/usr/share/gap/lib/matobj2.gd is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 | ############################################################################
#
# matobj2.gd
# by Max Neunhöffer
#
## Copyright (C) 2007 Max Neunhöffer, Lehrstuhl D f. Math., RWTH Aachen
## This file is free software, see license information at the end.
#
# This file together with matobj1.gd formally define the interface to the
# new style vectors and matrices in GAP.
# In this file all the operations, attributes and constructors are
# defined. It is read later in the GAP library reading process.
#
############################################################################
############################################################################
#
# Overview:
#
# <#GAPDoc Label="MatObj_Overview">
# The whole idea of this interface is that (row-) vectors and matrices must
# be proper objects with a stored type (i.e. created by Objectify allowing
# inheritance) to benefit from method selection. We therefore refer
# to the new style vectors and matrices as <Q>vector objects</Q> and
# <Q>matrix objects</Q> respectively.
# <P/>It should be possible to write
# (efficient) code that is independent of the actual representation (in
# the sense of &GAP;'s representation filters) and preserves it.
# <P/>
# This latter requirement makes it necessary to distinguish between
# (at least) two classes of matrices:
# <List>
# <Item><Q>RowList</Q>-Matrices which behave basically like lists of rows,
# in particular are the rows individual &GAP; objects that can
# be shared between different matrix objects.</Item>
# <Item><Q>Flat</Q> matrices which behave basically like one &GAP; object
# that cannot be split up further. In particular a row is only
# a part of a matrix and no GAP object in itself.</Item>
# </List>
# For various reasons these two classes have to be distinguished
# already with respect to the definition of the operations for them.
# <P/>
# In particular vectors and matrices know their BaseDomain and their
# dimensions. Note that the basic condition is that the elements of
# vectors and matrices must either lie in the BaseDomain or naturally
# embed in the sense that + and * and = automatically work with all elements
# of the base domain (example: integers in polynomials over integers).
# <P/>
# Vectors are equal with respect to "=" if they have the same length
# and the same entries. It is not necessary that they have the same
# BaseDomain. Matrices are equal with respect to "=" if they have the
# same dimensions and the same entries. It is possible that not for all
# pairs of representations methods exist.
# <P/>
# It is not guaranteed that all rows of a matrix have the same vector type!
# It is for example thinkable that a matrix stores some of its rows in a
# sparse representation and some in a dense one!
# However, it is guaranteed that the rows of matrices in the same
# representation are compatible in the sense that all vector operations
# defined in this interface can be applied to them and that new matrices
# in the same representation as the original matrix can be formed out of
# them.
# <P/>
# Note that there is neither a default mapping from the set of matrix
# representations to the set of vector representations nor one in the
# reverse direction! There is nothing like an "associated" vector
# representation to a matrix representation or vice versa.
# <P/>
# The way to write code that preserves the representation basically
# works by using constructing operations that take template objects
# to decide about the actual representation of the new object.
# <P/>
# Vectors do not have to be lists in the sense that they do not have
# to support all list operations. The same holds for matrices. However,
# RowList matrices behave nearly like lists of row vectors that insist
# on being dense and containing only vectors of the same length and
# with the same BaseDomain.
# <P/>
# There are some rules embedded in the comments to the following code.
# They are marked with the word "Rule". FIXME: Collect all rules here.
# <P/>
# <#/GAPDoc>
#
############################################################################
############################################################################
# If some operation has no comment it behaves as expected from
# the old vectors/matrices or as defined elsewhere.
############################################################################
############################################################################
############################################################################
# Attributes for vectors:
############################################################################
############################################################################
############################################################################
# Rule:
# A base domain must be a GAP object that has at least the following
# methods implemented:
# Zero
# One
# \in
# Characteristic
# IsFinite
# if finite: Size, and possibly DegreeOverPrimeField for fields
# Elements of the base domain must implement +, -, * and /.
# "Automatically" embedded elements may occur in vectors and matrices.
# Example: An integer may occur in a matrix with BaseDomain a polynomial
# ring over the Rationals.
############################################################################
# The following are guaranteed to be always set or cheaply calculable:
DeclareAttribute( "BaseDomain", IsRowVectorObj );
