/usr/share/gap/lib/matint.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | #############################################################################
##
#W matint.gd GAP library A. Storjohann
#W R. Wainwright
#W A. Hulpke
##
##
#Y Copyright (C) 2003 The GAP Group
##
## This file contains declarations for the operations of normal forms for
## integral matrices.
##
#############################################################################
##
#V InfoMatInt
##
## <ManSection>
## <InfoClass Name="InfoMatInt"/>
##
## <Description>
## The info class for Integer matrix operations is <C>InfoMatInt</C>.
## </Description>
## </ManSection>
##
DeclareInfoClass( "InfoMatInt" );
#############################################################################
##
#O TriangulizedIntegerMat(<mat>)
##
## <#GAPDoc Label="TriangulizedIntegerMat">
## <ManSection>
## <Oper Name="TriangulizedIntegerMat" Arg='mat'/>
##
## <Description>
## Computes an upper triangular form of a matrix with integer entries.
## It returns a immutable matrix in upper triangular form.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("TriangulizedIntegerMat",[IsMatrix]);
#############################################################################
##
#O TriangulizeIntegerMat(<mat>)
##
## <#GAPDoc Label="TriangulizeIntegerMat">
## <ManSection>
## <Oper Name="TriangulizeIntegerMat" Arg='mat'/>
##
## <Description>
## Changes <A>mat</A> to be in upper triangular form.
## (The result is the same as that of <Ref Func="TriangulizedIntegerMat"/>,
## but <A>mat</A> will be modified, thus using less memory.)
## If <A>mat</A> is immutable an error will be triggered.
## <Example><![CDATA[
## gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
## gap> TriangulizedIntegerMat(m);
## [ [ 1, 15, 28 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ]
## gap> n:=TriangulizedIntegerMatTransform(m);
## rec( normal := [ [ 1, 15, 28 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ],
## rank := 3, rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
## rowQ := [ [ 1, 0, 0 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## rowtrans := [ [ 1, 0, 0 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## signdet := 1 )
## gap> n.rowtrans*m=n.normal;
## true
## gap> TriangulizeIntegerMat(m); m;
## [ [ 1, 15, 28 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("TriangulizeIntegerMat",[IsMatrix]);
#############################################################################
##
#O TriangulizedIntegerMatTransform(<mat>)
##
## <#GAPDoc Label="TriangulizedIntegerMatTransform">
## <ManSection>
## <Oper Name="TriangulizedIntegerMatTransform" Arg='mat'/>
##
## <Description>
## Computes an upper triangular form of a matrix with integer entries.
## It returns a record with a component <C>normal</C> (an immutable matrix
## in upper triangular form) and a component <C>rowtrans</C> that gives the
## transformations done to the original matrix to bring it into upper
## triangular form.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("TriangulizedIntegerMatTransform",[IsMatrix]);
DeclareSynonym("TriangulizedIntegerMatTransforms",
TriangulizedIntegerMatTransform);
#############################################################################
##
#O HermiteNormalFormIntegerMat(<mat>)
##
## <#GAPDoc Label="HermiteNormalFormIntegerMat">
## <ManSection>
## <Oper Name="HermiteNormalFormIntegerMat" Arg='mat'/>
##
## <Description>
## This operation computes the Hermite normal form of a matrix <A>mat</A>
## with integer entries. It returns a immutable matrix in HNF.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("HermiteNormalFormIntegerMat",[IsMatrix]);
#############################################################################
##
#O HermiteNormalFormIntegerMatTransform(<mat>)
