/usr/share/gap/lib/magma.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 | #############################################################################
##
#W magma.gd GAP library Thomas Breuer
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file declares the categories of magmas, their properties,
## attributes, and operations. Note that the meaning of generators for the
## three categories magma, magma-with-one, and magma-with-inverses is
## different.
##
#############################################################################
##
#C IsMagma( <obj> ) . . . . . . . . . . . test whether an object is a magma
##
## <#GAPDoc Label="IsMagma">
## <ManSection>
## <Filt Name="IsMagma" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>magma</E> in &GAP; is a domain <M>M</M> with
## (not necessarily associative) multiplication
## <C>*</C><M>: M \times M \rightarrow M</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMagma", IsDomain and IsMultiplicativeElementCollection );
#############################################################################
##
#C IsMagmaWithOne( <obj> ) . . . test whether an object is a magma-with-one
##
## <#GAPDoc Label="IsMagmaWithOne">
## <ManSection>
## <Filt Name="IsMagmaWithOne" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>magma-with-one</E> in &GAP; is a magma <M>M</M> with an operation
## <C>^0</C> (or <Ref Func="One"/>) that yields the identity of <M>M</M>.
## <P/>
## So a magma-with-one <M>M</M> does always contain a unique
## multiplicatively neutral element <M>e</M>, i.e.,
## <M>e</M><C> * </C><M>m = m = m</M><C> * </C><M>e</M> holds
## for all <M>m \in M</M>
## (see <Ref Func="MultiplicativeNeutralElement"/>).
## This element <M>e</M> can be computed with the operation
## <Ref Oper="One"/> as <C>One( </C><M>M</M><C> )</C>,
## and <M>e</M> is also equal to <C>One( </C><M>m</M><C> )</C> and to
## <M>m</M><C>^0</C> for each element <M>m \in M</M>.
## <P/>
## <E>Note</E> that a magma may contain a multiplicatively neutral element
## but <E>not</E> an identity (see <Ref Oper="One"/>),
## and a magma containing an identity may <E>not</E> lie in the category
## <Ref Func="IsMagmaWithOne"/>
## (see Section <Ref Sect="Domain Categories"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMagmaWithOne",
IsMagma and IsMultiplicativeElementWithOneCollection );
#############################################################################
##
#C IsMagmaWithInversesIfNonzero( <obj> )
##
## <#GAPDoc Label="IsMagmaWithInversesIfNonzero">
## <ManSection>
## <Filt Name="IsMagmaWithInversesIfNonzero" Arg='obj' Type='Category'/>
##
## <Description>
## An object in this &GAP; category is a magma-with-one <M>M</M>
## with an operation
## <C>^-1</C><M>: M \setminus Z \rightarrow M \setminus Z</M>
## that maps each element <M>m</M> of <M>M \setminus Z</M> to its inverse
## <M>m</M><C>^-1</C>
## (or <C>Inverse( </C><M>m</M><C> )</C>, see <Ref Attr="Inverse"/>),
## where <M>Z</M> is either empty or consists exactly of one element of
## <M>M</M>.
## <P/>
## This category was introduced mainly to describe division rings,
## since the nonzero elements in a division ring form a group;
## So an object <M>M</M> in <Ref Func="IsMagmaWithInversesIfNonzero"/>
## will usually have both a multiplicative and an additive structure
## (see <Ref Chap="Additive Magmas"/>),
## and the set <M>Z</M>, if it is nonempty, contains exactly the zero
## element (see <Ref Func="Zero"/>) of <M>M</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMagmaWithInversesIfNonzero",
IsMagmaWithOne and IsMultiplicativeElementWithOneCollection );
#############################################################################
##
#C IsMagmaWithInverses( <obj> )