# Typically, the base domain will be a ring, it need not be commutative
# nor associative. For non-associative base domains powering of matrices
# is defined by the behaviour of POW_OBJ_INT.
DeclareAttribute( "Length", IsRowVectorObj ); # can be zero
# We have to declare this since a row vector is not necessarily
# a list! Correspondingly we have to use InstallOtherMethod
# for those row vector types that are lists.
############################################################################
# Rule:
# Vectors v are always dense in the sense that all entries in the
# range [1..Length(v)] have defined values from BaseDomain(v).
############################################################################
############################################################################
############################################################################
# Operations for vectors:
############################################################################
############################################################################
############################################################################
# Rule:
# Vectors may be mutable or immutable. Of course all operations changing
# a vector are only allowed/implemented for mutable vectors.
############################################################################
############################################################################
# In the following sense vectors behave like lists:
############################################################################
DeclareOperation( "[]", [IsRowVectorObj,IsPosInt] );
# This is only defined for positions in [1..Length(VECTOR)].
DeclareOperation( "[]:=", [IsRowVectorObj,IsPosInt,IsObject] );
# This is only guaranteed to work for the position in [1..Length(VECTOR)]
# and only for elements in the BaseDomain(VECTOR)!
# Behaviour otherwise is undefined (from "unpacking" to Error all is possible)
DeclareOperation( "{}", [IsRowVectorObj,IsList] );
# Of course the positions must all lie in [1..Length(VECTOR)].
# Returns a vector in the same representation!
DeclareOperation( "PositionNonZero", [IsRowVectorObj] );
DeclareOperation( "PositionLastNonZero", [IsRowVectorObj] );
DeclareOperation( "ListOp", [IsRowVectorObj] );
DeclareOperation( "ListOp", [IsRowVectorObj,IsFunction] );
# This is an unpacking operation returning a mutable copy in form of a list.
# It enables the "List" function to work.
# The following unwraps a vector to a list:
DeclareOperation( "Unpack", [IsRowVectorObj] );
# It guarantees to copy, that is changing the returned object does
# not change the original object.
# "PositionNot" is intentionally left out here because it can rarely
# be implemented much more efficiently than by running through the vector.
# Note that vectors need not behave like lists with respect to the
# following operations:
# Add, Remove, IsBound[], Unbind[], \{\}\:\=, Append, Concatenation,
# Position, First, Filtered, ...
# Note that \{\}\:\= is left out here since it tempts the programmer
# to use constructions like A{[1..3]} := B{[4,5,6]} which produces
# an intermediate object. Use CopySubVector instead!
# The list operations Position and so on seem to be unnecessary for
# vectors and matrices and thus are left out to simplify the interface.
# Note that since Concatenation is a function using Append, it will
# not work for vectors and it cannot be overloaded!
# Thus we need:
DeclareGlobalFunction( "ConcatenationOfVectors" );
DeclareOperation( "ExtractSubVector", [IsRowVectorObj,IsList] );
