This file is indexed.

/usr/share/gap/lib/matrix.gd is in gap-libs 4r7p9-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
#############################################################################
##
#W  matrix.gd                   GAP library                     Thomas Breuer
#W                                                             & Frank Celler
#W                                                         & Alexander Hulpke
#W                                                           & Heiko Theißen
#W                                                         & Martin Schönert
##
##
#Y  Copyright (C)  1997,  Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
#Y  (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y  Copyright (C) 2002 The GAP Group
##
##  This file contains those functions that mainly deal with matrices.
##


#############################################################################
##
#V  InfoMatrix
##
##  <#GAPDoc Label="InfoMatrix">
##  <ManSection>
##  <InfoClass Name="InfoMatrix"/>
##
##  <Description>
##  The info class for matrix operations is <Ref InfoClass="InfoMatrix"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareInfoClass( "InfoMatrix" );

#############################################################################
##
#F  PrintArray( <array> )
##
##  <#GAPDoc Label="PrintArray">
##  <ManSection>
##  <Func Name="PrintArray" Arg='array'/>
##
##  <Description>
##  pretty-prints the array <A>array</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("PrintArray");

#############################################################################
##
#P  IsGeneralizedCartanMatrix( <A> )
##
##  <ManSection>
##  <Prop Name="IsGeneralizedCartanMatrix" Arg='A'/>
##
##  <Description>
##  The square matrix <A>A</A> is a generalized Cartan Matrix if and only if
##  1. <C>A[i][i] = 2</C> for all <M>i</M>,
##  2. <C>A[i][j]</C> are nonpositive integers for <M>i \neq j</M>,
##  3. <C>A[i][j] = 0</C> implies <C>A[j][i] = 0</C>.
##  </Description>
##  </ManSection>
##
DeclareProperty( "IsGeneralizedCartanMatrix", IsMatrix );


#############################################################################
##
#O  IsDiagonalMat( <mat> )
##
##  <#GAPDoc Label="IsDiagonalMat">
##  <ManSection>
##  <Oper Name="IsDiagonalMat" Arg='mat'/>
##
##  <Description>
##  returns true if mat has only zero entries off the main diagonal, false
##  otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("IsDiagonalMat",[IsMatrix]);

#############################################################################
##
#O  IsUpperTriangularMat( <mat> )
##
##  <#GAPDoc Label="IsUpperTriangularMat">
##  <ManSection>
##  <Oper Name="IsUpperTriangularMat" Arg='mat'/>
##
##  <Description>
##  returns true if mat has only zero entries below the main diagonal, false
##  otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("IsUpperTriangularMat",[IsMatrix]);

#############################################################################
##
#O  IsLowerTriangularMat( <mat> )
##
##  <#GAPDoc Label="IsLowerTriangularMat">
##  <ManSection>
##  <Oper Name="IsLowerTriangularMat" Arg='mat'/>
##
##  <Description>
##  returns true if mat has only zero entries below the main diagonal, false
##  otherwise.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("IsLowerTriangularMat",[IsMatrix]);

#############################################################################
##
#O  DiagonalOfMat( <mat> )
##
##  <#GAPDoc Label="DiagonalOfMat">
##  <ManSection>
##  <Oper Name="DiagonalOfMat" Arg='mat'/>
##
##  <Description>
##  returns the diagonal of the matrix <A>mat</A>. If <A>mat</A> is not a
##  square matrix, then the result has the same length as the rows of
##  <A>mat</A>, and is padded with zeros if <A>mat</A> has fewer rows than
##  columns.
##  <Example><![CDATA[
##  gap> DiagonalOfMat([[1,2,3],[4,5,6]]);
##  [ 1, 5, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DiagonalOfMat" );


#############################################################################
##
#A  BaseMat( <mat> )  . . . . . . . . . .  base for the row space of a matrix
##
##  <#GAPDoc Label="BaseMat">
##  <ManSection>
##  <Attr Name="BaseMat" Arg='mat'/>
##
##  <Description>
##  returns a basis for the row space generated by the rows of <A>mat</A> in the
##  form of an immutable matrix.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "BaseMat", IsMatrix );

#############################################################################
##
#O  BaseMatDestructive( <mat> )
##
##  <#GAPDoc Label="BaseMatDestructive">
##  <ManSection>
##  <Oper Name="BaseMatDestructive" Arg='mat'/>
##
##  <Description>
##  Does the same as <Ref Attr="BaseMat"/>, with the difference that it may destroy
##  the matrix <A>mat</A>. The matrix <A>mat</A> must be mutable.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> BaseMat(mat);
##  [ [ 1, 2, 3 ], [ 0, 1, 2 ] ]
##  gap> mm:= [[1,2,3],[4,5,6],[5,7,9]];;
##  gap> BaseMatDestructive( mm );
##  [ [ 1, 2, 3 ], [ 0, 1, 2 ] ]
##  gap> mm;
##  [ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "BaseMatDestructive", [ IsMatrix ] );