##
## <#GAPDoc Label="IsMagmaWithInverses">
## <ManSection>
## <Filt Name="IsMagmaWithInverses" Arg='obj' Type='Category'/>
##
## <Description>
## A <E>magma-with-inverses</E> in &GAP; is a magma-with-one <M>M</M> with
## an operation <C>^-1</C><M>: M \rightarrow M</M> that maps each element
## <M>m</M> of <M>M</M> to its inverse <M>m</M><C>^-1</C>
## (or <C>Inverse( </C><M>m</M><C> )</C>, see <Ref Func="Inverse"/>).
## <P/>
## Note that not every trivial magma is a magma-with-one,
## but every trivial magma-with-one is a magma-with-inverses.
## This holds also if the identity of the magma-with-one is a zero element.
## So a magma-with-inverses-if-nonzero can be a magma-with-inverses
## if either it contains no zero element or consists of a zero element that
## has itself as zero-th power.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareCategory( "IsMagmaWithInverses",
IsMagmaWithInversesIfNonzero
and IsMultiplicativeElementWithInverseCollection );
InstallTrueMethod( IsMagmaWithInverses,
IsFiniteOrderElementCollection and IsMagma );
InstallTrueMethod( IsMagmaWithInverses, IsMagmaWithOne and IsTrivial );
#############################################################################
##
#a One( <D> )
##
## (see the description in `arith.gd')
##
DeclareAttribute( "One",
IsDomain and IsMultiplicativeElementWithOneCollection );
#############################################################################
##
#F Magma( [<Fam>, ]<gens> )
##
## <#GAPDoc Label="Magma">
## <ManSection>
## <Func Name="Magma" Arg='[Fam, ]gens'/>
##
## <Description>
## returns the magma <M>M</M> that is generated by the elements
## in the list <A>gens</A>, that is,
## the closure of <A>gens</A> under multiplication <Ref Func="\*"/>.
## The family <A>Fam</A> of <M>M</M> can be entered as the first argument;
## this is obligatory if <A>gens</A> is empty
## (and hence also <M>M</M> is empty).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Magma" );
#############################################################################
##
#F MagmaWithOne( [<Fam>, ]<gens> )
##
## <#GAPDoc Label="MagmaWithOne">
## <ManSection>
## <Func Name="MagmaWithOne" Arg='[Fam, ]gens'/>
##
## <Description>
## returns the magma-with-one <M>M</M> that is generated by the elements
## in the list <A>gens</A>, that is,
## the closure of <A>gens</A> under multiplication <Ref Func="\*"/> and
## <Ref Func="One"/>.
## The family <A>Fam</A> of <M>M</M> can be entered as first argument;
## this is obligatory if <A>gens</A> is empty
## (and hence <M>M</M> is trivial).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MagmaWithOne" );
#############################################################################
##
#F MagmaWithInverses( [<Fam>, ]<gens> )