# Does the same as slicing v{l} but is here to be similar to
# ExtractSubMatrix.
############################################################################
# Standard operations for all objects:
############################################################################
# The following are implicitly there for all objects, we mention them here
# to have a complete interface description in one place. Of course, vectors
# have to implement those:
# DeclareOperation( "ShallowCopy", [IsRowVectorObj] );
# DeclareGlobalFunction( "StructuralCopy", [IsRowVectorObj] );
# DeclareOperation( "ViewObj", [IsRowVectorObj] );
# DeclareOperation( "PrintObj", [IsRowVectorObj] );
# This must produce GAP readable input reproducing the representation!
# DeclareAttribute( "String", IsRowVectorObj );
# DeclareOperation( "String", [IsRowVectorObj,IsInt] );
# DeclareOperation( "Display", [IsRowVectorObj] );
# DeclareOperation( "MakeImmutable", [IsRowVectorObj] );
# (this is a global function in the GAP library)
############################################################################
# Arithmetical operations for vectors:
############################################################################
# The following binary arithmetical operations are possible for vectors
# over the same BaseDomain with equal length:
# +, -, <, =
# Note1: It is not guaranteed that sorting is done lexicographically!
# Note2: If sorting is not done lexicographically then the objects
# in that representation cannot be lists!
# The following "in place" operations exist with the same restrictions:
DeclareOperation( "AddRowVector",
[ IsRowVectorObj and IsMutable, IsRowVectorObj ] );
DeclareOperation( "AddRowVector",
[ IsRowVectorObj and IsMutable, IsRowVectorObj, IsObject ] );
DeclareOperation( "AddRowVector",
[ IsRowVectorObj and IsMutable,IsRowVectorObj,IsObject,IsPosInt,IsPosInt ] );
DeclareOperation( "MultRowVector",
[ IsRowVectorObj and IsMutable, IsObject ] );
DeclareOperation( "MultRowVector",
[ IsRowVectorObj and IsMutable, IsList, IsRowVectorObj, IsList, IsObject ] );
# The following operations for scalars and vectors are possible of course
# only for scalars in the BaseDomain:
# *, / (of course only vector/scalar)
# The following unary arithmetical operations are possible for vectors:
# AdditiveInverseImmutable, AdditiveInverseMutable,
# AdditiveInverseSameMutability, ZeroImmutable, ZeroMutable,
# ZeroSameMutability, IsZero, Characteristic
DeclareOperation( "ScalarProduct", [ IsRowVectorObj, IsRowVectorObj ] );
# This is defined for two vectors of equal length, it returns the standard
# scalar product.
############################################################################
# The "representation-preserving" contructor methods:
############################################################################
DeclareOperation( "ZeroVector", [IsInt,IsRowVectorObj] );
# Returns a new mutable zero vector in the same rep as the given one with
# a possible different length.
DeclareOperation( "ZeroVector", [IsInt,IsMatrixObj] );
# Returns a new mutable zero vector in a rep that is compatible with
# the matrix but of possibly different length.
DeclareOperation( "Vector", [IsList,IsRowVectorObj]);
# Creates a new vector in the same representation but with entries from list.
# The length is given by the length of the first argument.
# It is *not* guaranteed that the list is copied!
# the following is gone again, use CompatibleVector instead:
#DeclareOperation( "Vector", [IsList,IsMatrixObj] );
## Returns a new mutable vector in a rep that is compatible with
## the matrix but of possibly different length given by the first
## argument. It is *not* guaranteed that the list is copied!
DeclareOperation( "ConstructingFilter", [IsRowVectorObj] );
DeclareOperation( "CompatibleMatrix", [IsRowVectorObj] );
DeclareConstructor( "NewRowVector", [IsRowVectorObj,IsRing,IsList] );
# A constructor. The first argument must be a filter indicating the
# representation the vector will be in, the second is the base domain.
# The last argument is guaranteed not to be changed!
DeclareConstructor( "NewZeroVector", [IsRowVectorObj,IsRing,IsInt] );
# A similar constructor to construct a zero vector, the last argument
# is the base domain.
DeclareOperation( "ChangedBaseDomain", [IsRowVectorObj,IsRing] );
# Changes the base domain. A copy of the row vector in the first argument is
# created, which comes in a "similar" representation but over the new
# base domain that is given in the second argument.
DeclareGlobalFunction( "MakeVector" );
# A convenience function for users to choose some appropriate representation
# and guess the base domain if not supplied as second argument.
# This is not guaranteed to be efficient and should never be used
# in library or package code.
############################################################################
# Some things that fit nowhere else:
############################################################################
DeclareOperation( "Randomize", [IsRowVectorObj and IsMutable] );
# Changes the mutable argument in place, every entry is replaced
# by a random element from BaseDomain.
# The argument is also returned by the function.
DeclareOperation( "Randomize", [IsRowVectorObj and IsMutable,IsRandomSource] );
# The same, use the second argument to provide "randomness".
# The vector argument is also returned by the function.
#############################################################################
##
#O CopySubVector( <src>, <dst>, <scols>, <dcols> )
##
## <#GAPDoc Label="CopySubVector">
## <ManSection>
## <Oper Name="CopySubVector" Arg='src, dst, scols, dcols'/>
##
## <Description>
## returns nothing. Does <C><A>dst</A>{<A>dcols</A>} := <A>src</A>{<A>scols</A>}</C>
## without creating an intermediate object and thus - at least in
## special cases - much more efficiently. For certain objects like
## compressed vectors this might be significantly more efficient if
## <A>scols</A> and <A>dcols</A> are ranges with increment 1.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CopySubVector",
[IsRowVectorObj,IsRowVectorObj and IsMutable, IsList,IsList] );
DeclareOperation( "WeightOfVector", [IsRowVectorObj] );