#############################################################################
##
#A  BaseOrthogonalSpaceMat( <mat> )
##
##  <#GAPDoc Label="BaseOrthogonalSpaceMat">
##  <ManSection>
##  <Attr Name="BaseOrthogonalSpaceMat" Arg='mat'/>
##
##  <Description>
##  Let <M>V</M> be the row space generated  by the rows of  <A>mat</A> (over any field
##  that contains all  entries of <A>mat</A>).  <C>BaseOrthogonalSpaceMat( <A>mat</A>  )</C>
##  computes a base of the orthogonal space of <M>V</M>.
##  <P/>
##  The rows of <A>mat</A> need not be linearly independent.
##  <P/>
##  <!-- Note that this means to transpose twice ...-->
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "BaseOrthogonalSpaceMat", IsMatrix );


#############################################################################
##
#A  DefaultFieldOfMatrix( <mat> )
##
##  <#GAPDoc Label="DefaultFieldOfMatrix">
##  <ManSection>
##  <Attr Name="DefaultFieldOfMatrix" Arg='mat'/>
##
##  <Description>
##  For a matrix <A>mat</A>, <Ref Attr="DefaultFieldOfMatrix"/> returns either a field
##  (not necessarily the smallest one) containing all entries of <A>mat</A>,
##  or <K>fail</K>.
##  <P/>
##  If <A>mat</A> is a matrix of finite field elements or a matrix of cyclotomics,
##  <Ref Attr="DefaultFieldOfMatrix"/> returns the default field generated by the matrix
##  entries (see&nbsp;<Ref Sect="Creating Finite Fields"/> and <Ref Sect="Operations for Cyclotomics"/>).
##  <Example><![CDATA[
##  gap> DefaultFieldOfMatrix([[Z(4),Z(8)]]);
##  GF(2^6)
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DefaultFieldOfMatrix", IsMatrix );


#############################################################################
##
#A  DepthOfUpperTriangularMatrix( <mat> )
##
##  <#GAPDoc Label="DepthOfUpperTriangularMatrix">
##  <ManSection>
##  <Attr Name="DepthOfUpperTriangularMatrix" Arg='mat'/>
##
##  <Description>
##  If <A>mat</A> is an upper triangular matrix this attribute returns the
##  index of the first nonzero diagonal.
##  <Example><![CDATA[
##  gap> DepthOfUpperTriangularMatrix([[0,1,2],[0,0,1],[0,0,0]]);
##  1
##  gap> DepthOfUpperTriangularMatrix([[0,0,2],[0,0,0],[0,0,0]]);
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DepthOfUpperTriangularMatrix", IsMatrix );


#############################################################################
##
#A  DeterminantMat( <mat> ) . . . . . . . . . . . . . determinant of a matrix
#F  Determinant( <mat> )
##
##  <#GAPDoc Label="DeterminantMat">
##  <ManSection>
##  <Attr Name="DeterminantMat" Arg='mat'/>
##  <Attr Name="Determinant" Arg='mat'/>
##
##  <Description>
##  returns the determinant of the square matrix <A>mat</A>.
##  <P/>
##  These methods assume implicitly that <A>mat</A> is defined over an
##  integral domain whose quotient field is implemented in &GAP;. For
##  matrices defined over an arbitrary commutative ring with one 
##  see&nbsp;<Ref Func="DeterminantMatDivFree"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DeterminantMat", IsMatrix );

#############################################################################
##
#O  DeterminantMatDestructive( <mat> )
##
##  <#GAPDoc Label="DeterminantMatDestructive">
##  <ManSection>
##  <Oper Name="DeterminantMatDestructive" Arg='mat'/>
##
##  <Description>
##  Does the same as <Ref Attr="DeterminantMat"/>, with the difference that it may
##  destroy its argument. The matrix <A>mat</A> must be mutable.
##  <Example><![CDATA[
##  gap> DeterminantMat([[1,2],[2,1]]);
##  -3
##  gap> mm:= [[1,2],[2,1]];;
##  gap> DeterminantMatDestructive( mm );
##  -3
##  gap> mm;
##  [ [ 1, 2 ], [ 0, -3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DeterminantMatDestructive", [ IsMatrix and IsMutable] );

