/usr/share/gap/lib/mapping.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 | #############################################################################
##
#W mapping.gi GAP library Thomas Breuer
#W & Martin Schönert
#W & Frank Celler
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains
## 1. the design of families of general mappings
## 2. generic methods for general mappings
## 3. generic methods for underlying relations of general mappings
##
#############################################################################
##
## 1. the design of families of general mappings
##
#############################################################################
##
#M FamiliesOfGeneralMappingsAndRanges( <Fam> )
##
InstallMethod( FamiliesOfGeneralMappingsAndRanges,
"for a family (return empty list)",
true,
[ IsFamily ], 0,
Fam -> WeakPointerObj( [] ) );
#############################################################################
##
#F GeneralMappingsFamily( <famsourceelms>, <famrangeelms> )
##
InstallGlobalFunction( GeneralMappingsFamily, function( FS, FR )
local info, i, len, entry, Fam,first,test;
# Check whether this family was already constructed.
info:= FamiliesOfGeneralMappingsAndRanges( FS );
len:= LengthWPObj( info );
if len mod 2 = 1 then
len:= len - 1;
fi;
first:=fail;
for i in [ 2, 4 .. len ] do
test:=ElmWPObj( info, i-1 );
if test=fail and first=fail then
if ElmWPObj(info,i)=fail then
first:=i-1; # note that this is a free position
fi;
elif IsIdenticalObj( test, FR ) then
entry:= ElmWPObj( info, i );
if entry <> fail then
return entry;
else
UnbindElmWPObj( info, i-1 );
break;
fi;
fi;
od;
# Construct the family.
if CanEasilyCompareElementsFamily(FR)
and CanEasilyCompareElementsFamily(FS) then
Fam:= NewFamily( "GeneralMappingsFamily", IsGeneralMapping ,
CanEasilyCompareElements,
CanEasilyCompareElements);
else
Fam:= NewFamily( "GeneralMappingsFamily", IsGeneralMapping );
fi;
SetFamilyRange( Fam, FR );
SetFamilySource( Fam, FS );
if first<>fail then
# Store the family in free spot.
SetElmWPObj( info, first, FR );
SetElmWPObj( info, first+1, Fam );
else
# no free spot -- store at end
SetElmWPObj( info, len+1, FR );
SetElmWPObj( info, len+2, Fam );
fi;
# Return the family.
return Fam;
end );
#############################################################################
##
## 2. generic methods for general mappings
##
#############################################################################
##
#M PrintObj( <map> ) . . . . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( PrintObj,
"for a general mapping",
true,
[ IsGeneralMapping ], 0,
function( map )
Print( "<general mapping: ", Source( map ), " -> ", Range( map ), " >" );
end );
#############################################################################
##
#M PrintObj( <map> ) . . . . . . . . . . . . . . . . . . . . . . for mapping
##
InstallMethod( PrintObj,
"for a mapping",
true,
[ IsMapping ], 0,
function( map )
Print( "<mapping: ", Source( map ), " -> ", Range( map ), " >" );
end );
#T these are `ViewObj' methods. How could real `PrintObj' methods look like?
# #############################################################################
# ##
# #M IsOne( <map> ) . . . . . . . . . . . . . . . . . . . for general mapping
# ##
# InstallOtherMethod( IsOne,
# "for general mapping",
# true,
# [ IsGeneralMapping ], 0,
# map -> Source( map ) = Range( map )
# and IsBijective( map )
# and ForAll( Source( map ), elm -> ImageElm( map, elm ) = elm ) );
#############################################################################
##
#M IsZero( <map> ) . . . . . . . . . . . . . . . . . . . for general mapping
##
InstallOtherMethod( IsZero,
"for general mapping",
true,
[ IsGeneralMapping ], 0,
map -> Zero( Range( map ) ) <> fail
and IsTotal( map )
and ImagesSource( map ) = [ Zero( Range( map ) ) ] );
#############################################################################
##
#M IsEndoGeneralMapping( <map> ) . . . . . . . . . . . . for general mapping
##
InstallOtherMethod( IsEndoGeneralMapping,
"for general mapping",
true,
[ IsGeneralMapping ], 0,
map -> Source( map ) = Range( map ) );
#############################################################################
##
#F Image( <map> ) . . . . set of images of the source of a general mapping
#F Image( <map>, <elm> ) . . . . unique image of an element under a mapping
#F Image( <map>, <coll> ) . . set of images of a collection under a mapping
##
InstallGlobalFunction( Image, function ( arg )
local map, # mapping <map>, first argument
elm; # element <elm>, second argument
# image of the source under <map>, which may be multi valued in this case
if Length( arg ) = 1 and IsGeneralMapping(arg[1]) then
return ImagesSource( arg[1] );
elif Length( arg ) = 2 then
map := arg[1];
elm := arg[2];
if FamSourceEqFamElm( FamilyObj( map ), FamilyObj( elm ) ) then
if not IsMapping( map ) then
Error( "<map> must be a mapping" );
elif elm in Source( map ) then
return ImageElm( map, elm );
fi;
# image of a set or list of elments <elm> under the mapping <map>
elif CollFamSourceEqFamElms( FamilyObj( map ), FamilyObj(elm) )
and IsSubset( Source( map ), elm ) then
if IsDomain( elm ) or IsSSortedList( elm ) then
if HasSource(map) and IsIdenticalObj(Source(map),elm) then