# This computes the Hamming weight of a vector, i.e. the number of
# nonzero entries.
DeclareOperation( "DistanceOfVectors", [IsRowVectorObj, IsRowVectorObj] );
# This computes the Hamming distance of two vectors, i.e. the number
# of positions, in which the vectors differ. The vectors must have the
# same length.
############################################################################
############################################################################
# Operations for all matrices in IsMatrixObj:
############################################################################
############################################################################
############################################################################
# Attributes of matrices:
############################################################################
# The following are guaranteed to be always set or cheaply calculable:
DeclareAttribute( "BaseDomain", IsMatrixObj );
# Typically, the base domain will be a ring, it need not be commutative
# nor associative. For non-associative base domains powering of matrices
# is defined by the behaviour of POW_OBJ_INT in the kernel.
DeclareAttribute( "Length", IsMatrixObj );
# We have to declare this since matrix objects need not be lists.
# We have to use InstallOtherMethod for those matrix types that are
# lists.
DeclareAttribute( "RowLength", IsMatrixObj );
DeclareAttribute( "DimensionsMat", IsMatrixObj ); # returns [rows,cols]
DeclareAttribute( "RankMat", IsMatrixObj );
DeclareOperation( "RankMatDestructive", [ IsMatrixObj ] );
############################################################################
# In the following sense matrices behave like lists:
############################################################################
DeclareOperation( "[]", [IsMatrixObj,IsPosInt] );
# This is guaranteed to return a vector object that has the property
# that changing it changes the matrix!
# A flat matrix has to create an intermediate object that refers to some
# row within it to allow the old GAP syntax M[i][j] for read and write
# access to work. Note that this will never be particularly efficient
# for flat matrices. Efficient code will have to use MatElm and
# SetMatElm instead.
# These should probably only be defined for RowListMatrices???
DeclareOperation( "PositionNonZero", [IsMatrixObj] );
DeclareOperation( "PositionNonZero", [IsMatrixObj, IsInt] );
DeclareOperation( "PositionLastNonZero", [IsMatrixObj] );
DeclareOperation( "PositionLastNonZero", [IsMatrixObj, IsInt] );
DeclareOperation( "Position", [IsMatrixObj, IsRowVectorObj] );
DeclareOperation( "Position", [IsMatrixObj, IsRowVectorObj, IsInt] );
# This allows for usage of PositionSorted:
DeclareOperation( "PositionSortedOp", [IsMatrixObj, IsRowVectorObj] );
DeclareOperation( "PositionSortedOp",[IsMatrixObj,IsRowVectorObj,IsFunction]);
# I intentionally left out "PositionNot" here.
# Note that "PositionSet" is a function only for lists. End of story.
# Note that arbitrary matrices need not behave like lists with respect to the
# following operations:
# Add, Remove, IsBound, Unbind, \{\}\:\=, Append, Concatenation,
# However, see below for matrices in the subcategory IsRowListMatrix.
############################################################################
# Explicit copying operations:
############################################################################
# The following are already in the library, these declarations should be
# adjusted:
#############################################################################
##
#O ExtractSubMatrix( <mat>, <rows>, <cols> )
##
## <#GAPDoc Label="ExtractSubMatrix">
## <ManSection>
## <Oper Name="ExtractSubMatrix" Arg='mat, rows, cols'/>
##
## <Description>
## Creates a fully mutable copy of the submatrix described by the two
## lists, which mean subset of rows and subset of columns respectively.
## This does <A>mat</A>{<A>rows</A>}{<A>cols</A>} and returns the result.
## It preserves the representation of the matrix.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "ExtractSubMatrix", [IsMatrixObj,IsList,IsList] );
# Creates a fully mutable copy of the matrix.
DeclareOperation( "MutableCopyMat", [IsMatrixObj] );
#############################################################################
##
#O CopySubMatrix( <src>, <dst>, <srows>, <drows>, <scols>, <dcols> )
