##  (that lie in the Lie algebra acting on the module corresponding to 
##  <A>c</A>). It is also possible to call this function with two arguments: 
##  first <A>c</A> and then the list containing <C><A>y1</A>,...,<A>ys</A></C>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> V:= AdjointModule( L );;
##  gap> C:= CochainSpace( V, 2 );;
##  gap> c:= Basis( C )[1];
##  <2-cochain>
##  gap>  ValueCochain( c, Basis(L)[2], Basis(L)[1] );
##  (-1)*v.1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ValueCochain" );

#############################################################################
##
#F  LieCoboundaryOperator( <c> )
##
##  <#GAPDoc Label="LieCoboundaryOperator">
##  <ManSection>
##  <Func Name="LieCoboundaryOperator" Arg='c'/>
##
##  <Description>
##  This is a function that takes an <C>s</C>-cochain <A>c</A>, 
##  and returns an <C>s+1</C>-cochain. The coboundary operator is applied.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "A", 1, Rationals );;
##  gap> V:= AdjointModule( L );;
##  gap> C:= CochainSpace( V, 2 );;
##  gap> c:= Basis( C )[1];;
##  gap> c1:= LieCoboundaryOperator( c );
##  <3-cochain>
##  gap> c2:= LieCoboundaryOperator( c1 );
##  <4-cochain>
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "LieCoboundaryOperator", "Lie coboundary operator" );

#############################################################################
##
#O  Cocycles( <V>, <s> )
##
##  <#GAPDoc Label="Cocycles">
##  <ManSection>
##  <Oper Name="Cocycles" Arg='V, s' Label="for Lie algebra module"/>
##
##  <Description>
##  is the space of all <A>s</A>-cocycles with respect to the Lie algebra 
##  module <A>V</A>. That is the kernel of the coboundary operator when 
##  restricted to the space of <A>s</A>-cochains.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Cocycles", [ IsAlgebraModule, IS_INT  ] );

#############################################################################
##
#O  Coboundaries( <V>, <s> )
##
##  <#GAPDoc Label="Coboundaries">
##  <ManSection>
##  <Oper Name="Coboundaries" Arg='V, s'/>
##
##  <Description>
##  is the space of all <A>s</A>-coboundaries with respect to the Lie algebra
##  module <A>V</A>. That is the image of the coboundary operator, when applied
##  to the space of <A>s</A>-1-cochains. By definition the space of all
##  0-coboundaries is zero.
##  <Example><![CDATA[
##  gap> T:= EmptySCTable( 3, 0, "antisymmetric" );;
##  gap> SetEntrySCTable( T, 1, 2, [ 1, 3 ] );
##  gap> L:= LieAlgebraByStructureConstants( Rationals, T );;
##  gap> V:= FaithfulModule( L );
##  <left-module over <Lie algebra of dimension 3 over Rationals>>
##  gap> Cocycles( V, 2 );
##  <vector space of dimension 7 over Rationals>
##  gap> Coboundaries( V, 2 );
##  <vector space over Rationals, with 9 generators>
##  gap> Dimension( last );
##  5
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Coboundaries", [ IsAlgebraModule, IS_INT ] );


############################################################################
##
#P  IsWeylGroup( <G> )
##
##  <#GAPDoc Label="IsWeylGroup">
##  <ManSection>
##  <Prop Name="IsWeylGroup" Arg='G'/>
##
##  <Description>
##  A Weyl group is a group generated by reflections, with the attribute
##  <Ref Attr="SparseCartanMatrix"/> set.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsWeylGroup", IsGroup );