return ImagesSource( map );
else
return ImagesSet( map, elm );
fi;
elif IsHomogeneousList( elm ) then
return ImagesSet( map, Set( elm ) );
fi;
# image of the empty list
elif IsList( elm ) and IsEmpty( elm ) then
return [];
fi;
fi;
Error( "usage: Image(<map>), Image(<map>,<elm>), Image(<map>,<coll>)" );
end );
#############################################################################
##
#F Images( <map> ) . . . . set of images of the source of a general mapping
#F Images( <map>, <elm> ) . . . set of images of an element under a mapping
#F Images( <map>, <coll> ) . . set of images of a collection under a mapping
##
InstallGlobalFunction( Images, function ( arg )
local map, # mapping <map>, first argument
elm; # element <elm>, second argument
# image of the source under <map>
if Length( arg ) = 1 then
return ImagesSource( arg[1] );
elif Length( arg ) = 2 then
map := arg[1];
elm := arg[2];
if not IsGeneralMapping( map ) then
Error( "<map> must be a general mapping" );
fi;
# image of a single element <elm> under the mapping <map>
if FamSourceEqFamElm( FamilyObj( map ), FamilyObj( elm ) )
and elm in Source( map ) then
return ImagesElm( map, elm );
# image of a set or list of elments <elm> under the mapping <map>
elif CollFamSourceEqFamElms( FamilyObj( map ), FamilyObj(elm) )
and IsSubset( Source( map ), elm ) then
if IsDomain( elm ) or IsSSortedList( elm ) then
return ImagesSet( map, elm );
elif IsHomogeneousList( elm ) then
return ImagesSet( map, Set( elm ) );
fi;
# image of the empty list
elif IsList( elm ) and IsEmpty( elm ) then
return [];
fi;
fi;
Error("usage: Images(<map>), Images(<map>,<elm>), Images(<map>,<coll>)");
end );
#############################################################################
##
#F PreImage( <map> ) . . set of preimages of the range of a general mapping
#F PreImage( <map>, <elm> ) . unique preimage of an elm under a gen.mapping
#F PreImage(<map>,<coll>) set of preimages of a coll. under a gen. mapping
##
InstallGlobalFunction( PreImage, function ( arg )
local map, # gen. mapping <map>, first argument
img; # element <img>, second argument
# preimage of the range under <map>, which may be a general mapping
if Length( arg ) = 1 then
return PreImagesRange( arg[1] );
elif Length( arg ) = 2 then
map := arg[1];
img := arg[2];
# preimage of a single element <img> under <map>
if FamRangeEqFamElm( FamilyObj( map ), FamilyObj( img ) ) then
if not ( IsGeneralMapping( map ) and IsInjective( map )
and IsSurjective( map ) ) then
Error( "<map> must be an inj. and surj. mapping" );
elif img in Range( map ) then
return PreImageElm( map, img );
fi;
# preimage of a set or list of elments <img> under <map>
elif CollFamRangeEqFamElms( FamilyObj( map ), FamilyObj( img ) )
and IsSubset( Range( map ), img ) then
if IsDomain( img ) or IsSSortedList( img ) then
return PreImagesSet( map, img );
elif IsHomogeneousList( img ) then
return PreImagesSet( map, Set( img ) );
fi;
# preimage of the empty list
elif IsList( img ) and IsEmpty( img ) then
return [];
fi;
fi;
Error( "usage: PreImage(<map>), PreImage(<map>,<img>), ",
"PreImage(<map>,<coll>)" );
end );
#############################################################################
##
#F PreImages( <map> ) . . . set of preimages of the range of a gen. mapping
#F PreImages(<map>,<elm>) . set of preimages of an elm under a gen. mapping
#F PreImages(<map>,<coll>) set of preimages of a coll. under a gen. mapping
##
InstallGlobalFunction( PreImages, function ( arg )
local map, # mapping <map>, first argument
img; # element <img>, second argument
# preimage of the range under <map>
if Length( arg ) = 1 then
return PreImagesRange( arg[1] );
elif Length( arg ) = 2 then
map := arg[1];
img := arg[2];
if not IsGeneralMapping( map ) then
Error( "<map> must be a general mapping" );
fi;
# preimage of a single element <img> under <map>
if FamRangeEqFamElm( FamilyObj( map ), FamilyObj( img ) )
and img in Range( map ) then
return PreImagesElm( map, img );
# preimage of a set or list of elements <img> under <map>
elif CollFamRangeEqFamElms( FamilyObj( map ), FamilyObj( img ) )
and IsSubset( Range( map ), img ) then
if IsDomain( img ) or IsSSortedList( img ) then
return PreImagesSet( map, img );
elif IsHomogeneousList( img ) then
return PreImagesSet( map, Set( img ) );
fi;
# preimage of the empty list
elif IsList( img ) and IsEmpty( img ) then
return [];
fi;
fi;
Error( "usage: PreImages(<map>), PreImages(<map>,<img>), ",
"PreImages(<map>,<coll>)" );
end );
#############################################################################
##
#F CompositionMapping(<map1>,<map2>, ... ) . . . . . composition of mappings
##
InstallGlobalFunction( CompositionMapping, function ( arg )
local com, # composition of the arguments, result
nxt, # next general mapping in the composition
new, # intermediate composition
i; # loop variable
# check the arguments
if Length( arg ) = 0 then
Error("usage: CompositionMapping(<map1>..)");
fi;
# unravel the argument list
if Length( arg ) = 1 and IsList( arg[1] ) then
arg := arg[1];
fi;
# compute the composition
com := arg[ Length( arg ) ];
if not IsGeneralMapping( com ) then
Error( "<com> must be (general) mapping" );
fi;
for i in Reversed( [1..Length( arg )-1] ) do
nxt:= arg[i];