#############################################################################
##
#O  DeterminantMatDivFree( <mat> )
##
##  <#GAPDoc Label="DeterminantMatDivFree">
##  <ManSection>
##  <Oper Name="DeterminantMatDivFree" Arg='mat'/>
##
##  <Description>
##  returns the determinant of a square matrix <A>mat</A> over an arbitrary 
##  commutative ring with one using the division free method of 
##  Mahajan and Vinay <Cite Key="MV97"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation("DeterminantMatDivFree",[IsMatrix]);

#############################################################################
##
#A  DimensionsMat( <mat> )  . . . . . . . . . . . . .  dimensions of a matrix
##
##  <#GAPDoc Label="DimensionsMat">
##  <ManSection>
##  <Attr Name="DimensionsMat" Arg='mat'/>
##
##  <Description>
##  is a list of length 2, the first being the number of rows, the second
##  being the number of columns of the matrix <A>mat</A>. If <A>mat</A> is
##  malformed, that is, it is not a <Ref Prop="IsRectangularTable"/>, 
##  returns <K>fail</K>.
##  <Example><![CDATA[
##  gap> DimensionsMat([[1,2,3],[4,5,6]]);
##  [ 2, 3 ]
##  gap> DimensionsMat([[1,2,3],[4,5]]);
##  fail
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "DimensionsMat", IsMatrix );


#############################################################################
##
#O  ElementaryDivisorsMat([<ring>,] <mat>)
#F  ElementaryDivisorsMatDestructive(<ring>,<mat>)
##
##  <#GAPDoc Label="ElementaryDivisorsMat">
##  <ManSection>
##  <Oper Name="ElementaryDivisorsMat" Arg='[ring,] mat'/>
##  <Func Name="ElementaryDivisorsMatDestructive" Arg='ring,mat'/>
##
##  <Description>
##  returns a list of the elementary divisors, i.e., the
##  unique <M>d</M> with <M>d[i]</M> divides  <M>d[i+1]</M> and <A>mat</A> is  equivalent
##  to a diagonal matrix with the elements <M>d[i]</M> on the diagonal.
##  The operations are performed over the euclidean
##  ring <A>ring</A>, which must contain
##  all matrix entries. For compatibility reasons it can be omitted and
##  defaults to the <Ref Func="DefaultRing" Label="for ring elements"/> of the matrix entries.
##  <P/>
##  The function <Ref Func="ElementaryDivisorsMatDestructive"/> produces the same result
##  but in the process may destroy the contents of <A>mat</A>.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> ElementaryDivisorsMat(mat);
##  [ 1, 3, 0 ]
##  gap> x:=Indeterminate(Rationals,"x");;
##  gap> mat:=mat*One(x)-x*mat^0;       
##  [ [ -x+1, 2, 3 ], [ 4, -x+5, 6 ], [ 7, 8, -x+9 ] ]
##  gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);
##  [ 1, 1, x^3-15*x^2-18*x ]
##  gap> mat:=KroneckerProduct(CompanionMat((x-1)^2),
##  >                          CompanionMat((x^3-1)*(x-1)));;
##  gap> mat:=mat*One(x)-x*mat^0;
##  [ [ -x, 0, 0, 0, 0, 0, 0, 1 ], [ 0, -x, 0, 0, -1, 0, 0, -1 ], 
##    [ 0, 0, -x, 0, 0, -1, 0, 0 ], [ 0, 0, 0, -x, 0, 0, -1, -1 ], 
##    [ 0, 0, 0, -1, -x, 0, 0, -2 ], [ 1, 0, 0, 1, 2, -x, 0, 2 ], 
##    [ 0, 1, 0, 0, 0, 2, -x, 0 ], [ 0, 0, 1, 1, 0, 0, 2, -x+2 ] ]
##  gap> ElementaryDivisorsMat(PolynomialRing(Rationals,1),mat);
##  [ 1, 1, 1, 1, 1, 1, x-1, x^7-x^6-2*x^4+2*x^3+x-1 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ElementaryDivisorsMat", [IsRing,IsMatrix] );
DeclareGlobalFunction( "ElementaryDivisorsMatDestructive" );