##
## <#GAPDoc Label="MagmaWithInverses">
## <ManSection>
## <Func Name="MagmaWithInverses" Arg='[Fam, ]gens'/>
##
## <Description>
## returns the magma-with-inverses <M>M</M> that is generated by the
## elements in the list <A>gens</A>, that is,
## the closure of <A>gens</A> under multiplication <Ref Func="\*"/>,
## <Ref Func="One"/>, and <Ref Func="Inverse"/>.
## The family <A>Fam</A> of <M>M</M> can be entered as first argument;
## this is obligatory if <A>gens</A> is empty
## (and hence <M>M</M> is trivial).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "MagmaWithInverses" );
#############################################################################
##
#O MagmaByGenerators( [<Fam>, ]<gens> )
##
## <#GAPDoc Label="MagmaByGenerators">
## <ManSection>
## <Oper Name="MagmaByGenerators" Arg='[Fam, ]gens'/>
##
## <Description>
## An underlying operation for <Ref Func="Magma"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MagmaByGenerators", [ IsCollection ] );
#############################################################################
##
#O MagmaWithOneByGenerators( [<Fam>, ]<gens> )
##
## <#GAPDoc Label="MagmaWithOneByGenerators">
## <ManSection>
## <Oper Name="MagmaWithOneByGenerators" Arg='[Fam, ]gens'/>
##
## <Description>
## An underlying operation for <Ref Func="MagmaWithOne"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MagmaWithOneByGenerators", [ IsCollection ] );
#############################################################################
##
#O MagmaWithInversesByGenerators( [<Fam>, ]<gens> )
##
## <#GAPDoc Label="MagmaWithInversesByGenerators">
## <ManSection>
## <Oper Name="MagmaWithInversesByGenerators" Arg='[Fam, ]gens'/>
##
## <Description>
## An underlying operation for <Ref Func="MagmaWithInverses"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "MagmaWithInversesByGenerators", [ IsCollection ] );
#############################################################################
##
#F Submagma( <D>, <gens> )
#F SubmagmaNC( <D>, <gens> )
##
## <#GAPDoc Label="Submagma">
## <ManSection>
## <Func Name="Submagma" Arg='D, gens'/>
## <Func Name="SubmagmaNC" Arg='D, gens'/>
##
## <Description>
## <Ref Func="Submagma"/> returns the magma generated by
## the elements in the list <A>gens</A>, with parent the domain <A>D</A>.
## <Ref Func="SubmagmaNC"/> does the same, except that it is not checked
## whether the elements of <A>gens</A> lie in <A>D</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "Submagma" );
DeclareGlobalFunction( "SubmagmaNC" );
#############################################################################
##
#F SubmagmaWithOne( <D>, <gens> )
#F SubmagmaWithOneNC( <D>, <gens> )
##
## <#GAPDoc Label="SubmagmaWithOne">
## <ManSection>
## <Func Name="SubmagmaWithOne" Arg='D, gens'/>
## <Func Name="SubmagmaWithOneNC" Arg='D, gens'/>
##
## <Description>
## <Ref Func="SubmagmaWithOne"/> returns the magma-with-one generated by
## the elements in the list <A>gens</A>, with parent the domain <A>D</A>.
## <Ref Func="SubmagmaWithOneNC"/> does the same, except that it is not
## checked whether the elements of <A>gens</A> lie in <A>D</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SubmagmaWithOne" );
DeclareGlobalFunction( "SubmagmaWithOneNC" );
#############################################################################
##
#F SubmagmaWithInverses( <D>, <gens> )
#F SubmagmaWithInversesNC( <D>, <gens> )
##
## <#GAPDoc Label="SubmagmaWithInverses">
## <ManSection>
## <Func Name="SubmagmaWithInverses" Arg='D, gens'/>
## <Func Name="SubmagmaWithInversesNC" Arg='D, gens'/>
##
## <Description>
## <Ref Func="SubmagmaWithInverses"/> returns the magma-with-inverses
## generated by the elements in the list <A>gens</A>,
## with parent the domain <A>D</A>.
## <Ref Func="SubmagmaWithInversesNC"/> does the same,
## except that it is not checked whether the elements of <A>gens</A>
## lie in <A>D</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "SubmagmaWithInverses" );
DeclareGlobalFunction( "SubmagmaWithInversesNC" );