##
## <#GAPDoc Label="HermiteNormalFormIntegerMatTransform">
## <ManSection>
## <Oper Name="HermiteNormalFormIntegerMatTransform" Arg='mat'/>
##
## <Description>
## This operation computes the Hermite normal form of a matrix <A>mat</A>
## with integer entries.
## It returns a record with components <C>normal</C> (a matrix <M>H</M>) and
## <C>rowtrans</C> (a matrix <M>Q</M>) such that <M>Q A = H</M>.
## <Example><![CDATA[
## gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
## gap> HermiteNormalFormIntegerMat(m);
## [ [ 1, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ]
## gap> n:=HermiteNormalFormIntegerMatTransform(m);
## rec( normal := [ [ 1, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ], rank := 3,
## rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
## rowQ := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## rowtrans := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## signdet := 1 )
## gap> n.rowtrans*m=n.normal;
## true
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("HermiteNormalFormIntegerMatTransform",[IsMatrix]);
DeclareSynonym("HermiteNormalFormIntegerMatTransforms",
HermiteNormalFormIntegerMatTransform);
#############################################################################
##
#O SmithNormalFormIntegerMat(<mat>)
##
## <#GAPDoc Label="SmithNormalFormIntegerMat">
## <ManSection>
## <Oper Name="SmithNormalFormIntegerMat" Arg='mat'/>
##
## <Description>
## This operation computes the Smith normal form of a matrix <A>mat</A> with
## integer entries. It returns a new immutable matrix in the Smith normal
## form.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("SmithNormalFormIntegerMat",[IsMatrix]);
#############################################################################
##
#O SmithNormalFormIntegerMatTransforms(<mat>)
##
## <#GAPDoc Label="SmithNormalFormIntegerMatTransforms">
## <ManSection>
## <Oper Name="SmithNormalFormIntegerMatTransforms" Arg='mat'/>
##
## <Description>
## This operation computes the Smith normal form of a matrix <A>mat</A> with
## integer entries.
## It returns a record with components <C>normal</C> (a matrix <M>S</M>),
## <C>rowtrans</C> (a matrix <M>P</M>),
## and <C>coltrans</C> (a matrix <M>Q</M>) such that <M>P A Q = S</M>.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation("SmithNormalFormIntegerMatTransforms",[IsMatrix]);
#############################################################################
##
#O DiagonalizeIntMat(<mat>)
##
## <#GAPDoc Label="DiagonalizeIntMat">
## <ManSection>
## <Oper Name="DiagonalizeIntMat" Arg='mat'/>
##
## <Description>
## This function changes <A>mat</A> to its SNF.
## (The result is the same as
## that of <Ref Func="SmithNormalFormIntegerMat"/>,
## but <A>mat</A> will be modified, thus using less memory.)
## If <A>mat</A> is immutable an error will be triggered.
## <Example><![CDATA[
## gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
## gap> SmithNormalFormIntegerMat(m);
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ]
## gap> n:=SmithNormalFormIntegerMatTransforms(m);
## rec( colC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
## colQ := [ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ],
## coltrans := [ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ],
## normal := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ], rank := 3,
## rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
## rowQ := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## rowtrans := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## signdet := 1 )
## gap> n.rowtrans*m*n.coltrans=n.normal;
## true
## gap> DiagonalizeIntMat(m);m;
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction( "DiagonalizeIntMat" );
#############################################################################
##
#O NormalFormIntMat(<mat>, <options>)
