This file is indexed.

/usr/share/gap/lib/matobj2.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
############################################################################
# 
# matobj2.gd
#                                                        by Max Neunhöffer
#
##  Copyright (C) 2007  Max Neunhöffer, Lehrstuhl D f. Math., RWTH Aachen
##  This file is free software, see license information at the end.
#
# This file together with matobj1.gd formally define the interface to the 
# new style vectors and matrices in GAP.
# In this file all the operations, attributes and constructors are
# defined. It is read later in the GAP library reading process.
#
############################################################################


############################################################################
#
# Overview:
#
# <#GAPDoc Label="MatObj_Overview">
# The whole idea of this interface is that (row-) vectors and matrices must
# be proper objects with a stored type (i.e. created by Objectify allowing
# inheritance) to benefit from method selection. We therefore refer
# to the new style vectors and matrices as <Q>vector objects</Q> and
# <Q>matrix objects</Q> respectively. 
# <P/>It should be possible to write
# (efficient) code that is independent of the actual representation (in
# the sense of &GAP;'s representation filters) and preserves it.
# <P/>
# This latter requirement makes it necessary to distinguish between
# (at least) two classes of matrices:
# <List>
# <Item><Q>RowList</Q>-Matrices which behave basically like lists of rows,
#       in particular are the rows individual &GAP; objects that can
#       be shared between different matrix objects.</Item>
# <Item><Q>Flat</Q> matrices which behave basically like one &GAP; object
#       that cannot be split up further. In particular a row is only
#       a part of a matrix and no GAP object in itself.</Item>
# </List>
# For various reasons these two classes have to be distinguished
# already with respect to the definition of the operations for them.
# <P/>
# In particular vectors and matrices know their BaseDomain and their
# dimensions. Note that the basic condition is that the elements of
# vectors and matrices must either lie in the BaseDomain or naturally
# embed in the sense that + and * and = automatically work with all elements
# of the base domain (example: integers in polynomials over integers).
# <P/>
# Vectors are equal with respect to "=" if they have the same length
# and the same entries. It is not necessary that they have the same
# BaseDomain. Matrices are equal with respect to "=" if they have the
# same dimensions and the same entries. It is possible that not for all
# pairs of representations methods exist.
# <P/>
# It is not guaranteed that all rows of a matrix have the same vector type!
# It is for example thinkable that a matrix stores some of its rows in a
# sparse representation and some in a dense one!
# However, it is guaranteed that the rows of matrices in the same 
# representation are compatible in the sense that all vector operations
# defined in this interface can be applied to them and that new matrices
# in the same representation as the original matrix can be formed out of
# them.
# <P/>
# Note that there is neither a default mapping from the set of matrix 
# representations to the set of vector representations nor one in the 
# reverse direction! There is nothing like an "associated" vector
# representation to a matrix representation or vice versa.
# <P/>
# The way to write code that preserves the representation basically
# works by using constructing operations that take template objects
# to decide about the actual representation of the new object.
# <P/>
# Vectors do not have to be lists in the sense that they do not have
# to support all list operations. The same holds for matrices. However,
# RowList matrices behave nearly like lists of row vectors that insist
# on being dense and containing only vectors of the same length and
# with the same BaseDomain.
# <P/>
# There are some rules embedded in the comments to the following code.
# They are marked with the word "Rule". FIXME: Collect all rules here.
# <P/>
# <#/GAPDoc>
#
############################################################################


############################################################################
# If some operation has no comment it behaves as expected from
# the old vectors/matrices or as defined elsewhere.
############################################################################



############################################################################
############################################################################
# Attributes for vectors:
############################################################################
############################################################################


############################################################################
# Rule:
# A base domain must be a GAP object that has at least the following
# methods implemented:
#  Zero
#  One
#  \in
#  Characteristic
#  IsFinite
#     if finite:  Size, and possibly DegreeOverPrimeField for fields
# Elements of the base domain must implement +, -, * and /.
# "Automatically" embedded elements may occur in vectors and matrices.
# Example: An integer may occur in a matrix with BaseDomain a polynomial
#          ring over the Rationals.
############################################################################


# The following are guaranteed to be always set or cheaply calculable:
DeclareAttribute( "BaseDomain", IsRowVectorObj );
# Typically, the base domain will be a ring, it need not be commutative
# nor associative. For non-associative base domains powering of matrices
# is defined by the behaviour of POW_OBJ_INT.