############################################################################
##
#A  WeylGroup( <R> )
##
##  <#GAPDoc Label="WeylGroup">
##  <ManSection>
##  <Attr Name="WeylGroup" Arg='R'/>
##
##  <Description>
##  The Weyl group of the root system <A>R</A>. It is generated by the simple
##  reflections. A simple reflection is represented by a matrix, and the
##  result of letting a simple reflection <C>m</C> act on a weight <C>w</C> 
##  is obtained by <C>w*m</C>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "F", 4, Rationals );;
##  gap> R:= RootSystem( L );;
##  gap> W:= WeylGroup( R );
##  <matrix group with 4 generators>
##  gap> IsWeylGroup( W );
##  true
##  gap> SparseCartanMatrix( W );
##  [ [ [ 1, 2 ], [ 3, -1 ] ], [ [ 2, 2 ], [ 4, -1 ] ], 
##    [ [ 1, -1 ], [ 3, 2 ], [ 4, -1 ] ], 
##    [ [ 2, -1 ], [ 3, -2 ], [ 4, 2 ] ] ]
##  gap> g:= GeneratorsOfGroup( W );;
##  gap> [ 1, 1, 1, 1 ]*g[2];
##  [ 1, -1, 1, 2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "WeylGroup", IsRootSystem );

############################################################################
##
#A  SparseCartanMatrix( <W> )
##
##  <#GAPDoc Label="SparseCartanMatrix">
##  <ManSection>
##  <Attr Name="SparseCartanMatrix" Arg='W'/>
##
##  <Description>
##  This is a sparse form of the Cartan matrix of the corresponding root 
##  system. If we denote the Cartan matrix by <C>C</C>, then the sparse 
##  Cartan matrix of <A>W</A> is a list (of length equal to the length of 
##  the Cartan matrix), where the <C>i</C>-th entry is a list consisting 
##  of elements <C>[ j, C[i][j] ]</C>, where <C>j</C> is such that
##  <C>C[i][j]</C> is non-zero.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SparseCartanMatrix", IsWeylGroup );

############################################################################
##
#O  ApplySimpleReflection( <SC>, <i>, <wt> )
##
##  <#GAPDoc Label="ApplySimpleReflection">
##  <ManSection>
##  <Oper Name="ApplySimpleReflection" Arg='SC, i, wt'/>
##
##  <Description>
##  Here <A>SC</A> is the sparse Cartan matrix of a Weyl group. This
##  function applies the <A>i</A>-th simple reflection to the weight
##  <A>wt</A>, thus changing <A>wt</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "F", 4, Rationals );;
##  gap> W:= WeylGroup( RootSystem( L ) );;
##  gap> C:= SparseCartanMatrix( W );;
##  gap> w:= [ 1, 1, 1, 1 ];;
##  gap> ApplySimpleReflection( C, 2, w );
##  gap> w;
##  [ 1, -1, 1, 2 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ApplySimpleReflection", [ IsList, IS_INT, IsList ] );

############################################################################
##
#A  LongestWeylWordPerm( <W> )
##
##  <#GAPDoc Label="LongestWeylWordPerm">
##  <ManSection>
##  <Attr Name="LongestWeylWordPerm" Arg='W'/>
##
##  <Description>
##  Let <M>g_0</M> be the longest element in the Weyl group <A>W</A>,
##  and let <M>\{ \alpha_1, \ldots, \alpha_l \}</M> be a simple system 
##  of the corresponding root system.
##  Then <M>g_0</M> maps <M>\alpha_i</M> to <M>-\alpha_{{\sigma(i)}}</M>,
##  where <M>\sigma</M> is a permutation of <M>(1, \ldots, l)</M>.
##  This function returns that permutation.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "E", 6, Rationals );;
##  gap> W:= WeylGroup( RootSystem( L ) );;
##  gap> LongestWeylWordPerm( W );
##  (1,6)(3,5)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LongestWeylWordPerm", IsWeylGroup );