##
## <#GAPDoc Label="NormalFormIntMat">
## <ManSection>
## <Oper Name="NormalFormIntMat" Arg='mat, options'/>
##
## <Description>
## This general operation for computation of various Normal Forms
## is probably the most efficient.
## <P/>
## Options bit values:
## <List>
## <Mark>0/1</Mark>
## <Item>
## Triangular Form / Smith Normal Form.
## </Item>
## <Mark>2</Mark>
## <Item>
## Reduce off diagonal entries.
## </Item>
## <Mark>4</Mark>
## <Item>
## Row Transformations.
## </Item>
## <Mark>8</Mark>
## <Item>
## Col Transformations.
## </Item>
## <Mark>16</Mark>
## <Item>
## Destructive (the original matrix may be destroyed)
## </Item>
## </List>
## <P/>
## Compute a Triangular, Hermite or Smith form of the <M>n \times m</M>
## integer input matrix <M>A</M>. Optionally, compute <M>n \times n</M> and
## <M>m \times m</M> unimodular transforming matrices <M>Q, P</M>
## which satisfy <M>Q A = H</M> or <M>Q A P = S</M>.
## <!-- %The routines used are based on work by Arne Storjohann -->
## <!-- %and were implemented in &GAP; 4 by A. Storjohann and R. Wainwright. -->
## <P/>
## Note option is a value ranging from 0 to 15 but not all options make sense
## (e.g., reducing off diagonal entries with SNF option selected already).
## If an option makes no sense it is ignored.
## <P/>
## Returns a record with component <C>normal</C> containing the
## computed normal form and optional components <C>rowtrans</C>
## and/or <C>coltrans</C> which hold the respective transformation matrix.
## Also in the record are components holding the sign of the determinant,
## <C>signdet</C>, and the rank of the matrix, <C>rank</C>.
## <Example><![CDATA[
## gap> m:=[[1,15,28],[4,5,6],[7,8,9]];;
## gap> NormalFormIntMat(m,0); # Triangular, no transforms
## rec( normal := [ [ 1, 15, 28 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ],
## rank := 3, signdet := 1 )
## gap> NormalFormIntMat(m,6); # Hermite Normal Form with row transforms
## rec( normal := [ [ 1, 0, 1 ], [ 0, 1, 1 ], [ 0, 0, 3 ] ], rank := 3,
## rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
## rowQ := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## rowtrans := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## signdet := 1 )
## gap> NormalFormIntMat(m,13); # Smith Normal Form with both transforms
## rec( colC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
## colQ := [ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ],
## coltrans := [ [ 1, 0, -1 ], [ 0, 1, -1 ], [ 0, 0, 1 ] ],
## normal := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ], rank := 3,
## rowC := [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
## rowQ := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## rowtrans := [ [ -2, 62, -35 ], [ 1, -30, 17 ], [ -3, 97, -55 ] ],
## signdet := 1 )
## gap> last.rowtrans*m*last.coltrans;
## [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 3 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("NormalFormIntMat");
#############################################################################
##
#A BaseIntMat( <mat> )
##
## <#GAPDoc Label="BaseIntMat">
## <ManSection>
## <Attr Name="BaseIntMat" Arg='mat'/>
##
## <Description>
## If <A>mat</A> is a matrix with integral entries, this function returns a
## list of vectors that forms a basis of the integral row space of <A>mat</A>,
## i.e. of the set of integral linear combinations of the rows of <A>mat</A>.
## <Example><![CDATA[
## gap> mat:=[[1,2,7],[4,5,6],[10,11,19]];;
## gap> BaseIntMat(mat);
## [ [ 1, 2, 7 ], [ 0, 3, 7 ], [ 0, 0, 15 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "BaseIntMat",
IsMatrix and IsCyclotomicCollColl );
#############################################################################
##
#A BaseIntersectionIntMats( <m>,<n> )
##
## <#GAPDoc Label="BaseIntersectionIntMats">
## <ManSection>
## <Attr Name="BaseIntersectionIntMats" Arg='m,n'/>
##
## <Description>
## If <A>m</A> and <A>n</A> are matrices with integral entries,
## this function returns a list of vectors that forms a basis of the
## intersection of the integral row spaces of <A>m</A> and <A>n</A>.
## <Example><![CDATA[
## gap> nat:=[[5,7,2],[4,2,5],[7,1,4]];;
## gap> BaseIntMat(nat);
## [ [ 1, 1, 15 ], [ 0, 2, 55 ], [ 0, 0, 64 ] ]
## gap> BaseIntersectionIntMats(mat,nat);
## [ [ 1, 5, 509 ], [ 0, 6, 869 ], [ 0, 0, 960 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "BaseIntersectionIntMats",
[IsMatrix and IsCyclotomicCollColl,
IsMatrix and IsCyclotomicCollColl] );
#############################################################################
##
#A ComplementIntMat( <full>, <sub> )
##
## <#GAPDoc Label="ComplementIntMat">
## <ManSection>
## <Attr Name="ComplementIntMat" Arg='full, sub'/>
##
## <Description>
## Let <A>full</A> be a list of integer vectors generating an integral row
## module <M>M</M> and <A>sub</A> a list of vectors defining a submodule
## <M>S</M> of <M>M</M>.
## This function computes a free basis for <M>M</M> that extends <M>S</M>.
## I.e., if the dimension of <M>S</M> is <M>n</M> it
## determines a basis
## <M>B = \{ b_1, \ldots, b_m \}</M> for <M>M</M>,
## as well as <M>n</M> integers <M>x_i</M> such that the <M>n</M> vectors
## <M>s_i:= x_i \cdot b_i</M> form a basis for <M>S</M>.
## <P/>
## It returns a record with the following components:
## <List>
## <Mark><C>complement</C></Mark>
## <Item>
## the vectors <M>b_{{n+1}}</M> up to <M>b_m</M>
## (they generate a complement to <M>S</M>).
## </Item>
## <Mark><C>sub</C></Mark>
## <Item>
## the vectors <M>s_i</M> (a basis for <M>S</M>).
## </Item>
## <Mark><C>moduli</C></Mark>
## <Item>
## the factors <M>x_i</M>.
## </Item>
## </List>
## <Example><![CDATA[
## gap> m:=IdentityMat(3);;
## gap> n:=[[1,2,3],[4,5,6]];;
## gap> ComplementIntMat(m,n);
## rec( complement := [ [ 0, 0, 1 ] ], moduli := [ 1, 3 ],
## sub := [ [ 1, 2, 3 ], [ 0, 3, 6 ] ] )
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ComplementIntMat",
[IsMatrix and IsCyclotomicCollColl,
IsMatrix and IsCyclotomicCollColl] );
#############################################################################
##
#A NullspaceIntMat( <mat> )