#############################################################################
##
#A AsMagma( <C> ) . . . . . . . . . . . . . . view a collection as a magma
##
## <#GAPDoc Label="AsMagma">
## <ManSection>
## <Attr Name="AsMagma" Arg='C'/>
##
## <Description>
## For a collection <A>C</A> whose elements form a magma,
## <Ref Func="AsMagma"/> returns this magma.
## Otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AsMagma", IsCollection );
#############################################################################
##
#O AsSubmagma( <D>, <C> ) . . . view a collection as a submagma of a domain
##
## <#GAPDoc Label="AsSubmagma">
## <ManSection>
## <Oper Name="AsSubmagma" Arg='D, C'/>
##
## <Description>
## Let <A>D</A> be a domain and <A>C</A> a collection.
## If <A>C</A> is a subset of <A>D</A> that forms a magma then
## <Ref Func="AsSubmagma"/> returns this magma, with parent <A>D</A>.
## Otherwise <K>fail</K> is returned.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "AsSubmagma", [ IsDomain, IsCollection ] );
#############################################################################
##
#A GeneratorsOfMagma( <M> )
##
## <#GAPDoc Label="GeneratorsOfMagma">
## <ManSection>
## <Attr Name="GeneratorsOfMagma" Arg='M'/>
##
## <Description>
## is a list <A>gens</A> of elements of the magma <A>M</A> that generates
## <A>M</A> as a magma, that is,
## the closure of <A>gens</A> under multiplication <Ref Func="\*"/>
## is <A>M</A>.
## <P/>
## For a free magma, each generator can also be accessed using
## the <C>.</C> operator (see <Ref Attr="GeneratorsOfDomain"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfMagma", IsMagma );
#############################################################################
##
#A GeneratorsOfMagmaWithOne( <M> )
##
## <#GAPDoc Label="GeneratorsOfMagmaWithOne">
## <ManSection>
## <Attr Name="GeneratorsOfMagmaWithOne" Arg='M'/>
##
## <Description>
## is a list <A>gens</A> of elements of the magma-with-one <A>M</A> that
## generates <A>M</A> as a magma-with-one,
## that is, the closure of <A>gens</A> under multiplication <Ref Func="\*"/>
## and <Ref Func="One"/> is <A>M</A>.
## <P/>
## For a free magma with one, each generator can also be accessed using
## the <C>.</C> operator (see <Ref Attr="GeneratorsOfDomain"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfMagmaWithOne", IsMagmaWithOne );
#############################################################################
##
#A GeneratorsOfMagmaWithInverses( <M> )
##
## <#GAPDoc Label="GeneratorsOfMagmaWithInverses">
## <ManSection>
## <Attr Name="GeneratorsOfMagmaWithInverses" Arg='M'/>
##
## <Description>
## is a list <A>gens</A> of elements of the magma-with-inverses <A>M</A>
## that generates <A>M</A> as a magma-with-inverses,
## that is, the closure of <A>gens</A> under multiplication <Ref Func="\*"/>
## and taking inverses (see <Ref Func="Inverse"/>) is <A>M</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "GeneratorsOfMagmaWithInverses", IsMagmaWithInverses );
#############################################################################
##
#P IsGeneratorsOfMagmaWithInverses( <gens> )
##
## <ManSection>
## <Prop Name="IsGeneratorsOfMagmaWithInverses" Arg='gens'/>
##
## <Description>
## <Ref Func="IsGeneratorsOfMagmaWithInverses"/> returns <K>true</K> if the
## elements in the list or collection <A>gens</A> generate a magma with
## inverses, and <K>false</K> otherwise.
## </Description>
## </ManSection>
##
DeclareProperty( "IsGeneratorsOfMagmaWithInverses", IsListOrCollection );
#############################################################################
##
#A TrivialSubmagmaWithOne( <M> ) . . . . . . . . . . . for a magma-with-one
##
## <#GAPDoc Label="TrivialSubmagmaWithOne">
## <ManSection>
## <Attr Name="TrivialSubmagmaWithOne" Arg='M'/>
##
## <Description>
## is the magma-with-one that has the identity of the magma-with-one
## <A>M</A> as only element.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "TrivialSubmagmaWithOne", IsMagmaWithOne );