############################################################################
##
#O  ConjugateDominantWeight( <W>, <wt> )
#O  ConjugateDominantWeightWithWord( <W>, <wt> )
##
##  <#GAPDoc Label="ConjugateDominantWeight">
##  <ManSection>
##  <Oper Name="ConjugateDominantWeight" Arg='W, wt'/>
##  <Oper Name="ConjugateDominantWeightWithWord" Arg='W, wt'/>
##
##  <Description>
##  Here <A>W</A> is a Weyl group and <A>wt</A> a weight (i.e., a list of 
##  integers). <Ref Oper="ConjugateDominantWeight"/> returns the unique 
##  dominant weight conjugate to <A>wt</A> under <A>W</A>.
##  <P/>
##  <Ref Oper="ConjugateDominantWeightWithWord"/> returns a list of two 
##  elements. The first of these is the dominant weight conjugate to <A>wt</A>.
##  The second element is a list of indices of simple reflections that have to
##  be applied to <A>wt</A> in order to get the dominant weight conjugate to it.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "E", 6, Rationals );;
##  gap> W:= WeylGroup( RootSystem( L ) );;
##  gap> C:= SparseCartanMatrix( W );;
##  gap> w:= [ 1, -1, 2, -2, 3, -3 ];;
##  gap> ConjugateDominantWeight( W, w );
##  [ 2, 1, 0, 0, 0, 0 ]
##  gap> c:= ConjugateDominantWeightWithWord( W, w );
##  [ [ 2, 1, 0, 0, 0, 0 ], [ 2, 4, 2, 3, 6, 5, 4, 2, 3, 1 ] ]
##  gap> for i in [1..Length(c[2])] do
##  > ApplySimpleReflection( C, c[2][i], w );
##  > od;
##  gap> w;
##  [ 2, 1, 0, 0, 0, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ConjugateDominantWeight", [ IsWeylGroup, IsList ] );
DeclareOperation( "ConjugateDominantWeightWithWord", [ IsWeylGroup, IsList ]);


############################################################################
##
#O  WeylOrbitIterator( <W>, <wt> )
##
##  <#GAPDoc Label="WeylOrbitIterator">
##  <ManSection>
##  <Oper Name="WeylOrbitIterator" Arg='W, wt'/>
##
##  <Description>
##  Returns an iterator for the orbit of the weight <A>wt</A> under the
##  action of the Weyl group <A>W</A>.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "E", 6, Rationals );;
##  gap> W:= WeylGroup( RootSystem( L ) );;
##  gap> orb:= WeylOrbitIterator( W, [ 1, 1, 1, 1, 1, 1 ] );
##  <iterator>
##  gap> NextIterator( orb );
##  [ 1, 1, 1, 1, 1, 1 ]
##  gap> NextIterator( orb );
##  [ -1, -1, -1, -1, -1, -1 ]
##  gap> orb:= WeylOrbitIterator( W, [ 1, 1, 1, 1, 1, 1 ] );
##  <iterator>
##  gap> k:= 0;
##  0
##  gap> while not IsDoneIterator( orb ) do
##  > w:= NextIterator( orb ); k:= k+1;
##  > od;
##  gap> k;  # this is the size of the Weyl group of E6
##  51840
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "WeylOrbitIterator", [ IsWeylGroup, IsList ] );

############################################################################
##
#A  PositiveRootsAsWeights( <R> )
##
##  <ManSection>
##  <Attr Name="PositiveRootsAsWeights" Arg='R'/>
##
##  <Description>
##  Returns the list of positive roots of <A>R</A>, represented in the basis
##  of fundamental weights.
##  </Description>
##  </ManSection>
##
DeclareAttribute( "PositiveRootsAsWeights", IsRootSystem );

############################################################################
##
#O  DominantWeights( <R>, <maxw> )
##
##  <#GAPDoc Label="DominantWeights">
##  <ManSection>
##  <Oper Name="DominantWeights" Arg='R, maxw'/>
##
##  <Description>
##  Returns a list consisting of two lists. The first of these contains
##  the dominant weights (written on the basis of fundamental weights)
##  of the irreducible highest-weight module, with highest weight <A>maxw</A>, 
##  over the Lie algebra with the root system <A>R</A>.
##  The <M>i</M>-th element of the second list is the level of the
##  <M>i</M>-th dominant weight.
##  (Where the level is defined as follows.
##  For a weight <M>\mu</M> we write
##  <M>\mu = \lambda - \sum_i k_i \alpha_i</M>, where
##  the <M>\alpha_i</M> are the simple roots,
##  and <M>\lambda</M> the highest weight.
##  Then the level of <M>\mu</M> is <M>\sum_i k_i</M>.)
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DominantWeights", [ IsRootSystem, IsList ] );