##
## <#GAPDoc Label="NullspaceIntMat">
## <ManSection>
## <Attr Name="NullspaceIntMat" Arg='mat'/>
##
## <Description>
## If <A>mat</A> is a matrix with integral entries, this function returns a
## list of vectors that forms a basis of the integral nullspace of
## <A>mat</A>, i.e., of those vectors in the nullspace of <A>mat</A> that
## have integral entries.
## <Example><![CDATA[
## gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
## gap> NullspaceMat(mat);
## [ [ -7/4, 9/2, -15/4, 1, 0 ], [ -3/4, -3/2, 1/4, 0, 1 ] ]
## gap> NullspaceIntMat(mat);
## [ [ 1, 18, -9, 2, -6 ], [ 0, 24, -13, 3, -7 ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "NullspaceIntMat",
IsMatrix and IsCyclotomicCollColl );
#############################################################################
##
#O SolutionIntMat( <mat>, <vec> )
##
## <#GAPDoc Label="SolutionIntMat">
## <ManSection>
## <Oper Name="SolutionIntMat" Arg='mat, vec'/>
##
## <Description>
## If <A>mat</A> is a matrix with integral entries and <A>vec</A> a vector
## with integral entries, this function returns a vector <M>x</M> with
## integer entries that is a solution of the equation
## <M>x</M> <C>* <A>mat</A> = <A>vec</A></C>.
## It returns <K>fail</K> if no such vector exists.
## <Example><![CDATA[
## gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
## gap> SolutionMat(mat,[95,115,182]);
## [ 47/4, -17/2, 67/4, 0, 0 ]
## gap> SolutionIntMat(mat,[95,115,182]);
## [ 2285, -5854, 4888, -1299, 0 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SolutionIntMat",
[IsMatrix and IsCyclotomicCollColl,
IsList and IsCyclotomicCollection]);
#############################################################################
##
#O SolutionNullspaceIntMat( <mat>,<vec> )
##
## <#GAPDoc Label="SolutionNullspaceIntMat">
## <ManSection>
## <Oper Name="SolutionNullspaceIntMat" Arg='mat,vec'/>
##
## <Description>
## This function returns a list of length two, its first entry being the
## result of a call to <Ref Func="SolutionIntMat"/> with same arguments,
## the second the result of <Ref Func="NullspaceIntMat"/> applied to the
## matrix <A>mat</A>.
## The calculation is performed faster than if two separate calls would be
## used.
## <Example><![CDATA[
## gap> mat:=[[1,2,7],[4,5,6],[7,8,9],[10,11,19],[5,7,12]];;
## gap> SolutionNullspaceIntMat(mat,[95,115,182]);
## [ [ 2285, -5854, 4888, -1299, 0 ],
## [ [ 1, 18, -9, 2, -6 ], [ 0, 24, -13, 3, -7 ] ] ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "SolutionNullspaceIntMat",
[IsMatrix and IsCyclotomicCollColl,
IsList and IsCyclotomicCollection]);
#############################################################################
##
#A AbelianInvariantsOfList( <list> ) . . . . . abelian invariants of a list
##
## <#GAPDoc Label="AbelianInvariantsOfList">
## <ManSection>
## <Attr Name="AbelianInvariantsOfList" Arg='list'/>
##
## <Description>
## Given a list of nonnegative integers, this routine returns a sorted
## list containing the prime power factors of the positive entries in the
## original list, as well as all zeroes of the original list.
## <Example><![CDATA[
## gap> AbelianInvariantsOfList([4,6,2,0,12]);
## [ 0, 2, 2, 3, 3, 4, 4 ]
## ]]></Example>
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareAttribute( "AbelianInvariantsOfList", IsCyclotomicCollection );
#############################################################################
##
#O DeterminantIntMat(<mat>)
##
## <#GAPDoc Label="DeterminantIntMat">
## <ManSection>
## <Oper Name="DeterminantIntMat" Arg='mat'/>
##
## <Description>
## <Index Subkey="integer matrix">determinant</Index>
## Computes the determinant of an integer matrix using the
## same strategy as <Ref Func="NormalFormIntMat"/>.
## This method is
## faster in general for matrices greater than <M>20 \times 20</M> but
## quite a lot slower for smaller matrices. It therefore passes
## the work to the more general <Ref Func="DeterminantMat"/>
## for these smaller matrices.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareGlobalFunction("DeterminantIntMat");
# ``technical'' routines.
#############################################################################
##
#O SNFofREF(<mat>,<destroy>)
##
## <ManSection>
## <Oper Name="SNFofREF" Arg='mat,destroy'/>
##
## <Description>
## Computes the Smith Normal Form of an integer matrix in row echelon
## (RE) form.
## If <A>destroy</A> is set to <K>true</K> <A>mat</A> will be changed in-place.
## Caveat
## –No testing is done to ensure that <A>mat</A> is in RE form.
## </Description>
## </ManSection>
##
DeclareGlobalFunction("SNFofREF");
#############################################################################
##
#E
|