DeclareAttribute( "Length", IsRowVectorObj );    # can be zero
# We have to declare this since a row vector is not necessarily
# a list! Correspondingly we have to use InstallOtherMethod
# for those row vector types that are lists.

############################################################################
# Rule:
# Vectors v are always dense in the sense that all entries in the
# range [1..Length(v)] have defined values from BaseDomain(v).
############################################################################


############################################################################
############################################################################
# Operations for vectors:
############################################################################
############################################################################


############################################################################
# Rule:
# Vectors may be mutable or immutable. Of course all operations changing
# a vector are only allowed/implemented for mutable vectors.
############################################################################


############################################################################
# In the following sense vectors behave like lists:
############################################################################

DeclareOperation( "[]", [IsRowVectorObj,IsPosInt] );
# This is only defined for positions in [1..Length(VECTOR)]. 

DeclareOperation( "[]:=", [IsRowVectorObj,IsPosInt,IsObject] );
# This is only guaranteed to work for the position in [1..Length(VECTOR)] 
# and only for elements in the BaseDomain(VECTOR)! 
# Behaviour otherwise is undefined (from "unpacking" to Error all is possible)

DeclareOperation( "{}", [IsRowVectorObj,IsList] );
# Of course the positions must all lie in [1..Length(VECTOR)].
# Returns a vector in the same representation!

DeclareOperation( "PositionNonZero", [IsRowVectorObj] );

DeclareOperation( "PositionLastNonZero", [IsRowVectorObj] );

DeclareOperation( "ListOp", [IsRowVectorObj] );
DeclareOperation( "ListOp", [IsRowVectorObj,IsFunction] );
# This is an unpacking operation returning a mutable copy in form of a list.
# It enables the "List" function to work.

# The following unwraps a vector to a list:
DeclareOperation( "Unpack", [IsRowVectorObj] );
# It guarantees to copy, that is changing the returned object does
# not change the original object.

# "PositionNot" is intentionally left out here because it can rarely
# be implemented much more efficiently than by running through the vector.

# Note that vectors need not behave like lists with respect to the 
# following operations:
#  Add, Remove, IsBound[], Unbind[], \{\}\:\=, Append, Concatenation,
#  Position, First, Filtered, ...
# Note that \{\}\:\= is left out here since it tempts the programmer
# to use constructions like A{[1..3]} := B{[4,5,6]} which produces
# an intermediate object. Use CopySubVector instead!
# The list operations Position and so on seem to be unnecessary for
# vectors and matrices and thus are left out to simplify the interface.
# Note that since Concatenation is a function using Append, it will
# not work for vectors and it cannot be overloaded!
# Thus we need:
DeclareGlobalFunction( "ConcatenationOfVectors" );

DeclareOperation( "ExtractSubVector", [IsRowVectorObj,IsList] );
# Does the same as slicing v{l} but is here to be similar to
# ExtractSubMatrix.

############################################################################
# Standard operations for all objects:
############################################################################

# The following are implicitly there for all objects, we mention them here
# to have a complete interface description in one place. Of course, vectors
# have to implement those:

# DeclareOperation( "ShallowCopy", [IsRowVectorObj] );

# DeclareGlobalFunction( "StructuralCopy", [IsRowVectorObj] );

# DeclareOperation( "ViewObj", [IsRowVectorObj] );

# DeclareOperation( "PrintObj", [IsRowVectorObj] );
# This must produce GAP readable input reproducing the representation!

# DeclareAttribute( "String", IsRowVectorObj );
# DeclareOperation( "String", [IsRowVectorObj,IsInt] );

# DeclareOperation( "Display", [IsRowVectorObj] );

# DeclareOperation( "MakeImmutable", [IsRowVectorObj] );
#  (this is a global function in the GAP library)


############################################################################
# Arithmetical operations for vectors:
############################################################################

# The following binary arithmetical operations are possible for vectors
# over the same BaseDomain with equal length:
#    +, -, <, =
# Note1: It is not guaranteed that sorting is done lexicographically!
# Note2: If sorting is not done lexicographically then the objects
#        in that representation cannot be lists!