##
## <#GAPDoc Label="CopySubMatrix">
## <ManSection>
## <Oper Name="CopySubMatrix" Arg='src, dst, srows, drows, scols, dcols'/>
##
## <Description>
## returns nothing. Does <C><A>dst</A>{<A>drows</A>}{<A>dcols</A>} := <A>src</A>{<A>srows</A>}{<A>scols</A>}</C>
## without creating an intermediate object and thus - at least in
## special cases - much more efficiently. For certain objects like
## compressed vectors this might be significantly more efficient if
## <A>scols</A> and <A>dcols</A> are ranges with increment 1.
## </Description>
## </ManSection>
## <#/GAPDoc>
##
DeclareOperation( "CopySubMatrix", [IsMatrixObj,IsMatrixObj,
IsList,IsList,IsList,IsList] );
############################################################################
# New element access for matrices (especially necessary for flat mats:
############################################################################
DeclareOperation( "MatElm", [IsMatrixObj,IsPosInt,IsPosInt] );
# second and third arguments are row and column index
DeclareOperation( "SetMatElm", [IsMatrixObj,IsPosInt,IsPosInt,IsObject] );
# second and third arguments are row and column index
############################################################################
# Standard operations for all objects:
############################################################################
# The following are implicitly there for all objects, we mention them here
# to have a complete interface description in one place:
# ShallowCopy is missing here since its behaviour depends on the matrix
# being in IsRowListMatrix or in IsFlatMatrix!
# DeclareGlobalFunction( "StructuralCopy", [IsMatrixObj] );
# DeclareOperation( "ViewObj", [IsMatrixObj] );
# DeclareOperation( "PrintObj", [IsMatrixObj] );
# This must produce GAP-readable input reproducing the representation.
# DeclareAttribute( "String", IsMatrixObj );
# DeclareOperation( "String", [IsMatrixObj,IsInt] );
# DeclareOperation( "Display", [IsMatrixObj] );
# DeclareOperation( "MakeImmutable", [IsMatrixObj] );
# (this is a global function in the GAP library)
# Matrices have to implement "PostMakeImmutable" if necessary!
############################################################################
# Arithmetical operations:
############################################################################
# The following binary arithmetical operations are possible for matrices
# over the same BaseDomain with fitting dimensions:
# +, *, -
# The following are also allowed for different dimensions:
# <, =
# Note1: It is not guaranteed that sorting is done lexicographically!
# Note2: If sorting is not done lexicographically then the objects
# in that representation cannot be lists!
# For non-empty square matrices we have:
# ^ integer
# The following unary arithmetical operations are possible for matrices:
# AdditiveInverseImmutable, AdditiveInverseMutable,
# AdditiveInverseSameMutability, ZeroImmutable, ZeroMutable,
# ZeroSameMutability, IsZero, Characteristic
# The following unary arithmetical operations are possible for non-empty
# square matrices (inversion returns fail if not invertible):
# OneMutable, OneImmutable, OneSameMutability,
# InverseMutable, InverseImmutable, InverseSameMutability, IsOne,
# Problem: How about inverses of integer matrices that exist as
# elements of rationals matrix?
DeclareOperation( "AddMatrix", [IsMutable and IsMatrixObj,IsMatrixObj] );
DeclareOperation( "AddMatrix",
[IsMutable and IsMatrixObj,IsMatrixObj,IsMultiplicativeElement] );
DeclareOperation( "MultMatrix",
[IsMutable and IsMatrixObj,IsMultiplicativeElement] );
# Changes first argument in place, matrices have to be of same
# dimension and over same base domain.
DeclareOperation( "ProductTransposedMatMat", [IsMatrixObj, IsMatrixObj] );
# Computes the product TransposedMat(A)*B, possibly without
# first computing TransposedMat(A).
DeclareOperation( "TraceMat", [IsMatrixObj] );
# The sum of the diagonal entries. Error for a non-square matrix.
############################################################################
# Rule:
# Operations not sensibly defined return fail and do not trigger an error:
# In particular this holds for:
# One for non-square matrices.
# Inverse for non-square matrices
# Inverse for square, non-invertible matrices.
#
# An exception are properties:
# IsOne for non-square matrices returns false.
#
# To detect errors more easily:
# Matrix/vector and matrix/matrix product run into errors if not defined
# mathematically (like for example a 1x2 - matrix times itself.
############################################################################
############################################################################
# The "representation-preserving" contructor methods:
############################################################################
DeclareOperation( "ZeroMatrix", [IsInt,IsInt,IsMatrixObj] );