############################################################################
##
#O  DominantCharacter( <L>, <maxw> )
#O  DominantCharacter( <R>, <maxw> )
##
##  <#GAPDoc Label="DominantCharacter">
##  <ManSection>
##  <Oper Name="DominantCharacter" Arg='L, maxw'
##   Label="for a semisimple Lie algebra and a highest weight"/>
##  <Oper Name="DominantCharacter" Arg='R, maxw'
##   Label="for a root system and a highest weight"/>
##
##  <Description>
##  For a highest weight <A>maxw</A> and a semisimple Lie algebra <A>L</A>,
##  this returns the dominant weights of the highest-weight module over
##  <A>L</A>, with highest weight <A>maxw</A>.
##  The output is a list of two lists,
##  the first list contains the dominant weights;
##  the second list contains their multiplicities.
##  <P/>
##  The first argument can also be a root system, in which case 
##  the dominant character of the highest-weight module over the
##  corresponding semisimple Lie algebra is returned. 
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DominantCharacter", [ IsRootSystem, IsList ] );


#############################################################################
##
#O  DecomposeTensorProduct( <L>, <w1>, <w2> )
##
##  <#GAPDoc Label="DecomposeTensorProduct">
##  <ManSection>
##  <Oper Name="DecomposeTensorProduct" Arg='L, w1, w2'/>
##
##  <Description>
##  Here <A>L</A> is a semisimple Lie algebra and <A>w1</A>, <A>w2</A> are
##  dominant weights.
##  Let <M>V_i</M> be the irreducible highest-weight module over <A>L</A>
##  with highest weight <M>w_i</M> for <M>i = 1, 2</M>.
##  Let <M>W = V_1 \otimes V_2</M>.
##  Then in general <M>W</M> is a reducible <A>L</A>-module. Now this function
##  returns a list of two lists. The first of these is the list of highest
##  weights of the irreducible modules occurring in the decomposition of
##  <M>W</M> as a direct sum of irreducible modules. The second list contains
##  the multiplicities of these weights (i.e., the number of copies of
##  the irreducible module with the corresponding highest weight that occur
##  in <M>W</M>). The algorithm uses Klimyk's formula 
##  (see&nbsp;<Cite Key="Klimyk68"/> or <Cite Key="Klimyk66"/> 
##  for the original Russian version).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DecomposeTensorProduct", [ IsLieAlgebra, IsList, IsList ] );


#############################################################################
##
#O  DimensionOfHighestWeightModule( <L>, <w> )
##
##  <#GAPDoc Label="DimensionOfHighestWeightModule">
##  <ManSection>
##  <Oper Name="DimensionOfHighestWeightModule" Arg='L, w'/>
##
##  <Description>
##  Here <A>L</A> is a semisimple Lie algebra, and <A>w</A> a dominant weight.
##  This function returns the dimension of the highest-weight module
##  over <A>L</A> with highest weight <A>w</A>. The algorithm
##  uses Weyl's dimension formula.
##  <Example><![CDATA[
##  gap> L:= SimpleLieAlgebra( "F", 4, Rationals );;
##  gap> R:= RootSystem( L );;
##  gap> DominantWeights( R, [ 1, 1, 0, 0 ] );
##  [ [ [ 1, 1, 0, 0 ], [ 2, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
##        [ 1, 0, 0, 0 ], [ 0, 0, 0, 0 ] ], [ 0, 3, 4, 8, 11, 19 ] ]
##  gap> DominantCharacter( L, [ 1, 1, 0, 0 ] );
##  [ [ [ 1, 1, 0, 0 ], [ 2, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], 
##        [ 1, 0, 0, 0 ], [ 0, 0, 0, 0 ] ], [ 1, 1, 4, 6, 14, 21 ] ]
##  gap> DecomposeTensorProduct( L, [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ] );
##  [ [ [ 1, 0, 1, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 1, 0, 0 ], 
##        [ 2, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 1, 1, 0, 0 ] ], 
##    [ 1, 1, 1, 1, 1, 1, 1 ] ]
##  gap> DimensionOfHighestWeightModule( L, [ 1, 2, 3, 4 ] );
##  79316832731136
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DimensionOfHighestWeightModule", [ IsLieAlgebra, IsList ] );