# The following "in place" operations exist with the same restrictions:
DeclareOperation( "AddRowVector", 
  [ IsRowVectorObj and IsMutable, IsRowVectorObj ] );
DeclareOperation( "AddRowVector", 
  [ IsRowVectorObj and IsMutable, IsRowVectorObj, IsObject ] );
DeclareOperation( "AddRowVector", 
  [ IsRowVectorObj and IsMutable,IsRowVectorObj,IsObject,IsPosInt,IsPosInt ] );
DeclareOperation( "MultRowVector",
  [ IsRowVectorObj and IsMutable, IsObject ] );
DeclareOperation( "MultRowVector",
  [ IsRowVectorObj and IsMutable, IsList, IsRowVectorObj, IsList, IsObject ] );

# The following operations for scalars and vectors are possible of course
# only for scalars in the BaseDomain:
#    *, / (of course only vector/scalar)

# The following unary arithmetical operations are possible for vectors:
#    AdditiveInverseImmutable, AdditiveInverseMutable, 
#    AdditiveInverseSameMutability, ZeroImmutable, ZeroMutable, 
#    ZeroSameMutability, IsZero, Characteristic

DeclareOperation( "ScalarProduct", [ IsRowVectorObj, IsRowVectorObj ] );
# This is defined for two vectors of equal length, it returns the standard
# scalar product.

############################################################################
# The "representation-preserving" contructor methods:
############################################################################

DeclareOperation( "ZeroVector", [IsInt,IsRowVectorObj] );
# Returns a new mutable zero vector in the same rep as the given one with
# a possible different length.

DeclareOperation( "ZeroVector", [IsInt,IsMatrixObj] );
# Returns a new mutable zero vector in a rep that is compatible with
# the matrix but of possibly different length.

DeclareOperation( "Vector", [IsList,IsRowVectorObj]);
# Creates a new vector in the same representation but with entries from list.
# The length is given by the length of the first argument.
# It is *not* guaranteed that the list is copied!

# the following is gone again, use CompatibleVector instead:
#DeclareOperation( "Vector", [IsList,IsMatrixObj] );
## Returns a new mutable vector in a rep that is compatible with
## the matrix but of possibly different length given by the first
## argument. It is *not* guaranteed that the list is copied!

DeclareOperation( "ConstructingFilter", [IsRowVectorObj] );

DeclareOperation( "CompatibleMatrix", [IsRowVectorObj] );

DeclareConstructor( "NewRowVector", [IsRowVectorObj,IsRing,IsList] );
# A constructor. The first argument must be a filter indicating the
# representation the vector will be in, the second is the base domain.
# The last argument is guaranteed not to be changed!

DeclareConstructor( "NewZeroVector", [IsRowVectorObj,IsRing,IsInt] );
# A similar constructor to construct a zero vector, the last argument
# is the base domain.

DeclareOperation( "ChangedBaseDomain", [IsRowVectorObj,IsRing] );
# Changes the base domain. A copy of the row vector in the first argument is
# created, which comes in a "similar" representation but over the new
# base domain that is given in the second argument.

DeclareGlobalFunction( "MakeVector" );
# A convenience function for users to choose some appropriate representation
# and guess the base domain if not supplied as second argument.
# This is not guaranteed to be efficient and should never be used 
# in library or package code.

############################################################################
# Some things that fit nowhere else:
############################################################################

DeclareOperation( "Randomize", [IsRowVectorObj and IsMutable] );
# Changes the mutable argument in place, every entry is replaced
# by a random element from BaseDomain.
# The argument is also returned by the function.

DeclareOperation( "Randomize", [IsRowVectorObj and IsMutable,IsRandomSource] );
# The same, use the second argument to provide "randomness".
# The vector argument is also returned by the function.

#############################################################################
##
#O  CopySubVector( <src>, <dst>, <scols>, <dcols> )
##
##  <#GAPDoc Label="CopySubVector">
##  <ManSection>
##  <Oper Name="CopySubVector" Arg='src, dst, scols, dcols'/>
##
##  <Description>
##  returns nothing. Does <C><A>dst</A>{<A>dcols</A>} := <A>src</A>{<A>scols</A>}</C>
##  without creating an intermediate object and thus - at least in
##  special cases - much more efficiently. For certain objects like
##  compressed vectors this might be significantly more efficient if 
##  <A>scols</A> and <A>dcols</A> are ranges with increment 1.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CopySubVector", 
  [IsRowVectorObj,IsRowVectorObj and IsMutable, IsList,IsList] );

DeclareOperation( "WeightOfVector", [IsRowVectorObj] );
# This computes the Hamming weight of a vector, i.e. the number of
# nonzero entries.