# Check that the composition can be formed.
if not IsGeneralMapping( nxt ) then
Error( "<i>-th argument must be (general) mapping" );
elif not FamSource2EqFamRange1( FamilyObj( com ),
FamilyObj( nxt ) ) then
Error( "the range of <com> and the source of <nxt> ",
"must be contained in the same family" );
fi;
# Compute the composition.
new := CompositionMapping2( nxt, com );
# Maintain properties
# (Do only *cheap* tests, otherwise one could attempt to check
# `IsSubset( Source( nxt ), ImagesSource( com ) )' in the case
# of `IsTotal', and to check in the case of `IsSurjective' whether
# `IsSubset( Range( com ), PreImagesRange( nxt ) )' holds.)
if HasIsSingleValued( com ) and IsSingleValued( com )
and HasIsSingleValued( nxt ) and IsSingleValued( nxt ) then
SetIsSingleValued( new, true );
fi;
if HasIsInjective( com ) and IsInjective( com )
and HasIsInjective( nxt ) and IsInjective( nxt ) then
SetIsInjective( new, true );
fi;
if HasIsTotal( com ) and IsTotal( com )
and HasIsTotal( nxt ) and IsTotal( nxt )
and ((HasImagesSource(com) and
CanComputeIsSubset(Source(nxt),ImagesSource(com)) and
IsSubset(Source(nxt),ImagesSource(com)))
or (HasRange(com) and
CanComputeIsSubset(Source(nxt),Range(com)) and
IsSubset(Source(nxt),Range(com))) ) then
SetIsTotal( new, true );
fi;
if HasRange(com) and IsIdenticalObj(Source(nxt),Range(com)) then
if HasIsTotal( com ) and IsTotal( com )
and HasIsTotal( nxt ) and IsTotal( nxt ) then
SetIsTotal( new, true );
fi;
if HasIsSurjective( com ) and IsSurjective( com )
and HasIsSurjective( nxt ) and IsSurjective( nxt ) then
SetIsSurjective( new, true );
fi;
fi;
# Maintain respectings.
if HasRespectsAddition( com )
and HasRespectsAddition( nxt )
and RespectsAddition( com )
and RespectsAddition( nxt ) then
SetRespectsAddition( new, true );
fi;
if HasRespectsAdditiveInverses( com )
and HasRespectsAdditiveInverses( nxt )
and RespectsAdditiveInverses( com )
and RespectsAdditiveInverses( nxt ) then
SetRespectsAdditiveInverses( new, true );
elif HasRespectsZero( com )
and HasRespectsZero( nxt )
and RespectsZero( com )
and RespectsZero( nxt ) then
SetRespectsZero( new, true );
fi;
if HasRespectsMultiplication( com )
and HasRespectsMultiplication( nxt )
and RespectsMultiplication( com )
and RespectsMultiplication( nxt ) then
SetRespectsMultiplication( new, true );
fi;
if HasRespectsInverses( com )
and HasRespectsInverses( nxt )
and RespectsInverses( com )
and RespectsInverses( nxt ) then
SetRespectsInverses( new, true );
elif HasRespectsOne( com )
and HasRespectsOne( nxt )
and RespectsOne( com )
and RespectsOne( nxt ) then
SetRespectsOne( new, true );
fi;
if IsIdenticalObj( Source( nxt ), Range( com ) )
and HasRespectsScalarMultiplication( com )
and HasRespectsScalarMultiplication( nxt )
and RespectsScalarMultiplication( com )
and RespectsScalarMultiplication( nxt ) then
# Note that equality of the two relevant domains
# does in general not suffice to get linearity,
# since their left acting domains must fit, too.
SetRespectsScalarMultiplication( new, true );
fi;
com:= new;
od;
if IsIdenticalObj( Source( com ), Range( com ) ) then
SetIsEndoGeneralMapping( com, true );
fi;
# Return the composition.
return com;
end );
#############################################################################
##
#M IsInjective( <map> ) . . . . . for gen. mapp. with known inv. gen. mapp.
#M IsSingleValued( <map> ) . . . . for gen. mapp. with known inv. gen. mapp.
#M IsSurjective( <map> ) . . . . . for gen. mapp. with known inv. gen. mapp.
#M IsTotal( <map> ) . . . . . . . for gen. mapp. with known inv. gen. mapp.
##
InstallImmediateMethod( IsInjective,
IsGeneralMapping and HasInverseGeneralMapping, 0,
function( map )
map:= InverseGeneralMapping( map );
if HasIsSingleValued( map ) then
return IsSingleValued( map );
else
TryNextMethod();
fi;
end );
InstallImmediateMethod( IsSingleValued,
IsGeneralMapping and HasInverseGeneralMapping, 0,
function( map )
map:= InverseGeneralMapping( map );
if HasIsInjective( map ) then
return IsInjective( map );
else
TryNextMethod();
fi;
end );
InstallImmediateMethod( IsSurjective,
IsGeneralMapping and HasInverseGeneralMapping, 0,
function( map )
map:= InverseGeneralMapping( map );
if HasIsTotal( map ) then
return IsTotal( map );
else
TryNextMethod();
fi;
end );
InstallImmediateMethod( IsTotal,
IsGeneralMapping and HasInverseGeneralMapping, 0,
function( map )
map:= InverseGeneralMapping( map );
if HasIsSurjective( map ) then
return IsSurjective( map );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M IsTotal( <map> ) . . . . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( IsTotal, "for a general mapping", true,
[ IsGeneralMapping ], 0,
function( map )