#############################################################################
##
##  <#GAPDoc Label="[2]{lierep}">
##  Let <M>L</M> be a semisimple Lie algebra over a field of characteristic
##  <M>0</M>, and let <M>R</M> be its root system.
##  For a positive root <M>\alpha</M> we let <M>x_{\alpha}</M> and
##  <M>y_{\alpha}</M> be positive and negative root vectors,
##  respectively, both from a fixed Chevalley basis of <M>L</M>. Furthermore,
##  <M>h_1, \ldots, h_l</M> are the Cartan elements from the same Chevalley
##  basis. Also we set
##  <Display Mode="M">
##  x_{\alpha}^{(n)} = {{x_{\alpha}^n \over n!}},
##  y_{\alpha}^{(n)} = {{y_{\alpha}^n \over n!}} .
##  </Display>
##  Furthermore, let <M>\alpha_1, \ldots, \alpha_s</M> denote the positive
##  roots of <M>R</M>.
##  For multi-indices <M>N = (n_1, \ldots, n_s)</M>,
##  <M>M = (m_1, \ldots, m_s)</M>
##  and <M>K = (k_1, \ldots, k_s)</M> (where <M>n_i, m_i, k_i \geq 0</M>) set
##  <Table Align="lcl">
##  <Row>
##    <Item><M>x^N</M></Item>
##    <Item>=</Item>
##    <Item><M>x_{{\alpha_1}}^{(n_1)} \cdots x_{{\alpha_s}}^{(n_s)}</M>,</Item>
##  </Row>
##  <Row>
##    <Item><M>y^M</M></Item>
##    <Item>=</Item>
##    <Item><M>y_{{\alpha_1}}^{(m_1)} \cdots y_{{\alpha_s}}^{(m_s)}</M>,</Item>
##  </Row>
##  <Row>
##    <Item><M>h^K</M></Item>
##    <Item>=</Item>
##    <Item><M>{{h_1 \choose k_1}} \cdots {{h_l \choose k_l}}</M></Item>
##  </Row>
##  </Table>
##  Then by a theorem of Kostant, the <M>x_{\alpha}^{(n)}</M> and
##  <M>y_{\alpha}^{(n)}</M> generate a subring of the universal enveloping algebra
##  <M>U(L)</M> spanned (as a free <M>Z</M>-module) by the elements
##  <Display Mode="M">
##  y^M h^K x^N
##  </Display>
##  (see, e.g., <Cite Key="Hum72"/> or <Cite Key="Hum78" Where="Section 26"/>)
##  So by the Poincare-Birkhoff-Witt theorem
##  this subring is a lattice in <M>U(L)</M>. Furthermore, this lattice is
##  invariant under the <M>x_{\alpha}^{(n)}</M> and <M>y_{\alpha}^{(n)}</M>.
##  Therefore, it is called an admissible lattice in <M>U(L)</M>.
##  <P/>
##  The next functions enable us to construct the generators of such an
##  admissible lattice.
##  <#/GAPDoc>
##


##############################################################################
##
#C  IsUEALatticeElement( <obj> )
#C  IsUEALatticeElementCollection( <obj> )
#C  IsUEALatticeElementFamily( <fam> )
##
##  <#GAPDoc Label="IsUEALatticeElement">
##  <ManSection>
##  <Filt Name="IsUEALatticeElement" Arg='obj' Type='Category'/>
##  <Filt Name="IsUEALatticeElementCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsUEALatticeElementFamily" Arg='fam' Type='Category'/>
##
##  <Description>
##  is the category of elements of an admissible lattice in the universal
##  enveloping algebra of a semisimple Lie algebra <C>L</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsUEALatticeElement", IsVector and IsRingElement and
                     IsMultiplicativeElementWithOne );
DeclareCategoryCollections( "IsUEALatticeElement" );
DeclareCategoryFamily( "IsUEALatticeElement" );