DeclareOperation( "DistanceOfVectors", [IsRowVectorObj, IsRowVectorObj] );
# This computes the Hamming distance of two vectors, i.e. the number
# of positions, in which the vectors differ. The vectors must have the
# same length.


############################################################################
############################################################################
# Operations for all matrices in IsMatrixObj:
############################################################################
############################################################################


############################################################################
# Attributes of matrices:
############################################################################

# The following are guaranteed to be always set or cheaply calculable:
DeclareAttribute( "BaseDomain", IsMatrixObj );
# Typically, the base domain will be a ring, it need not be commutative
# nor associative. For non-associative base domains powering of matrices
# is defined by the behaviour of POW_OBJ_INT in the kernel.

DeclareAttribute( "Length", IsMatrixObj );
# We have to declare this since matrix objects need not be lists.
# We have to use InstallOtherMethod for those matrix types that are
# lists.

DeclareAttribute( "RowLength", IsMatrixObj );

DeclareAttribute( "DimensionsMat", IsMatrixObj );   # returns [rows,cols]

DeclareAttribute( "RankMat", IsMatrixObj );
DeclareOperation( "RankMatDestructive", [ IsMatrixObj ] );

############################################################################
# In the following sense matrices behave like lists:
############################################################################

DeclareOperation( "[]", [IsMatrixObj,IsPosInt] );
# This is guaranteed to return a vector object that has the property
# that changing it changes the matrix!
# A flat matrix has to create an intermediate object that refers to some
# row within it to allow the old GAP syntax M[i][j] for read and write
# access to work. Note that this will never be particularly efficient
# for flat matrices. Efficient code will have to use MatElm and
# SetMatElm instead.

# These should probably only be defined for RowListMatrices???

DeclareOperation( "PositionNonZero", [IsMatrixObj] );
DeclareOperation( "PositionNonZero", [IsMatrixObj, IsInt] );

DeclareOperation( "PositionLastNonZero", [IsMatrixObj] );
DeclareOperation( "PositionLastNonZero", [IsMatrixObj, IsInt] );

DeclareOperation( "Position", [IsMatrixObj, IsRowVectorObj] );
DeclareOperation( "Position", [IsMatrixObj, IsRowVectorObj, IsInt] );

# This allows for usage of PositionSorted:
DeclareOperation( "PositionSortedOp", [IsMatrixObj, IsRowVectorObj] );
DeclareOperation( "PositionSortedOp",[IsMatrixObj,IsRowVectorObj,IsFunction]);

# I intentionally left out "PositionNot" here.

# Note that "PositionSet" is a function only for lists. End of story.

# Note that arbitrary matrices need not behave like lists with respect to the 
# following operations:
#  Add, Remove, IsBound, Unbind, \{\}\:\=, Append, Concatenation,
# However, see below for matrices in the subcategory IsRowListMatrix.


############################################################################
# Explicit copying operations:
############################################################################

# The following are already in the library, these declarations should be
# adjusted:
#############################################################################
##
#O  ExtractSubMatrix( <mat>, <rows>, <cols> )
##
##  <#GAPDoc Label="ExtractSubMatrix">
##  <ManSection>
##  <Oper Name="ExtractSubMatrix" Arg='mat, rows, cols'/>
##
##  <Description>
##  Creates a fully mutable copy of the submatrix described by the two
##  lists, which mean subset of rows and subset of columns respectively.
##  This does <A>mat</A>{<A>rows</A>}{<A>cols</A>} and returns the result.
##  It preserves the representation of the matrix.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ExtractSubMatrix", [IsMatrixObj,IsList,IsList] );

# Creates a fully mutable copy of the matrix.
DeclareOperation( "MutableCopyMat", [IsMatrixObj] );

#############################################################################
##
#O  CopySubMatrix( <src>, <dst>, <srows>, <drows>, <scols>, <dcols> )
##
##  <#GAPDoc Label="CopySubMatrix">
##  <ManSection>
##  <Oper Name="CopySubMatrix" Arg='src, dst, srows, drows, scols, dcols'/>
##
##  <Description>
##  returns nothing. Does <C><A>dst</A>{<A>drows</A>}{<A>dcols</A>} := <A>src</A>{<A>srows</A>}{<A>scols</A>}</C>
##  without creating an intermediate object and thus - at least in
##  special cases - much more efficiently. For certain objects like
##  compressed vectors this might be significantly more efficient if 
##  <A>scols</A> and <A>dcols</A> are ranges with increment 1.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "CopySubMatrix", [IsMatrixObj,IsMatrixObj,
                                    IsList,IsList,IsList,IsList] );