# For a total and injective general mapping,
# the range cannot be smaller than the source.
if HasIsInjective( map ) and IsInjective( map )
and CanComputeSize(Range(map)) and CanComputeSize(Source(map))
and Size( Range( map ) ) < Size( Source( map ) ) then
return false;
else
return IsSubset( PreImagesRange( map ), Source( map ) );
fi;
end );
#############################################################################
##
#M IsSurjective( <map> ) . . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( IsSurjective, "for a general mapping", true,
[ IsGeneralMapping ], 0,
function( map )
# For a single-valued and surjective general mapping,
# the source cannot be smaller than the range.
if HasIsSingleValued( map ) and IsSingleValued( map )
and CanComputeSize(Range(map)) and CanComputeSize(Source(map))
and Size( Source( map ) ) < Size( Range( map ) ) then
return false;
else
return IsSubset( ImagesSource( map ), Range( map ) );
fi;
end );
#############################################################################
##
#M IsSingleValued( <map> ) . . . . . . . . . . . . . . for a general mapping
##
InstallMethod( IsSingleValued, "for a general mapping", true,
[ IsGeneralMapping ], 0,
function( map )
if HasIsSurjective( map ) and IsSurjective( map )
and CanComputeSize(Range(map)) and CanComputeSize(Source(map)) then
# For a single-valued and surjective general mapping,
# the range cannot be larger than the source.
if Size( Source( map ) ) < Size( Range( map ) ) then
return false;
fi;
fi;
if IsFinite( Source( map ) ) then
# test that each element of the source has at most one image
return ForAll( Source( map ),
elm -> Size( ImagesElm( map, elm ) ) <= 1 );
else
# give up if <map> has an infinite source
TryNextMethod();
fi;
end );
#############################################################################
##
#M IsInjective( <map> ) . . . . . . . . . . . . . . . for a general mapping
##
InstallMethod( IsInjective, "for a general mapping", true,
[ IsGeneralMapping ], 0,
function( map )
local enum, # enumerator for the source
imgs, # list of images for the elements of the source
elm, # loop over `enum'
img; # one set of images
if HasIsTotal( map ) and IsTotal( map ) then
# For a total and injective general mapping,
# the source cannot be larger than the range.
if Size( Range( map ) ) < Size( Source( map ) )
and CanComputeSize(Range(map)) and CanComputeSize(Source(map)) then
return false;
fi;
fi;
if IsFinite( Source( map ) ) then
# Check that the images of different elements are disjoint.
enum:= Enumerator( Source( map ) );
imgs:= [];
for elm in enum do
img:= ImagesElm( map, elm );
if ForAny( imgs, im -> Size( Intersection2( im, img ) ) <> 0 ) then
return false;
fi;
Add( imgs, img );
od;
return true;
else
# give up if <map> has an infinite source
TryNextMethod();
fi;
end );
#############################################################################
##
#M IsInjective( <map> ) . . . . . . . . . . . . . . . . . . . for a mapping
##
InstallMethod( IsInjective, "for a mapping", true,
[ IsGeneralMapping and IsTotal and IsSingleValued ], 0,
function( map )
# For a total and injective general mapping,
# the source cannot be larger than the range.
if Size( Range( map ) ) < Size( Source( map ) )
and CanComputeSize(Range(map)) and CanComputeSize(Source(map)) then
return false;
# compare the size of the source with the size of the image
elif IsFinite( Source( map ) ) then
return Size( Source( map ) ) = Size( ImagesSource( map ) );
# give up if <map> has an infinite source
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M \=( <map1>, <map2> ) . . . . . . . . . . . . . for two general mappings
##
InstallMethod( \=,
"for two general mappings",
IsIdenticalObj,
[ IsGeneralMapping, IsGeneralMapping ], 0,
function( map1, map2 )
# Maybe the properties we already know determine the result.
if ( HasIsTotal( map1 ) and HasIsTotal( map2 )
and IsTotal( map1 ) <> IsTotal( map2 ) )
or ( HasIsSingleValued( map1 ) and HasIsSingleValued( map2 )
and IsSingleValued( map1 ) <> IsSingleValued( map2 ) )
or ( HasIsInjective( map1 ) and HasIsInjective( map2 )
and IsInjective( map1 ) <> IsInjective( map2 ) )
or ( HasIsSurjective( map1 ) and HasIsSurjective( map2 )
and IsSurjective( map1 ) <> IsSurjective( map2 ) )
then
return false;
fi;
# Otherwise we must really test the equality.
return Source( map1 ) = Source( map2 )
and Range( map1 ) = Range( map2 )
and UnderlyingRelation( map1 ) = UnderlyingRelation( map2 );
end );
#############################################################################
##
#M \<( <map1>, <map2> ) . . . . . . . . . . . . . for two general mappings
##
## Compare the sources, the ranges, the underlying relation.
##
InstallMethod( \<,
"for two general mappings",
IsIdenticalObj,
[ IsGeneralMapping, IsGeneralMapping ], 0,
function( map1, map2 )
if Source( map1 ) <> Source( map2 ) then
return Source( map1 ) < Source( map2 );
elif Range( map1 ) <> Range( map2 ) then
return Range( map1 ) < Range( map2 );
else
return UnderlyingRelation( map1 ) < UnderlyingRelation( map2 );
fi;
end );
#############################################################################
##
#M \+( <map>, <zero> ) . . . . . . . . for general mapping and zero mapping
##
InstallOtherMethod( \+,
"for general mapping and zero mapping",
IsIdenticalObj,
[ IsGeneralMapping, IsGeneralMapping and IsZero ], 0,
function( map, zero )
return map;
end );
#############################################################################
##
#M \+( <zero>, <map> ) . . . . . . . . for zero mapping and general mapping
##
InstallOtherMethod( \+,
"for zero mapping and general mapping",
IsIdenticalObj,
[ IsGeneralMapping and IsZero, IsGeneralMapping ], 0,
function( zero, map )
return map;
end );
#############################################################################
##
#M \*( <map1>, <map2> ) . . . . . . . . . . . . . for two general mappings
##
InstallMethod( \*, "for two general mappings", FamSource2EqFamRange1,
[ IsGeneralMapping, IsGeneralMapping ], 0,
function( map1, map2 )
return CompositionMapping( map2, map1 );
end );
#############################################################################
##
#M \^( <map1>, <map2> ) . . . . . . . . conjugation of two general mappings
##
InstallMethod( \^,
#T or shall this involve the usual inverse?