# Returns a new fully mutable zero matrix in the same rep as the given one with
# possibly different dimensions. First argument is number of rows, second
# is number of columns.
DeclareConstructor( "NewZeroMatrix", [IsMatrixObj,IsRing,IsInt,IsInt]);
# Returns a new fully mutable zero matrix over the base domain in the
# 2nd argument. The integers are the number of rows and columns.
DeclareOperation( "IdentityMatrix", [IsInt,IsMatrixObj] );
# Returns a new mutable identity matrix in the same rep as the given one with
# possibly different dimensions.
DeclareConstructor( "NewIdentityMatrix", [IsMatrixObj,IsRing,IsInt]);
# Returns a new fully mutable identity matrix over the base domain in the
# 2nd argument. The integer is the number of rows and columns.
DeclareOperation( "CompanionMatrix", [IsUnivariatePolynomial,IsMatrixObj] );
# Returns the companion matrix of the first argument in the representation
# of the second argument. Uses row-convention. The polynomial must be
# monic and its coefficients must lie in the BaseDomain of the matrix.
DeclareConstructor( "NewCompanionMatrix",
[IsMatrixObj, IsUnivariatePolynomial, IsRing] );
# The constructor variant of <Ref Oper="CompanionMatrix"/>.
# The following are already declared in the library:
# Eventually here will be the right place to do this.
DeclareOperation( "Matrix", [IsList,IsInt,IsMatrixObj]);
# Creates a new matrix in the same representation as the fourth argument
# but with entries from list, the second argument is the number of
# columns. The first argument can be:
# - a plain list of vectors of the correct row length in a representation
# fitting to the matrix rep.
# - a plain list of plain lists where each sublist has the length of the rows
# - a plain list with length rows*cols with matrix entries given row-wise
# If the first argument is empty, then the number of rows is zero.
# Otherwise the first entry decides which case is given.
# The outer list is guaranteed to be copied, however, the entries of that
# list (the rows) need not be copied.
# The following convenience versions exist:
# With two arguments the first must not be empty and must not be a flat
# list. Then the number of rows is deduced from the length of the first
# argument and the number of columns is deduced from the length of the
# element of the first argument (done with a generic method):
DeclareOperation( "Matrix", [IsList,IsMatrixObj] );
# Note that it is not possible to generate a matrix via "Matrix" without
# a template matrix object. Use the constructor methods instead:
DeclareConstructor( "NewMatrix", [IsMatrixObj, IsRing, IsInt, IsList] );
# Constructs a new fully mutable matrix. The first argument has to be a filter
# indicating the representation. The second the base domain, the third
# the row length and the last a list containing either row vectors
# of the right length or lists with base domain elements.
# The last argument is guaranteed not to be changed!
# If the last argument already contains row vectors, they are copied.
DeclareOperation( "ConstructingFilter", [IsMatrixObj] );
DeclareOperation( "CompatibleVector", [IsMatrixObj] );
DeclareOperation( "ChangedBaseDomain", [IsMatrixObj,IsRing] );
# Changes the base domain. A copy of the matrix in the first argument is
# created, which comes in a "similar" representation but over the new
# base domain that is given in the second argument.
DeclareGlobalFunction( "MakeMatrix" );
# A convenience function for users to choose some appropriate representation
# and guess the base domain if not supplied as second argument.
# This is not guaranteed to be efficient and should never be used
# in library or package code.
############################################################################
# Some things that fit nowhere else:
############################################################################
DeclareOperation( "Randomize", [IsMatrixObj and IsMutable] );
DeclareOperation( "Randomize", [IsMatrixObj and IsMutable,IsRandomSource] );
# Changes the mutable argument in place, every entry is replaced
# by a random element from BaseDomain.
# The second version will come when we have random sources.
DeclareAttribute( "TransposedMatImmutable", IsMatrixObj );
DeclareOperation( "TransposedMatMutable", [IsMatrixObj] );
DeclareOperation( "IsDiagonalMat", [IsMatrixObj] );
DeclareOperation( "IsUpperTriangularMat", [IsMatrixObj] );
DeclareOperation( "IsLowerTriangularMat", [IsMatrixObj] );
DeclareOperation( "KroneckerProduct", [IsMatrixObj,IsMatrixObj] );
# The result is fully mutable.
DeclareOperation( "Unfold", [IsMatrixObj, IsRowVectorObj] );