#############################################################################
##
#O  ElementaryDivisorsTransformationsMat([<ring>,] <mat>)
#F  ElementaryDivisorsTransformationsMatDestructive(<ring>,<mat>)
##
##  <#GAPDoc Label="ElementaryDivisorsTransformationsMat">
##  <ManSection>
##  <Oper Name="ElementaryDivisorsTransformationsMat" Arg='[ring,] mat'/>
##  <Func Name="ElementaryDivisorsTransformationsMatDestructive" Arg='ring,mat'/>
##
##  <Description>
##  <C>ElementaryDivisorsTransformations</C>, in addition to the tasks done
##  by <C>ElementaryDivisorsMat</C>, also calculates transforming matrices.
##  It returns a record with components <C>normal</C> (a matrix <M>S</M>),
##  <C>rowtrans</C> (a matrix <M>P</M>),
##  and <C>coltrans</C> (a matrix <M>Q</M>) such that <M>P A Q = S</M>.
##  The operations are performed over the euclidean ring
##  <A>ring</A>, which must contain
##  all matrix entries. For compatibility reasons it can be omitted and
##  defaults to the <Ref Func="DefaultRing" Label="for ring elements"/> of the matrix entries.
##  <P/>
##  The function <Ref Func="ElementaryDivisorsTransformationsMatDestructive"/>
##  produces the same result
##  but in the process destroys the contents of <A>mat</A>.
##  <Example><![CDATA[
##  gap> mat:=KroneckerProduct(CompanionMat((x-1)^2),CompanionMat((x^3-1)*(x-1)));;
##  gap> mat:=mat*One(x)-x*mat^0;
##  [ [ -x, 0, 0, 0, 0, 0, 0, 1 ], [ 0, -x, 0, 0, -1, 0, 0, -1 ], 
##    [ 0, 0, -x, 0, 0, -1, 0, 0 ], [ 0, 0, 0, -x, 0, 0, -1, -1 ], 
##    [ 0, 0, 0, -1, -x, 0, 0, -2 ], [ 1, 0, 0, 1, 2, -x, 0, 2 ], 
##    [ 0, 1, 0, 0, 0, 2, -x, 0 ], [ 0, 0, 1, 1, 0, 0, 2, -x+2 ] ]
##  gap> t:=ElementaryDivisorsTransformationsMat(PolynomialRing(Rationals,1),mat);
##  rec( coltrans := [ [ 0, 0, 0, 0, 0, 0, 1/6*x^2-7/9*x-1/18, -3*x^3-x^2-x-1 ], 
##        [ 0, 0, 0, 0, 0, 0, -1/6*x^2+x-1, 3*x^3-3*x^2 ], 
##        [ 0, 0, 0, 0, 0, 1, -1/18*x^4+1/3*x^3-1/3*x^2-1/9*x, x^5-x^4+2*x^2-2*x 
##           ], [ 0, 0, 0, 0, -1, 0, -1/9*x^3+1/2*x^2+1/9*x, 2*x^4+x^3+x^2+2*x ],
##        [ 0, -1, 0, 0, 0, 0, -2/9*x^2+19/18*x, 4*x^3+x^2+x ], 
##        [ 0, 0, -1, 0, 0, -x, 1/18*x^5-1/3*x^4+1/3*x^3+1/9*x^2, 
##            -x^6+x^5-2*x^3+2*x^2 ], 
##        [ 0, 0, 0, -1, x, 0, 1/9*x^4-2/3*x^3+2/3*x^2+1/18*x, 
##            -2*x^5+2*x^4-x^2+x ], 
##        [ 1, 0, 0, 0, 0, 0, 1/6*x^3-7/9*x^2-1/18*x, -3*x^4-x^3-x^2-x ] ], 
##    normal := [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ], 
##        [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0 ], 
##        [ 0, 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0 ], 
##        [ 0, 0, 0, 0, 0, 0, x-1, 0 ], 
##        [ 0, 0, 0, 0, 0, 0, 0, x^7-x^6-2*x^4+2*x^3+x-1 ] ], 
##    rowtrans := [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 1, 1, 0, 0, 0, 0, 0, 0 ], 
##        [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 1, 0, 0, 1, 0, 0, 0, 0 ], 
##        [ -x+2, -x, 0, 0, 1, 0, 0, 0 ], 
##        [ 2*x^2-4*x+2, 2*x^2-x, 0, 2, -2*x+1, 0, 0, 1 ], 
##        [ 3*x^3-6*x^2+3*x, 3*x^3-2*x^2, 2, 3*x, -3*x^2+2*x, 0, 1, 2*x ], 
##        [ 1/6*x^8-7/6*x^7+2*x^6-4/3*x^5+7/3*x^4-4*x^3+13/6*x^2-7/6*x+2, 
##            1/6*x^8-17/18*x^7+13/18*x^6-5/18*x^5+35/18*x^4-31/18*x^3+1/9*x^2-x+\
##  2, 1/9*x^5-5/9*x^4+1/9*x^3-1/9*x^2+14/9*x-1/9, 
##            1/6*x^6-5/6*x^5+1/6*x^4-1/6*x^3+11/6*x^2-1/6*x, 
##            -1/6*x^7+17/18*x^6-13/18*x^5+5/18*x^4-35/18*x^3+31/18*x^2-1/9*x+1, 
##            1, 1/18*x^5-5/18*x^4+1/18*x^3-1/18*x^2+23/18*x-1/18, 
##            1/9*x^6-5/9*x^5+1/9*x^4-1/9*x^3+14/9*x^2-1/9*x ] ] )
##  gap> t.rowtrans*mat*t.coltrans;
##  [ [ 1, 0, 0, 0, 0, 0, 0, 0 ], [ 0, 1, 0, 0, 0, 0, 0, 0 ], 
##    [ 0, 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0, 0 ], 
##    [ 0, 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 1, 0, 0 ], 
##    [ 0, 0, 0, 0, 0, 0, x-1, 0 ], 
##    [ 0, 0, 0, 0, 0, 0, 0, x^7-x^6-2*x^4+2*x^3+x-1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "ElementaryDivisorsTransformationsMat", [IsRing,IsMatrix] );
DeclareGlobalFunction( "ElementaryDivisorsTransformationsMatDestructive" );