#T (then <map2> must be a bijection from its source to its source)
"for two general mappings",
FamSourceRgtEqFamsLft,
[ IsGeneralMapping, IsGeneralMapping ], 0,
function( lft, rgt )
return InverseGeneralMapping( rgt ) * lft * rgt;
end );
#############################################################################
##
#M \^( <elm>, <map> )
#T what about <coll> \^ <map> ?
##
InstallOtherMethod( \^,
"for element in the source, and general mapping",
FamElmEqFamSource,
[ IsObject, IsGeneralMapping ], 0,
function( elm, map )
return ImageElm( map, elm );
end );
#############################################################################
##
#M OneOp( <map> ) . . . . . . . . . . . . . . . . . . . . identity mapping
##
InstallOtherMethod( OneOp,
"for a general mapping",
true,
[ IsGeneralMapping ], 0,
function( map )
if IsEndoGeneralMapping( map ) then
return IdentityMapping( Source( map ) );
else
return fail;
fi;
end );
#############################################################################
##
#M ZeroOp( <map> ) . . . . . . . . . . . . . . . . . . . . . . zero mapping
##
InstallOtherMethod( ZeroOp,
"for a general mapping",
true,
[ IsGeneralMapping ], 0,
map -> ZeroMapping( Source( map ), Range( map ) ) );
#############################################################################
##
#M InverseOp( <map> ) . . . . . . . . . delegate to `InverseGeneralMapping'
##
InstallMethod( InverseOp,
"for a general mapping",
true,
[ IsGeneralMapping ], 0,
function( map )
local inv;
if IsEndoGeneralMapping( map ) and IsBijective( map ) then
inv := InverseGeneralMapping( map );
SetIsEndoGeneralMapping( inv, true );
SetIsBijective (inv, true); # this may seem superfluous, but
# IsInjective may create an InverseGeneralMapping which does not
# know that it is bijective
return inv;
else
Info(InfoWarning,1,
"The mapping must be bijective and have source=range\n",
"#I You might want to use `InverseGeneralMapping'");
return fail;
fi;
end );
#############################################################################
##
#M \*( <zero>, <map> ) . . . . . . . . . for zero and total general mapping
##
InstallMethod( \*,
"for zero and total general mapping",
FamElmEqFamRange,
[ IsRingElement and IsZero, IsGeneralMapping and IsTotal ], 0,
function( zero, map )
if IsGeneralMapping( zero ) then
TryNextMethod();
else
return ZeroMapping( Source( map ), Range( map ) );
fi;
end );
#############################################################################
##
#M <elm> / <map> . . . . . . . . . . . . . . . . . . . . preimage of element
##
InstallOtherMethod( \/,
"for element, and inj. & surj. general mapping",
FamElmEqFamRange,
[ IsObject, IsGeneralMapping and IsInjective and IsSurjective ], 0,
function( elm, map )
return PreImageElm( map, elm );
end );
#############################################################################
##
#M ImageElm( <map>, <elm> ) . . . . . . . . . . . . for mapping and element
##
InstallOtherMethod( ImageElm,
"for general mapping, and element",
FamSourceEqFamElm,
[ IsGeneralMapping, IsObject ], 0,
function( map, elm )
if not ( IsSingleValued( map ) and IsTotal( map ) ) then
Error( "<map> must be single-valued and total" );
fi;
return ImageElm( map, elm );
end );
InstallMethod( ImageElm,
"for mapping, and element",
FamSourceEqFamElm,
[ IsGeneralMapping and IsTotal and IsSingleValued, IsObject ], 0,
ImagesRepresentative );
#############################################################################
##
#M ImagesElm( <map>, <elm> ) . . . for non s.p. general mapping and element
##
InstallMethod( ImagesElm,
"for non s.p. general mapping, and element",
FamSourceEqFamElm,
[ IsNonSPGeneralMapping, IsObject ], 0,
function( map, elm )
Error( "no default function to compute images of <elm> under <map>" );
end );
#############################################################################
##
#M ImagesElm( <map>, <elm> ) . . for const. time access gen. map., and elm.