##############################################################################
##
#A  LatticeGeneratorsInUEA( <L> )
##
##  <#GAPDoc Label="LatticeGeneratorsInUEA">
##  <ManSection>
##  <Attr Name="LatticeGeneratorsInUEA" Arg='L'/>
##
##  <Description>
##  Here <A>L</A> must be a semisimple Lie algebra of characteristic <M>0</M>.
##  This function returns a list of generators of an admissible lattice
##  in the universal enveloping algebra of <A>L</A>, relative to the 
##  Chevalley basis contained in <C>ChevalleyBasis( <A>L</A> )</C>
##  (see&nbsp;<Ref Attr="ChevalleyBasis"/>). First are listed the negative 
##  root vectors (denoted by <M>y_1, \ldots, y_s</M>),
##  then the positive root vectors (denoted by <M>x_1, \ldots, x_s</M>).
##  At the end of the list there are the Cartan elements. They are printed as
##  <C>( hi/1 )</C>, which means
##  <Display Mode="M">
##  {{h_i \choose 1}}.
##  </Display>
##  In general the printed form <C>( hi/ k )</C> means 
##  <Display Mode="M">
##  {{h_i \choose k}}.
##  </Display>
##  <P/>
##  Also <M>y_i^{(m)}</M> is printed as <C>yi^(m)</C>, which means that entering
##  <C>yi^m</C> at the &GAP; prompt results in the output <C>m!*yi^(m)</C>.
##  <P/>
##  Products of lattice generators are collected using the following order:
##  first come the <M>y_i^{(m_i)}</M>
##  (in the same order as the positive roots),
##  then the <M>{h_i \choose k_i}</M>,
##  and then the <M>x_i^{(n_i)}</M>
##  (in the same order as the positive roots).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "LatticeGeneratorsInUEA", IsLieAlgebra );

##############################################################################
##
#F  CollectUEALatticeElement( <noPosR>, <BH>, <f>, <vars>, <Rvecs>, <RT>,
##                                                          <posR>, <lst> )
##
##  <ManSection>
##  <Func Name="CollectUEALatticeElement" Arg='noPosR, BH, f, vars, Rvecs, RT, posR, lst'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "CollectUEALatticeElement" );


##############################################################################
##
#C  IsWeightRepElement( <obj> )
#C  IsWeightRepElementCollection( <obj> )
#C  IsWeightRepElementFamily( <fam> )
##
##  <#GAPDoc Label="IsWeightRepElement">
##  <ManSection>
##  <Filt Name="IsWeightRepElement" Arg='obj' Type='Category'/>
##  <Filt Name="IsWeightRepElementCollection" Arg='obj' Type='Category'/>
##  <Filt Name="IsWeightRepElementFamily" Arg='fam' Type='Category'/>
##
##  <Description>
##  Is a category of vectors, that is used to construct elements of
##  highest-weight modules (by <Ref Oper="HighestWeightModule"/>).
##  <P/>
##  <C>WeightRepElement</C>s are represented by a list of the form
##  <C>[ v1, c1, v2, c2, ....]</C>, where the <C>vi</C> are basis vectors, 
##  and the <C>ci</C> are coefficients. Furthermore a basis vector <C>v</C> 
##  is a weight vector. It is represented by a list of the form 
##  <C>[ k, mon, wt ]</C>, where <C>k</C> is an integer (the basis vectors
##  are numbered from <M>1</M> to <M>\dim V</M>, where <M>V</M> is the highest 
##  weight module), <C>mon</C> is an <C>UEALatticeElement</C> (which means 
##  that the result of applying <C>mon</C> to a highest weight vector is <C>v</C>; 
##  see&nbsp;<Ref Filt="IsUEALatticeElement"/>) and <C>wt</C> is the weight
##  of <C>v</C>. A <C>WeightRepElement</C> is printed as <C>mon*v0</C>, 
##  where <C>v0</C> denotes a fixed highest weight vector.
##  <P/>
##  If <C>v</C> is a <C>WeightRepElement</C>, then <C>ExtRepOfObj( v )</C> 
##  returns the corresponding list, and if <C>list</C> is such a list and 
##  <A>fam</A> a <C>WeightRepElementFamily</C>, then 
##  <C>ObjByExtRep( <A>list</A>, <A>fam</A> )</C> returns the corresponding 
##  <C>WeightRepElement</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareCategory( "IsWeightRepElement", IsVector );
DeclareCategoryCollections( "IsWeightRepElement" );
DeclareCategoryFamily( "IsWeightRepElement" );