############################################################################
# New element access for matrices (especially necessary for flat mats:
############################################################################

DeclareOperation( "MatElm", [IsMatrixObj,IsPosInt,IsPosInt] );
# second and third arguments are row and column index

DeclareOperation( "SetMatElm", [IsMatrixObj,IsPosInt,IsPosInt,IsObject] );
# second and third arguments are row and column index


############################################################################
# Standard operations for all objects:
############################################################################

# The following are implicitly there for all objects, we mention them here
# to have a complete interface description in one place:

# ShallowCopy is missing here since its behaviour depends on the matrix
# being in IsRowListMatrix or in IsFlatMatrix!

# DeclareGlobalFunction( "StructuralCopy", [IsMatrixObj] );

# DeclareOperation( "ViewObj", [IsMatrixObj] );

# DeclareOperation( "PrintObj", [IsMatrixObj] );
# This must produce GAP-readable input reproducing the representation.

# DeclareAttribute( "String", IsMatrixObj );
# DeclareOperation( "String", [IsMatrixObj,IsInt] );

# DeclareOperation( "Display", [IsMatrixObj] );

# DeclareOperation( "MakeImmutable", [IsMatrixObj] );
#  (this is a global function in the GAP library)
# Matrices have to implement "PostMakeImmutable" if necessary!


############################################################################
# Arithmetical operations:
############################################################################

# The following binary arithmetical operations are possible for matrices
# over the same BaseDomain with fitting dimensions:
#    +, *, -
# The following are also allowed for different dimensions:
#    <, =
# Note1: It is not guaranteed that sorting is done lexicographically!
# Note2: If sorting is not done lexicographically then the objects
#        in that representation cannot be lists!

# For non-empty square matrices we have:
#    ^ integer

# The following unary arithmetical operations are possible for matrices:
#    AdditiveInverseImmutable, AdditiveInverseMutable, 
#    AdditiveInverseSameMutability, ZeroImmutable, ZeroMutable, 
#    ZeroSameMutability, IsZero, Characteristic

# The following unary arithmetical operations are possible for non-empty
# square matrices (inversion returns fail if not invertible):
#    OneMutable, OneImmutable, OneSameMutability,
#    InverseMutable, InverseImmutable, InverseSameMutability, IsOne,

# Problem: How about inverses of integer matrices that exist as
# elements of rationals matrix?

DeclareOperation( "AddMatrix", [IsMutable and IsMatrixObj,IsMatrixObj] );
DeclareOperation( "AddMatrix", 
  [IsMutable and IsMatrixObj,IsMatrixObj,IsMultiplicativeElement] );
DeclareOperation( "MultMatrix", 
  [IsMutable and IsMatrixObj,IsMultiplicativeElement] );

# Changes first argument in place, matrices have to be of same
# dimension and over same base domain.

DeclareOperation( "ProductTransposedMatMat", [IsMatrixObj, IsMatrixObj] );
# Computes the product TransposedMat(A)*B, possibly without
# first computing TransposedMat(A).

DeclareOperation( "TraceMat", [IsMatrixObj] );
# The sum of the diagonal entries. Error for a non-square matrix.

############################################################################
# Rule:
# Operations not sensibly defined return fail and do not trigger an error:
# In particular this holds for:
# One for non-square matrices.
# Inverse for non-square matrices
# Inverse for square, non-invertible matrices.
#
# An exception are properties:
# IsOne for non-square matrices returns false.
#
# To detect errors more easily:
# Matrix/vector and matrix/matrix product run into errors if not defined
# mathematically (like for example a 1x2 - matrix times itself.
############################################################################

############################################################################
# The "representation-preserving" contructor methods:
############################################################################

DeclareOperation( "ZeroMatrix", [IsInt,IsInt,IsMatrixObj] );
# Returns a new fully mutable zero matrix in the same rep as the given one with
# possibly different dimensions. First argument is number of rows, second
# is number of columns.

DeclareConstructor( "NewZeroMatrix", [IsMatrixObj,IsRing,IsInt,IsInt]);
# Returns a new fully mutable zero matrix over the base domain in the
# 2nd argument. The integers are the number of rows and columns.