##
InstallMethod( ImagesElm,
"for constant time access general mapping, and element",
FamSourceEqFamElm,
[ IsGeneralMapping and IsConstantTimeAccessGeneralMapping, IsObject ], 0,
function( map, elm )
local imgs, pair;
imgs:= [];
for pair in GeneratorsOfDomain( UnderlyingRelation( map ) ) do
if pair[1] = elm then
AddSet( imgs, pair[2] );
fi;
od;
return imgs;
end );
#############################################################################
##
#M ImagesSet( <map>, <elms> ) . . for generel mapping and finite collection
##
InstallMethod( ImagesSet,
"for general mapping, and finite collection",
CollFamSourceEqFamElms,
[ IsGeneralMapping, IsCollection ], 0,
function( map, elms )
local imgs, elm;
if not IsFinite( elms ) then
TryNextMethod();
fi;
imgs:= [];
for elm in Enumerator( elms ) do
UniteSet( imgs, AsList( ImagesElm( map, elm ) ) );
od;
return imgs;
end );
InstallMethod( ImagesSet,
"for general mapping, and empty list",
true,
[ IsGeneralMapping, IsList and IsEmpty ], 0,
function( map, elms )
return [];
end );
#############################################################################
##
#M ImagesSource( <map> ) . . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( ImagesSource,
"for general mapping",
true,
[ IsGeneralMapping ], 0,
map -> ImagesSet( map, Source( map ) ) );
#############################################################################
##
#M ImagesSource( <map> ) . . . . . . . . . . for surjective general mapping
##
InstallMethod( ImagesSource,
"for surjective general mapping (delegate to `Range')",
true,
[ IsGeneralMapping and IsSurjective ],
SUM_FLAGS, # immediately delegate, don;'t try anything else
Range );
#############################################################################
##
#M ImagesRepresentative( <map>, <elm> ) . . . for s.p. gen. mapping and elm
##
InstallMethod( ImagesRepresentative,
"for s.p. general mapping, and element",
FamSourceEqFamElm,
[ IsSPGeneralMapping, IsObject ], 0,
function( map, elm )
Error( "no default method for s.p. general mapping" );
end );
#############################################################################
##
#M ImagesRepresentative( <map>, <elm> ) . for non s.p. gen. mapping and elm
##
InstallMethod( ImagesRepresentative,
"for non s.p. general mapping, and element",
FamSourceEqFamElm,
[ IsNonSPGeneralMapping, IsObject ], 0,
function( map, elm )
local
imgs; # all images of <elm> under <map>
# get all images of <elm> under <map>
imgs:= ImagesElm( map, elm );
# check that <elm> has at least one image under <map>
if IsEmpty( imgs ) then
return fail;
fi;
# pick one image, and return it
return Representative( imgs );
end );
#############################################################################
##
#M PreImageElm( <map>, <elm> )
##
InstallOtherMethod( PreImageElm,
"for general mapping, and element",
FamRangeEqFamElm,
[ IsGeneralMapping, IsObject ], 0,
function( map, elm )
if not ( IsInjective( map ) and IsSurjective( map ) ) then
Error( "<map> must be injective and surjective" );
fi;
return PreImageElm( map, elm );
end );
InstallMethod( PreImageElm,
"for inj. & surj. general mapping, and element",
FamRangeEqFamElm,
[ IsGeneralMapping and IsInjective and IsSurjective, IsObject ], 0,
PreImagesRepresentative );
#############################################################################
##
#M PreImagesElm( <map>, <elm> ) . . . . . . for general mapping and element
##
## more or less delegate to `ImagesElm'
##
InstallMethod( PreImagesElm,
"for general mapping with finite source, and element",
FamRangeEqFamElm,
[ IsGeneralMapping, IsObject ], 0,
function ( map, elm )
# for a finite source simply run over the elements of the source
if IsFinite( Source( map ) ) then
return Filtered( Source( map ),
pre -> elm in ImagesElm( map, pre ) );
# give up if <map> has an infinite source
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M PreImagesElm( <map>, <elm> ) for const. time access gen. map., and elm.
##
InstallMethod( PreImagesElm,
"for constant time access general mapping, and element",
FamRangeEqFamElm,
[ IsGeneralMapping and IsConstantTimeAccessGeneralMapping, IsObject ], 0,
function( map, elm )
local preimgs, pair;
preimgs:= [];
for pair in GeneratorsOfDomain( UnderlyingRelation( map ) ) do
if pair[2] = elm then
AddSet( preimgs, pair[1] );
fi;
od;
return preimgs;
end );
#############################################################################
##
#M PreImagesSet( <map>, <elms> ) . for general mapping and finite collection
##
InstallMethod( PreImagesSet,
"for general mapping, and finite collection",
CollFamRangeEqFamElms,
[ IsGeneralMapping, IsCollection ], 0,
function( map, elms )
local primgs, elm;
if not IsFinite( elms ) then
TryNextMethod();
fi;
primgs:= [];
for elm in Enumerator( elms ) do
UniteSet( primgs, AsList( PreImagesElm( map, elm ) ) );
od;
return primgs;
end );
InstallMethod( PreImagesSet,
"for general mapping, and empty list",
true,
[ IsGeneralMapping, IsList and IsEmpty ], 0,
function( map, elms )
return [];
end );
#############################################################################
##
#M PreImagesRange( <map> ) . . . . . . . . . . . . . . . for general mapping
##
InstallMethod( PreImagesRange,
"for general mapping",
true,
[ IsGeneralMapping ], 0,
map -> PreImagesSet( map, Range( map ) ) );
#############################################################################
##
#M PreImagesRange( <map> ) . . . . . . . . . . . . for total general mapping
##
InstallMethod( PreImagesRange,
"for total general mapping (delegate to `Source')",
true,
[ IsGeneralMapping and IsTotal ],
SUM_FLAGS, # immediately delegate, don't try anything else
Source );
#############################################################################
##
#M PreImagesRepresentative( <map>, <elm> ) . . for s.p. gen. mapping & elm
##
InstallMethod( PreImagesRepresentative,
"for s.p. general mapping, and element",
FamRangeEqFamElm,
[ IsSPGeneralMapping, IsObject ], 0,
function( map, elm )
Error( "no default method for s.p. general mapping" );
end );
#############################################################################
##
#M PreImagesRepresentative( <map>, <elm> )
##
InstallMethod( PreImagesRepresentative,
"for total non-s.p. general mapping, and element",
FamRangeEqFamElm,
[ IsNonSPGeneralMapping, IsObject ], 0,
function ( map, elm )
local pres; # all preimages of <elm> under <map>
# get all preimages of <elm> under <map>
pres := PreImagesElm( map, elm );
# check that <elm> has at least one preimage under <map>
if IsEmpty( pres ) then
return fail;
fi;