#############################################################################
##
#P IsAssociative( <M> ) . . . . . . . . test whether a magma is associative
##
## <#GAPDoc Label="IsAssociative">
## <ManSection>
## <Prop Name="IsAssociative" Arg='M'/>
##
## <Description>
## A magma <A>M</A> is <E>associative</E> if for all elements
## <M>a, b, c \in</M> <A>M</A> the equality
## <M>(a</M><C> * </C><M>b)</M><C> * </C><M>c =
## a</M><C> * </C><M>(b</M><C> * </C><M>c)</M> holds.
## <P/>
## An associative magma is called a <E>semigroup</E>
## (see <Ref Chap="Semigroups"/>),
## an associative magma-with-one is called a <E>monoid</E>
## (see <Ref Chap="Semigroups"/>),
## and an associative magma-with-inverses is called a <E>group</E>
## (see <Ref Chap="Groups"/>).
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsAssociative", IsMagma );
InstallTrueMethod( IsAssociative,
IsAssociativeElementCollection and IsMagma );
InstallSubsetMaintenance( IsAssociative,
IsMagma and IsAssociative, IsMagma );
InstallFactorMaintenance( IsAssociative,
IsMagma and IsAssociative, IsObject, IsMagma );
InstallTrueMethod( IsAssociative, IsMagma and IsTrivial );
#############################################################################
##
#P IsCommutative( <M> ) . . . . . . . . test whether a magma is commutative
#P IsAbelian( <M> )
##
## <#GAPDoc Label="IsCommutative">
## <ManSection>
## <Prop Name="IsCommutative" Arg='M'/>
## <Prop Name="IsAbelian" Arg='M'/>
##
## <Description>
## A magma <A>M</A> is <E>commutative</E> if for all elements
## <M>a, b \in</M> <A>M</A> the
## equality <M>a</M><C> * </C><M>b = b</M><C> * </C><M>a</M> holds.
## <Ref Prop="IsAbelian"/> is a synonym of <Ref Prop="IsCommutative"/>.
## <P/>
## Note that the commutativity of the <E>addition</E> <Ref Func="\+"/> in an
## additive structure can be tested with
## <Ref Func="IsAdditivelyCommutative"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareProperty( "IsCommutative", IsMagma );
DeclareSynonymAttr( "IsAbelian", IsCommutative );
InstallTrueMethod( IsCommutative,
IsCommutativeElementCollection and IsMagma );
InstallSubsetMaintenance( IsCommutative,
IsMagma and IsCommutative, IsMagma );
InstallFactorMaintenance( IsCommutative,
IsMagma and IsCommutative, IsObject, IsMagma );
InstallTrueMethod( IsCommutative, IsMagma and IsTrivial );
#############################################################################
##
#A MultiplicativeNeutralElement( <M> )
##
## <#GAPDoc Label="MultiplicativeNeutralElement">
## <ManSection>
## <Attr Name="MultiplicativeNeutralElement" Arg='M'/>
##
## <Description>
## returns the element <M>e</M> in the magma <A>M</A> with the property that
## <M>e</M><C> * </C><M>m = m = m</M><C> * </C><M>e</M> holds for all
## <M>m \in</M> <A>M</A>,
## if such an element exists.
## Otherwise <K>fail</K> is returned.
## <P/>
## A magma that is not a magma-with-one can have a multiplicative neutral
## element <M>e</M>;
## in this case, <M>e</M> <E>cannot</E> be obtained as
## <C>One( <A>M</A> )</C>, see <Ref Func="One"/>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "MultiplicativeNeutralElement", IsMagma );
#############################################################################
##
#A Centre( <M> ) . . . . . . . . . . . . . . . . . . . . . centre of a magma
#A Center( <M> ) . . . . . . . . . . . . . . . . . . . . . centre of a magma
##
## <#GAPDoc Label="Centre">
## <ManSection>
## <Attr Name="Centre" Arg='M'/>
## <Attr Name="Center" Arg='M'/>
##
## <Description>
## <Ref Func="Centre"/> returns the <E>centre</E> of the magma <A>M</A>,
## i.e., the domain of those elements <A>m</A> <M>\in</M> <A>M</A>
## that commute and associate with all elements of <A>M</A>.
## That is, the set
## <M>\{ m \in M; \forall a, b \in M: ma = am,
## (ma)b = m(ab), (am)b = a(mb), (ab)m = a(bm) \}</M>.
## <P/>
## <Ref Func="Center"/> is just a synonym for <Ref Func="Centre"/>.
## <P/>
## For associative magmas we have that
## <C>Centre( <A>M</A> ) = Centralizer( <A>M</A>, <A>M</A> )</C>,
## see <Ref Func="Centralizer" Label="for a magma and a submagma"/>.
## <P/>
## The centre of a magma is always commutative
## (see <Ref Func="IsCommutative"/>).
## (When one installs a new method for <Ref Func="Centre"/>,
## one should set the <Ref Func="IsCommutative"/> value of the result to
## <K>true</K>, in order to make this information available.)
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Centre", IsMagma );
DeclareSynonymAttr( "Center", Centre );
#############################################################################
##
#A Idempotents( <M> )
##
## <#GAPDoc Label="Idempotents">
## <ManSection>
## <Attr Name="Idempotents" Arg='M'/>
##
## <Description>
## The set of elements of <A>M</A> which are their own squares.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "Idempotents", IsMagma );
#############################################################################
##
#O IsCentral( <M>, <obj> ) . . test whether an object is central in a magma
##
## <#GAPDoc Label="IsCentral">
## <ManSection>
## <Oper Name="IsCentral" Arg='M, obj'/>
##
## <Description>
## <Ref Func="IsCentral"/> returns <K>true</K> if the object <A>obj</A>,
## which must either be an element or a magma,
## commutes with all elements in the magma <A>M</A>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "IsCentral", [ IsMagma, IsObject ] );
#############################################################################
##
#O Centralizer( <M>, <elm> )
#O Centralizer( <M>, <S> )
#A Centralizer( <class> )
##
## <#GAPDoc Label="Centralizer">
## <ManSection>
## <Oper Name="Centralizer" Arg='M, elm'
## Label="for a magma and an element"/>
## <Oper Name="Centralizer" Arg='M, S'
## Label="for a magma and a submagma"/>
## <Attr Name="Centralizer" Arg='class'
## Label="for a class of objects in a magma"/>
##
## <Description>
## <Index>centraliser</Index><Index>center</Index>
## For an element <A>elm</A> of the magma <A>M</A> this operation returns
## the <E>centralizer</E> of <A>elm</A>.
## This is the domain of those elements <A>m</A> <M>\in</M> <A>M</A>
## that commute with <A>elm</A>.
## <P/>
## For a submagma <A>S</A> it returns the domain of those elements that
## commute with <E>all</E> elements <A>s</A> of <A>S</A>.
## <P/>
## If <A>class</A> is a class of objects of a magma (this magma then is
## stored as the <C>ActingDomain</C> of <A>class</A>)
## such as given by <Ref Func="ConjugacyClass"/>,
## <Ref Oper="Centralizer" Label="for a magma and an element"/> returns the
## centralizer of <C>Representative(<A>class</A>)</C> (which is a slight
## abuse of the notation).
## <!-- do we really want this?-->
## <!-- (we may be interested in using the <E>attribute</E> also for conjugacy classes,-->
## <!-- but also the <E>function</E>?)-->
## <Example><![CDATA[
## gap> g:=Group((1,2,3,4),(1,2));;
## gap> Centralizer(g,(1,2,3));
## Group([ (1,2,3) ])
## gap> Centralizer(g,Subgroup(g,[(1,2,3)]));
## Group([ (1,2,3) ])
## gap> Centralizer(g,Subgroup(g,[(1,2,3),(1,2)]));
## Group(())
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
InParentFOA( "Centralizer", IsMagma, IsObject, DeclareAttribute );
#############################################################################
##
#O SquareRoots( <M>, <elm> )
##
## <#GAPDoc Label="SquareRoots">
## <ManSection>
## <Oper Name="SquareRoots" Arg='M, elm'/>
##
## <Description>
## is the proper set of all elements <M>r</M> in the magma <A>M</A>
## such that <M>r * r =</M> <A>elm</A> holds.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SquareRoots", [ IsMagma, IsMultiplicativeElement ] );
#############################################################################
##
#F FreeMagma( <rank>[, <name>] )
#F FreeMagma( <name1>, <name2>, ... )
#F FreeMagma( <names> )
#F FreeMagma( infinity, <name>, <init> )