# Concatenates all rows of a matrix to one single vector in the same
# representation as the given template vector. Usually this must
# be compatible with the representation of the matrix given.
DeclareOperation( "Fold", [IsRowVectorObj, IsPosInt, IsMatrixObj] );
# Cuts the row vector into pieces of length the second argument
# and forms a matrix out of the pieces in the same representation
# as the third argument. The length of the vector must be a multiple
# of the second argument.
# The following unwraps a matrix to a list of lists:
DeclareOperation( "Unpack", [IsRowListMatrix] );
# It guarantees to copy, that is changing the returned object does
# not change the original object.
############################################################################
############################################################################
# Operations for RowList-matrices:
############################################################################
############################################################################
############################################################################
# List operations with some restrictions:
############################################################################
DeclareOperation( "[]:=", [IsRowListMatrix,IsPosInt,IsObject] );
# Only guaranteed to work for the position in [1..Length(VECTOR)] and only
# for elements in a suitable vector type.
# Behaviour otherwise is undefined (from "unpacking" to Error all is possible)
DeclareOperation( "{}", [IsRowListMatrix,IsList] );
# Produces *not* a list of rows but a matrix in the same rep as the input!
DeclareOperation( "Add", [IsRowListMatrix,IsRowVectorObj] );
DeclareOperation( "Add", [IsRowListMatrix,IsRowVectorObj,IsPosInt] );
DeclareOperation( "Remove", [IsRowListMatrix] );
DeclareOperation( "Remove", [IsRowListMatrix,IsPosInt] );
DeclareOperation( "IsBound[]", [IsRowListMatrix,IsPosInt] );
DeclareOperation( "Unbind[]", [IsRowListMatrix,IsPosInt] );
# Only works for last row to preserve denseness.
DeclareOperation( "{}:=", [IsRowListMatrix,IsList,IsRowListMatrix] );
# This is only guaranteed to work if the result is dense and the matrices
# are compatible. For efficiency reasons the third argument must be a
# matrix and cannot be a list of vectors.
DeclareOperation( "Append", [IsRowListMatrix,IsRowListMatrix] );
# Again only for compatible matrices
# ==> Concatenation works then automatically!
# Implicitly there, creates a new matrix sharing the same rows:
# DeclareOperation( "ShallowCopy", [IsRowListMatrix] );
# The following unwraps a matrix to a list of vectors:
DeclareOperation( "ListOp", [IsRowListMatrix] );
DeclareOperation( "ListOp", [IsRowListMatrix, IsFunction] );
############################################################################
# Rule:
# This all means that objects in IsRowListMatrix behave like lists that
# insist on being dense and having only IsRowVectorObjs over the right
# BaseDomain and with the right length as entries. However, formally
# they do not have to lie in the filter IsList.
############################################################################
############################################################################
############################################################################
# Operations for flat matrices:
############################################################################
############################################################################
############################################################################
# List operations with some modifications:
############################################################################
DeclareOperation( "[]:=", [IsFlatMatrix,IsPosInt,IsObject] );
# Only guaranteed to work for the position in [1..Length(VECTOR)] and only
# for elements in a suitable vector type.
# Here this is always a copying operation!
# Behaviour otherwise is undefined (from "unpacking" to Error all is possible)
DeclareOperation( "{}", [IsFlatMatrix,IsList] );
# Again this is defined to be a copying operation!
# The following list operations are not supported for flat matrices:
# Add, Remove, IsBound[], Unbind[], {}:=, Append
# ShallowCopy is in fact a structural copy here:
# DeclareOperation( "ShallowCopy", [IsFlatMatrix] );
############################################################################
# Rule:
# Objects in IsFlatMatrix are not lists and do not behave like them.
############################################################################
############################################################################
# Arithmetic involving vectors and matrices:
############################################################################
# DeclareOperation( "*", [IsRowVectorObj, IsMatrixObj] );
# DeclareOperation( "^", [IsRowVectorObj, IsMatrixObj] );
# Only in this direction since vectors are row vectors. The standard
# list arithmetic rules apply only in this sense here which is the
# standard mathematical vector matrix multiplication.
############################################################################
# Rule:
# Note that vectors are by convention row vectors.
############################################################################
############################################################################
# Further candidates for the interface:
############################################################################
# AsList
# AddCoeffs
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; version 2 of the License.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
##
|