# pick one preimage, and return it.
return Representative( pres );
end );
#############################################################################
##
#F GeneralMappingByElements( <S>, <R>, <elms> )
##
InstallGlobalFunction( GeneralMappingByElements, function( S, R, elms )
local map, tupfam, rel;
# Check the arguments.
if not ( IsDomain( S ) and IsDomain( R ) ) then
Error( "<S> and <R> must be domains" );
elif IsDirectProductElementCollection( elms ) then
tupfam:= ElementsFamily( FamilyObj( elms ) );
if not ( IsIdenticalObj( ElementsFamily( FamilyObj( S ) ),
ComponentsOfDirectProductElementsFamily( tupfam )[1] )
and IsIdenticalObj( ElementsFamily( FamilyObj( R ) ),
ComponentsOfDirectProductElementsFamily( tupfam )[2] ) ) then
Error( "families of arguments do not match" );
fi;
elif IsEmpty( elms ) then
tupfam:= DirectProductElementsFamily( [ ElementsFamily( FamilyObj( S ) ),
ElementsFamily( FamilyObj( R ) ) ] );
else
Error( "<elms> must be a collection of direct product elements or empty" );
fi;
# Construct the general mapping.
map:= Objectify( TypeOfDefaultGeneralMapping( S, R,
IsNonSPGeneralMapping
and IsAttributeStoringRep ),
rec() );
# Construct the underlying relation.
rel:= DomainByGenerators( tupfam, elms );
SetUnderlyingRelation( map, rel );
SetUnderlyingGeneralMapping( rel, map );
# Return the general mapping.
return map;
end );
#############################################################################
##
#M UnderlyingRelation( <map> ) . . . . . . . . . . . . for a general mapping
##
InstallMethod( UnderlyingRelation,
"for a general mapping",
true,
[ IsGeneralMapping ], 0,
function( map )
local rel;
rel:= Objectify( NewType( CollectionsFamily(
DirectProductElementsFamily( [ ElementsFamily( FamilyObj( Source( map ) ) ),
ElementsFamily( FamilyObj( Range( map ) ) ) ] ) ),
IsDomain and IsAttributeStoringRep ),
rec() );
SetUnderlyingGeneralMapping( rel, map );
return rel;
end );
#############################################################################
##
#M SetUnderlyingGeneralMapping( <rel>, <map> )
##
## Make sure that <map> gets the flag `IsConstantTimeAccessGeneralMapping'
## if <rel> knows its `AsList'.
## (Note that if `AsList( <rel> )' is known at the time when <rel> is
## constructed, we cannot use the setter method of `AsList' for domains
## with known `UnderlyingGeneralMapping'.)
##
InstallMethod( SetUnderlyingGeneralMapping,
"for an underlying relation and a general mapping",
true,
[ IsDomain and IsDirectProductElementCollection and HasAsList
and IsAttributeStoringRep,
IsGeneralMapping ], 0,
function( rel, map )
SetIsConstantTimeAccessGeneralMapping( map, true );
TryNextMethod();
end );
InstallMethod( SetUnderlyingGeneralMapping,
"for an underlying relation and a general mapping",
true,
[ IsDomain and IsDirectProductElementCollection and HasGeneratorsOfDomain
and IsAttributeStoringRep,
IsGeneralMapping ], 0,
function( rel, map )
SetIsConstantTimeAccessGeneralMapping( map, true );
TryNextMethod();
end );
#############################################################################
##
#M SetAsList( <rel>, <dpelms> )
#M SetGeneratorsOfDomain( <rel>, <dpelms> )
##
## Make sure that <map> gets the flag `IsConstantTimeAccessGeneralMapping'
## if <rel> knows its `AsList' or `GeneratorsOfDomain' value,
## where <map> is the underlying general mapping of <rel>.
##
InstallMethod( SetAsList,
"for an underlying relation and a list of direct product elements",
IsIdenticalObj,
[ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping
and IsAttributeStoringRep,
IsDirectProductElementCollection ],
function( rel, dpelms )
SetIsConstantTimeAccessGeneralMapping( UnderlyingGeneralMapping( rel ),
true );
TryNextMethod();
end );
InstallMethod( SetGeneratorsOfDomain,
"for an underlying relation and a list of direct product elements",
IsIdenticalObj,
[ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping
and IsAttributeStoringRep,
IsDirectProductElementCollection ],
function( rel, dpelms )
SetIsConstantTimeAccessGeneralMapping( UnderlyingGeneralMapping( rel ),
true );
TryNextMethod();
end );