##
## <#GAPDoc Label="FreeMagma">
## <ManSection>
## <Heading>FreeMagma</Heading>
## <Func Name="FreeMagma" Arg='rank[, name]'
## Label="for given rank"/>
## <Func Name="FreeMagma" Arg='name1, name2, ...'
## Label="for various names"/>
## <Func Name="FreeMagma" Arg='names'
## Label="for a list of names"/>
## <Func Name="FreeMagma" Arg='infinity, name, init'
## Label="for infinitely many generators"/>
##
## <Description>
## Called with a positive integer <A>rank</A>,
## <Ref Func="FreeMagma" Label="for given rank"/> returns
## a free magma on <A>rank</A> generators.
## If the optional argument <A>name</A> is given then the generators are
## printed as <A>name</A><C>1</C>, <A>name</A><C>2</C> etc.,
## that is, each name is the concatenation of the string <A>name</A> and an
## integer from <C>1</C> to <A>range</A>.
## The default for <A>name</A> is the string <C>"m"</C>.
## <P/>
## Called in the second form,
## <Ref Func="FreeMagma" Label="for various names"/> returns
## a free magma on as many generators as arguments, printed as
## <A>name1</A>, <A>name2</A> etc.
## <P/>
## Called in the third form,
## <Ref Func="FreeMagma" Label="for a list of names"/> returns
## a free magma on as many generators as the length of the list
## <A>names</A>, the <M>i</M>-th generator being printed as
## <A>names</A><C>[</C><M>i</M><C>]</C>.
## <P/>
## Called in the fourth form,
## <Ref Func="FreeMagma" Label="for infinitely many generators"/>
## returns a free magma on infinitely many generators, where the first
## generators are printed by the names in the list <A>init</A>,
## and the other generators by <A>name</A> and an appended number.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FreeMagma" );
#############################################################################
##
#F FreeMagmaWithOne( <rank>[, <name>] )
#F FreeMagmaWithOne( <name1>, <name2>, ... )
#F FreeMagmaWithOne( <names> )
#F FreeMagmaWithOne( infinity, <name>, <init> )