DeclareOperation( "IdentityMatrix", [IsInt,IsMatrixObj] );
# Returns a new mutable identity matrix in the same rep as the given one with
# possibly different dimensions.

DeclareConstructor( "NewIdentityMatrix", [IsMatrixObj,IsRing,IsInt]);
# Returns a new fully mutable identity matrix over the base domain in the
# 2nd argument. The integer is the number of rows and columns.

DeclareOperation( "CompanionMatrix", [IsUnivariatePolynomial,IsMatrixObj] );
# Returns the companion matrix of the first argument in the representation
# of the second argument. Uses row-convention. The polynomial must be
# monic and its coefficients must lie in the BaseDomain of the matrix.

DeclareConstructor( "NewCompanionMatrix", 
  [IsMatrixObj, IsUnivariatePolynomial, IsRing] );
# The constructor variant of <Ref Oper="CompanionMatrix"/>.

# The following are already declared in the library:
# Eventually here will be the right place to do this.

DeclareOperation( "Matrix", [IsList,IsInt,IsMatrixObj]);
# Creates a new matrix in the same representation as the fourth argument
# but with entries from list, the second argument is the number of
# columns. The first argument can be:
#  - a plain list of vectors of the correct row length in a representation 
#          fitting to the matrix rep.
#  - a plain list of plain lists where each sublist has the length of the rows
#  - a plain list with length rows*cols with matrix entries given row-wise
# If the first argument is empty, then the number of rows is zero.
# Otherwise the first entry decides which case is given.
# The outer list is guaranteed to be copied, however, the entries of that
# list (the rows) need not be copied.
# The following convenience versions exist:
# With two arguments the first must not be empty and must not be a flat
# list. Then the number of rows is deduced from the length of the first
# argument and the number of columns is deduced from the length of the
# element of the first argument (done with a generic method):
DeclareOperation( "Matrix", [IsList,IsMatrixObj] );

# Note that it is not possible to generate a matrix via "Matrix" without
# a template matrix object. Use the constructor methods instead:

DeclareConstructor( "NewMatrix", [IsMatrixObj, IsRing, IsInt, IsList] );
# Constructs a new fully mutable matrix. The first argument has to be a filter
# indicating the representation. The second the base domain, the third
# the row length and the last a list containing either row vectors
# of the right length or lists with base domain elements.
# The last argument is guaranteed not to be changed!
# If the last argument already contains row vectors, they are copied.

DeclareOperation( "ConstructingFilter", [IsMatrixObj] );

DeclareOperation( "CompatibleVector", [IsMatrixObj] );

DeclareOperation( "ChangedBaseDomain", [IsMatrixObj,IsRing] );
# Changes the base domain. A copy of the matrix in the first argument is
# created, which comes in a "similar" representation but over the new
# base domain that is given in the second argument.

DeclareGlobalFunction( "MakeMatrix" );
# A convenience function for users to choose some appropriate representation
# and guess the base domain if not supplied as second argument.
# This is not guaranteed to be efficient and should never be used
# in library or package code.


############################################################################
# Some things that fit nowhere else:
############################################################################

DeclareOperation( "Randomize", [IsMatrixObj and IsMutable] );
DeclareOperation( "Randomize", [IsMatrixObj and IsMutable,IsRandomSource] );
# Changes the mutable argument in place, every entry is replaced
# by a random element from BaseDomain.
# The second version will come when we have random sources.

DeclareAttribute( "TransposedMatImmutable", IsMatrixObj );
DeclareOperation( "TransposedMatMutable", [IsMatrixObj] );

DeclareOperation( "IsDiagonalMat", [IsMatrixObj] );

DeclareOperation( "IsUpperTriangularMat", [IsMatrixObj] );
DeclareOperation( "IsLowerTriangularMat", [IsMatrixObj] );

DeclareOperation( "KroneckerProduct", [IsMatrixObj,IsMatrixObj] );
# The result is fully mutable.

DeclareOperation( "Unfold", [IsMatrixObj, IsRowVectorObj] );
# Concatenates all rows of a matrix to one single vector in the same
# representation as the given template vector. Usually this must
# be compatible with the representation of the matrix given.
DeclareOperation( "Fold", [IsRowVectorObj, IsPosInt, IsMatrixObj] );
# Cuts the row vector into pieces of length the second argument
# and forms a matrix out of the pieces in the same representation 
# as the third argument. The length of the vector must be a multiple
# of the second argument.