#############################################################################
##
## 3. generic methods for underlying relations of general mappings
##
## If the underlying relation $Rel$ of a general mapping $F$ stores $F$
## as value of `UnderlyingGeneralMapping' then $Rel$ may delegate questions
## to the mapping operations for $F$.
##
#############################################################################
##
#M \=( <rel1>, <rel2> ) . for underlying relations of two general mappings
##
InstallMethod( \=,
"for two underlying relations of general mappings",
IsIdenticalObj,
[ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping,
IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
function( rel1, rel2 )
local map1, map2;
map1:= UnderlyingGeneralMapping( rel1 );
map2:= UnderlyingGeneralMapping( rel2 );
# Check that the sets of first resp. second components agree.
if PreImagesRange( map1 ) <> PreImagesRange( map2 )
or ImagesSource( map1 ) <> ImagesSource( map2 ) then
return false;
fi;
# Really test the equality.
if IsFinite( PreImagesRange( map1 ) ) then
return ForAll( PreImagesRange( map1 ),
elm -> ImagesElm( map1, elm ) = ImagesElm( map2, elm ) );
elif IsFinite( PreImagesRange( map2 ) ) then
return ForAll( PreImagesRange( map2 ),
elm -> ImagesElm( map1, elm ) = ImagesElm( map2, elm ) );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M \<( <rel1>, <rel> ) . for underlying relations of two general mappings
##
InstallMethod( \<,
"for two underlying relations of general mappings",
IsIdenticalObj,
[ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping,
IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
function( rel1, rel2 )
local map1, # first general mapping,
map2, # second general mapping,
elms, # elements of the source of <map1> and <map2>
i; # loop variable
map1:= UnderlyingGeneralMapping( rel1 );
map2:= UnderlyingGeneralMapping( rel2 );
# find the first element where the images differ
elms := EnumeratorSorted( Union(PreImagesRange(map1),PreImagesRange(map2)));
i := 1;
while i <= Length( elms )
and ImagesElm( map1, elms[i] ) = ImagesElm( map2, elms[i] ) do
i := i + 1;
od;
# compare the image sets
return i <= Length( elms )
and EnumeratorSorted( ImagesElm( map1, elms[i] ) )
< EnumeratorSorted( ImagesElm( map2, elms[i] ) );
#T note that we do not have a generic `\<' method for domains !
end );
#############################################################################
##
#M IsFinite( <rel> ) . . . . . for underlying relation of a general mapping
##
InstallMethod( IsFinite,
"for an underlying relation of a general mapping",
true,
[ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
function( rel )
local map;
map:= UnderlyingGeneralMapping( rel );
if IsFinite( Source( map ) ) and IsFinite( Range( map ) ) then
return true;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M Enumerator( <rel> ) . . . . for underlying relation of a general mapping
##
InstallMethod( Enumerator,
"for an underlying relation of a general mapping",
true,
[ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
function( rel )
local map, enum, S, R, elm, imgs;
map:= UnderlyingGeneralMapping( rel );
enum:= [];
S:= Source( map );
R:= Range( map );
if IsFinite( S ) then
for elm in Enumerator( S ) do
imgs:= ImagesElm( map, elm );
if IsFinite( imgs ) then
UniteSet( enum, List( imgs, im -> DirectProductElement( [ elm, im ] ) ) );
else
TryNextMethod();
fi;
od;
return enum;
elif IsFinite( R ) then
for elm in Enumerator( R ) do
imgs:= PreImagesElm( map, elm );
if IsFinite( imgs ) then
UniteSet( enum, List( imgs, im -> DirectProductElement( [ im, elm ] ) ) );
else
TryNextMethod();
fi;
od;
return enum;
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M \in( <dpelm>, <map> ) . . . . . . for elm and underl. rel. of a gen. map.
##
InstallMethod( \in,
"for an element and an underlying relation of a general mapping",
IsElmsColls,
[ IsDirectProductElement,
IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ], 0,
function( elm, rel )
return elm[2] in ImagesElm( UnderlyingGeneralMapping( rel ), elm[1] );
end );
#############################################################################
##
#M Size( <rel> ) . . . . . . . for underlying relation of a general mapping
##
InstallMethod( Size,
"for an underlying relation of a general mapping",
[ IsDomain and IsDirectProductElementCollection and HasUnderlyingGeneralMapping ],
function( rel )
local map;
map:= UnderlyingGeneralMapping( rel );
if HasIsTotal( map ) and HasIsSingleValued( map )
and IsTotal( map ) and IsSingleValued( map ) then
return Size( Source( map ) );
elif HasIsInjective( map ) and HasIsSurjective( map )
and IsInjective( map ) and IsSurjective( map ) then
return Size( Range( map ) );
else
TryNextMethod();
fi;
end );
#############################################################################
##
#M IsGeneratorsOfMagmaWithInverses( <mappinglist> )
##
## All members of the collection have same source, all have same range.
## Check that all are invertible.
##
InstallMethod( IsGeneratorsOfMagmaWithInverses,
"for a collection of general mappings",
true,
[ IsGeneralMappingCollection ], 0,
mappinglist -> ForAll( mappinglist, map ->
(HasIsBijective(map) and IsBijective(map)) or Inverse( map ) <> fail ) );
#############################################################################
##
#M CopyMappingAttributes(<from>,<to>)
##
InstallGlobalFunction(CopyMappingAttributes,
function(f,t)
if HasIsTotal(f) and not HasIsTotal(t) then
SetIsTotal(t,IsTotal(f));
fi;
if HasIsSingleValued(f) and not HasIsSingleValued(t) then
SetIsSingleValued(t,IsSingleValued(f));
fi;
if HasIsInjective(f) and not HasIsInjective(t) then
SetIsInjective(t,IsInjective(f));
fi;
if HasIsSurjective(f) and not HasIsSurjective(t) then
SetIsSurjective(t,IsSurjective(f));
fi;
if HasSource(f) and not HasSource(t) then
SetSource(t,Source(f));
fi;
if HasImagesSource(f) and not HasImagesSource(t) then
SetImagesSource(t,ImagesSource(f));
fi;
if HasRange(f) and not HasRange(t) then
SetRange(t,Range(f));
fi;
end);
#############################################################################
##
#E
|