##
## <#GAPDoc Label="FreeMagmaWithOne">
## <ManSection>
## <Heading>FreeMagmaWithOne</Heading>
## <Func Name="FreeMagmaWithOne" Arg='rank[, name]'
## Label="for given rank"/>
## <Func Name="FreeMagmaWithOne" Arg='name1, name2, ...'
## Label="for various names"/>
## <Func Name="FreeMagmaWithOne" Arg='names'
## Label="for a list of names"/>
## <Func Name="FreeMagmaWithOne" Arg='infinity, name, init'
## Label="for infinitely many generators"/>
##
## <Description>
## Called with a positive integer <A>rank</A>,
## <Ref Func="FreeMagmaWithOne" Label="for given rank"/> returns
## a free magma-with-one on <A>rank</A> generators.
## If the optional argument <A>name</A> is given then the generators are
## printed as <A>name</A><C>1</C>, <A>name</A><C>2</C> etc.,
## that is, each name is the concatenation of the string <A>name</A> and an
## integer from <C>1</C> to <A>range</A>.
## The default for <A>name</A> is the string <C>"m"</C>.
## <P/>
## Called in the second form,
## <Ref Func="FreeMagmaWithOne" Label="for various names"/> returns
## a free magma-with-one on as many generators as arguments, printed as
## <A>name1</A>, <A>name2</A> etc.
## <P/>
## Called in the third form,
## <Ref Func="FreeMagmaWithOne" Label="for a list of names"/> returns
## a free magma-with-one on as many generators as the length of the list
## <A>names</A>, the <M>i</M>-th generator being printed as
## <A>names</A><C>[</C><M>i</M><C>]</C>.
## <P/>
## Called in the fourth form,
## <Ref Func="FreeMagmaWithOne" Label="for infinitely many generators"/>
## returns a free magma-with-one on infinitely many generators, where the
## first generators are printed by the names in the list <A>init</A>,
## and the other generators by <A>name</A> and an appended number.
## <P/>
## <Example><![CDATA[
## gap> FreeMagma( 3 );
## <free magma on the generators [ x1, x2, x3 ]>
## gap> FreeMagma( "a", "b" );
## <free magma on the generators [ a, b ]>
## gap> FreeMagma( infinity );
## <free magma with infinity generators>
## gap> FreeMagmaWithOne( 3 );
## <free magma-with-one on the generators [ x1, x2, x3 ]>
## gap> FreeMagmaWithOne( "a", "b" );
## <free magma-with-one on the generators [ a, b ]>
## gap> FreeMagmaWithOne( infinity );
## <free magma-with-one with infinity generators>
## ]]></Example>
## <P/>
## Remember that the names of generators used for printing
## do not necessarily distinguish letters of the alphabet;
## so it is possible to create arbitrarily weird
## situations by choosing strange letter names.
## <P/>
## <Example><![CDATA[
## gap> m:= FreeMagma( "x", "x" ); gens:= GeneratorsOfMagma( m );;
## <free magma on the generators [ x, x ]>
## gap> gens[1] = gens[2];
## false
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "FreeMagmaWithOne" );
#############################################################################
##
#F IsCommutativeFromGenerators( <GeneratorsOfStruct> )
##
## <ManSection>
## <Func Name="IsCommutativeFromGenerators" Arg='GeneratorsOfStruct'/>
##
## <Description>
## is a function that takes one domain argument <A>D</A> and checks whether
## <C><A>GeneratorsOfStruct</A>( <A>D</A> )</C> commute.
## </Description>
## </ManSection>
##
BindGlobal( "IsCommutativeFromGenerators", function( GeneratorsStruct )
return function( D )
local gens, # list of generators
i, j; # loop variables
# Test if every element commutes with all the others.
gens:= GeneratorsStruct( D );
for i in [ 2 .. Length( gens ) ] do
for j in [ 1 .. i-1 ] do
if gens[i] * gens[j] <> gens[j] * gens[i] then
return false;
fi;
od;
od;
# All generators commute.
return true;
end;
end );
#############################################################################
##
#F IsCentralFromGenerators( <GeneratorsStruct1>, <GeneratorsStruct2> )
##
## <ManSection>
## <Func Name="IsCentralFromGenerators" Arg='GeneratorsStruct1, GeneratorsStruct2'/>
##
## <Description>
## is a function that takes two domain arguments <A>D1</A>, <A>D2</A> and checks
## whether <C><A>GeneratorsStruct1</A>( <A>D1</A> )</C> and <C><A>GeneratorsStruct2</A>( <A>D2</A> )</C>
## commute.
## </Description>
## </ManSection>
##
BindGlobal( "IsCentralFromGenerators",
function( GeneratorsStruct1, GeneratorsStruct2 )
return function( D1, D2 )
local g1, g2;
for g1 in GeneratorsStruct1( D1 ) do
for g2 in GeneratorsStruct2( D2 ) do
if g1 * g2 <> g2 * g1 then
return false;
fi;
od;
od;
return true;
end;
end );
#############################################################################
##
#A MagmaGeneratorsOfFamily( <Fam> )
##
## <ManSection>
## <Attr Name="MagmaGeneratorsOfFamily" Arg='Fam'/>
##
## <Description>
## For a family <A>Fam</A> of words in a free magma, free magma-with-one,
## free semigroup, free monoid, or free group,
## <C>MagmaGeneratorsOfFamily</C> returns a list of magma generators for the
## free object that contains each element in <A>Fam</A>.
## </Description>
## </ManSection>
##
DeclareAttribute( "MagmaGeneratorsOfFamily", IsFamily );
#############################################################################
##
#E
|