# The following unwraps a matrix to a list of lists:
DeclareOperation( "Unpack", [IsRowListMatrix] );
# It guarantees to copy, that is changing the returned object does
# not change the original object.


############################################################################
############################################################################
# Operations for RowList-matrices:
############################################################################
############################################################################


############################################################################
# List operations with some restrictions:
############################################################################

DeclareOperation( "[]:=", [IsRowListMatrix,IsPosInt,IsObject] );
# Only guaranteed to work for the position in [1..Length(VECTOR)] and only
# for elements in a suitable vector type.
# Behaviour otherwise is undefined (from "unpacking" to Error all is possible)

DeclareOperation( "{}", [IsRowListMatrix,IsList] );
# Produces *not* a list of rows but a matrix in the same rep as the input!

DeclareOperation( "Add", [IsRowListMatrix,IsRowVectorObj] );
DeclareOperation( "Add", [IsRowListMatrix,IsRowVectorObj,IsPosInt] );

DeclareOperation( "Remove", [IsRowListMatrix] );
DeclareOperation( "Remove", [IsRowListMatrix,IsPosInt] );

DeclareOperation( "IsBound[]", [IsRowListMatrix,IsPosInt] );
DeclareOperation( "Unbind[]", [IsRowListMatrix,IsPosInt] );  
# Only works for last row to preserve denseness.

DeclareOperation( "{}:=", [IsRowListMatrix,IsList,IsRowListMatrix] );
# This is only guaranteed to work if the result is dense and the matrices
# are compatible. For efficiency reasons the third argument must be a
# matrix and cannot be a list of vectors.

DeclareOperation( "Append", [IsRowListMatrix,IsRowListMatrix] ); 
# Again only for compatible matrices
# ==> Concatenation works then automatically!

# Implicitly there, creates a new matrix sharing the same rows:
# DeclareOperation( "ShallowCopy", [IsRowListMatrix] );

# The following unwraps a matrix to a list of vectors:
DeclareOperation( "ListOp", [IsRowListMatrix] );
DeclareOperation( "ListOp", [IsRowListMatrix, IsFunction] );


############################################################################
# Rule:
# This all means that objects in IsRowListMatrix behave like lists that
# insist on being dense and having only IsRowVectorObjs over the right
# BaseDomain and with the right length as entries. However, formally
# they do not have to lie in the filter IsList.
############################################################################


############################################################################
############################################################################
# Operations for flat matrices:
############################################################################
############################################################################


############################################################################
# List operations with some modifications:
############################################################################

DeclareOperation( "[]:=", [IsFlatMatrix,IsPosInt,IsObject] );
# Only guaranteed to work for the position in [1..Length(VECTOR)] and only
# for elements in a suitable vector type.
# Here this is always a copying operation!
# Behaviour otherwise is undefined (from "unpacking" to Error all is possible)

DeclareOperation( "{}", [IsFlatMatrix,IsList] );
# Again this is defined to be a copying operation!

# The following list operations are not supported for flat matrices:
# Add, Remove, IsBound[], Unbind[], {}:=, Append

# ShallowCopy is in fact a structural copy here:
# DeclareOperation( "ShallowCopy", [IsFlatMatrix] );


############################################################################
# Rule:
# Objects in IsFlatMatrix are not lists and do not behave like them.
############################################################################


############################################################################
# Arithmetic involving vectors and matrices:
############################################################################

# DeclareOperation( "*", [IsRowVectorObj, IsMatrixObj] );

# DeclareOperation( "^", [IsRowVectorObj, IsMatrixObj] );

# Only in this direction since vectors are row vectors. The standard
# list arithmetic rules apply only in this sense here which is the
# standard mathematical vector matrix multiplication.


############################################################################
# Rule:
# Note that vectors are by convention row vectors.
############################################################################


############################################################################
# Further candidates for the interface:
############################################################################

# AsList
# AddCoeffs

##
##  This program is free software; you can redistribute it and/or modify
##  it under the terms of the GNU General Public License as published by
##  the Free Software Foundation; version 2 of the License.
##
##  This program is distributed in the hope that it will be useful,
##  but WITHOUT ANY WARRANTY; without even the implied warranty of
##  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##  GNU General Public License for more details.
##
##  You should have received a copy of the GNU General Public License
##  along with this program; if not, write to the Free Software
##  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
##