##############################################################################
##
#C  IsBasisOfWeightRepElementSpace( <B> )
##
##  <ManSection>
##  <Filt Name="IsBasisOfWeightRepElementSpace" Arg='B' Type='Category'/>
##
##  <Description>
##  A basis that lies in this category is a basis of a space of weight
##  rep elements. If a basis <A>B</A> lies in this category, then it has the
##  record components <C><A>B</A>!.echelonBasis</C> (a list of basis vectors of
##  the same module as where <A>B</A> is a basis of, but in echelon form),
##  <C><A>B</A>!.heads</C> (if <C><A>B</A>!.heads[i] = k</C>, then the number of the first
##  weight vector of <C><A>B</A>!.echelonBasis[i]</C> is <C>k</C>; recall that all weight
##  vectors carry a number), and <C><A>B</A>!.baseChange</C> (if <C><A>B</A>!.baseChange[i]=
##  [ [m1,c1],...,[ms,cs] ]</C> then the <C>i</C>-th element of <C><A>B</A>!.echelonBasis</C>
##  is of the form <M>c1 v_{m1}+\cdots +cs v_{ms}</M>, where the <M>v_j</M> are the
##  basis vectors of <A>B</A>.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsBasisOfWeightRepElementSpace", IsBasis );


#############################################################################
##
#F  HighestWeightModule( <L>, <wt> )
##
##  <#GAPDoc Label="HighestWeightModule">
##  <ManSection>
##  <Func Name="HighestWeightModule" Arg='L, wt'/>
##
##  <Description>
##  returns the highest weight module with highest weight <A>wt</A> of the
##  semisimple Lie algebra <A>L</A> of characteristic <M>0</M>.
##  <P/>
##  Note that the elements of such a module lie in the category
##  <Ref Filt="IsLeftAlgebraModuleElement"/> (and in particular they do not 
##  lie in the category <Ref Filt="IsWeightRepElement"/>). However, if 
##  <C>v</C> is an element of such a module, then <C>ExtRepOfObj( v )</C> 
##  is a <C>WeightRepElement</C>.
##  <P/>
##  Note that for the following examples of this chapter we increase the line
##  length limit from its default value 80 to 81 in order to make some long
##  output expressions fit into the lines.
##  <P/>
##  <Example><![CDATA[
##  gap> K1:= SimpleLieAlgebra( "G", 2, Rationals );;
##  gap> K2:= SimpleLieAlgebra( "B", 2, Rationals );;
##  gap> L:= DirectSumOfAlgebras( K1, K2 );
##  <Lie algebra of dimension 24 over Rationals>
##  gap> V:= HighestWeightModule( L, [ 0, 1, 1, 1 ] );
##  <224-dimensional left-module over <Lie algebra of dimension 
##  24 over Rationals>>
##  gap> vv:= GeneratorsOfLeftModule( V );;
##  gap> vv[100];
##  y5*y7*y10*v0
##  gap> e:= ExtRepOfObj( vv[100] );
##  y5*y7*y10*v0
##  gap> ExtRepOfObj( e );
##  [ [ 100, y5*y7*y10, [ -3, 2, -1, 1 ] ], 1 ]
##  gap> Basis(L)[17]^vv[100];
##  -1*y5*y7*y8*v0-1*y5*y9*v0
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "HighestWeightModule", [ IsAlgebra, IsList ] );

#############################################################################
##
#F  LeadingUEALatticeMonomial( <novar>, <f> )
##
##  <ManSection>
##  <Func Name="LeadingUEALatticeMonomial" Arg='novar, f'/>
##
##  <Description>
##  Here <A>f</A> is an <C>UEALatticeElement</C>, and <A>novar</A> the number of generators
##  of the algebra containing <A>f</A>. This function returns a list of four
##  elements. The first element is the leading monomial of <A>f</A> (as it
##  occurs in the external representation of <A>f</A>). The second element is the
##  leading monomial of <A>f</A> represented as a list of length <A>novar</A>. The
##  i-th entry in this list is the exponent of the i-th generator in
##  the leading monomial. The third and fourth elements are, respectively,
##  the coefficient of the leading monomial and the index at which it
##  occurs in <A>f</A> (so that <A>f</A>!.[1][ind] is equal to the first element of
##  the output).
##  </Description>
##  </ManSection>
##
DeclareOperation( "LeadingUEALatticeMonomial",
                                   [ IsInt, IsUEALatticeElement ] );

##############################################################################
##
#F  LeftReduceUEALatticeElement( <novar>, <G>, <lms>, <p> )
##
##  <ManSection>
##  <Func Name="LeftReduceUEALatticeElement" Arg='novar, G, lms, p'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "LeftReduceUEALatticeElement" );


##############################################################################
##
#F  ExtendRepresentation( <L>, <newelts>, <I>, <mats> )
##
##  <ManSection>
##  <Func Name="ExtendRepresentation" Arg='L, newelts, I, mats'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "ExtendRepresentation" );


#############################################################################
##
#F  IsCochainsSpace( <V> )
##
##  <ManSection>
##  <Func Name="IsCochainsSpace" Arg='V'/>
##
##  <Description>
##  ...
##  </Description>
##  </ManSection>
##
DeclareHandlingByNiceBasis( "IsCochainsSpace",
    "for free left modules of cochains" );


#############################################################################
##
#V  InfoSearchTable
##
##  <ManSection>
##  <InfoClass Name="InfoSearchTable"/>
##
##  <Description>
##  is the info class for methods and functions applicable to search tables.
##  (see&nbsp;<Ref Sect="Info Functions"/>).
##  </Description>
##  </ManSection>
##
DeclareInfoClass( "InfoSearchTable" );

#############################################################################
##
#C  IsSearchTable( <obj> )
##
##  <ManSection>
##  <Filt Name="IsSearchTable" Arg='obj' Type='Category'/>
##
##  <Description>
##  A search table stores elements and provides methods for efficient
##  search of particular kinds of elements.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsSearchTable", IsObject );


#############################################################################
##
#O  Search( <T>, <key> )
##
##  <ManSection>
##  <Oper Name="Search" Arg='T, key'/>
##
##  <Description>
##  is the operation for finding element labelled with <A>key</A> in table <A>T</A>.
##  The return value depends on the specific implementation of the search
##  table, but this will always return <K>fail</K> if an element in <M>T</M> does not
##  satisfy the necessary criterion for <A>key</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "Search", [ IsSearchTable, IsObject ] );

#############################################################################
##
#O  Insert( <T>, <key>, <data> )
##
##  <ManSection>
##  <Oper Name="Insert" Arg='T, key, data'/>
##
##  <Description>
##  is the operation for inserting data into the search table. 
##  The data <A>data</A> is stored in the table under the key <A>key</A>.
##  The operation returns <K>true</K> if the insertion occurs, and
##  <K>false</K> otherwise.
##  </Description>
##  </ManSection>
##
DeclareOperation( "Insert", [ IsSearchTable, IsObject, IsObject ] );


#############################################################################
##
#C  IsVectorSearchTable( <obj> )
##
##  <ManSection>
##  <Filt Name="IsVectorSearchTable" Arg='obj' Type='Category'/>
##
##  <Description>
##  is a search table encoding integer vectors representing a 
##  variable/exponent pair for monomials in a commutative polynomial ring
##  or in a semisimple Lie algebra given by a PBW basis.
##  </Description>
##  </ManSection>
##
DeclareCategory( "IsVectorSearchTable", IsSearchTable );


#############################################################################
##
#F  VectorSearchTable( )
#F  VectorSearchTable( <keys>, <data> )
##
##  <ManSection>
##  <Func Name="VectorSearchTable" Arg=''/>
##  <Func Name="VectorSearchTable" Arg='keys, data'/>
##
##  <Description>
##  construct an empty search table or a search table containing <A>data</A> 
##  keyed by <A>keys</A>. The list <A>keys</A> must contain integer lists which are
##  interpreted as exponents for variables. 
##  <P/>
##  The lists <A>keys</A> and <A>data</A> must be the same length as well.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "VectorSearchTable" );


#############################################################################
##
#E