#############################################################################
##
#O  TriangulizedNullspaceMatNT(<mat>)
##
##  <ManSection>
##  <Oper Name="TriangulizedNullspaceMatNT" Arg='mat'/>
##
##  <Description>
##  This returns the triangulized nullspace of the matrix <A>mat</A>, without
##  transposing it. This is used in <C>TriangulizedNullspaceMat</C>, and
##  <C>TriangulizedNullspaceMatDestructive</C>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "TriangulizedNullspaceMatNT", [ IsMatrix ] );


#############################################################################
##
#A  NullspaceMat( <mat> ) . . . . . . basis of solutions of <vec> * <mat> = 0
#A  TriangulizedNullspaceMat(<mat>)
##
##  <#GAPDoc Label="NullspaceMat">
##  <ManSection>
##  <Attr Name="NullspaceMat" Arg='mat'/>
##  <Attr Name="TriangulizedNullspaceMat" Arg='mat'/>
##
##  <Description>
##  <Index Subkey="of a matrix">kernel</Index>
##  returns a list of row vectors that form a basis of the vector space of
##  solutions to the equation <C><A>vec</A>*<A>mat</A>=0</C>.
##  The result is an immutable matrix.
##  This basis is not guaranteed to be in any specific form.
##  <P/>
##  The variant <Ref Attr="TriangulizedNullspaceMat"/> returns a basis of the
##  nullspace in triangulized form as is often needed for algorithms.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "NullspaceMat", IsMatrix );
DeclareAttribute( "TriangulizedNullspaceMat", IsMatrix );


#############################################################################
##
#O  NullspaceMatDestructive( <mat> )
#O  TriangulizedNullspaceMatDestructive(<mat>)
##
##  <#GAPDoc Label="NullspaceMatDestructive">
##  <ManSection>
##  <Oper Name="NullspaceMatDestructive" Arg='mat'/>
##  <Oper Name="TriangulizedNullspaceMatDestructive" Arg='mat'/>
##
##  <Description>
##  This function does the same as <Ref Attr="NullspaceMat"/>.
##  However, the latter function makes a copy of <A>mat</A> to avoid having
##  to change it.
##  This function does not do that; it returns the nullspace and may destroy
##  <A>mat</A>;
##  this saves a lot of memory in case <A>mat</A> is big.
##  The matrix <A>mat</A> must be mutable.
##  <P/>
##  The variant <Ref Oper="TriangulizedNullspaceMatDestructive"/> returns a
##  basis of the nullspace in triangulized form.
##  It may destroy the matrix <A>mat</A>.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> NullspaceMat(mat);
##  [ [ 1, -2, 1 ] ]
##  gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> NullspaceMatDestructive( mm );
##  [ [ 1, -2, 1 ] ]
##  gap> mm;
##  [ [ 1, 2, 3 ], [ 0, -3, -6 ], [ 0, 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "NullspaceMatDestructive", [ IsMatrix and IsMutable] );
DeclareOperation( "TriangulizedNullspaceMatDestructive", [ IsMatrix and IsMutable] );


#############################################################################
##
#O  GeneralisedEigenvalues( <F>, <A> )
#O  GeneralizedEigenvalues( <F>, <A> )
##
##  <#GAPDoc Label="GeneralisedEigenvalues">
##  <ManSection>
##  <Oper Name="GeneralisedEigenvalues" Arg='F, A'/>
##  <Oper Name="GeneralizedEigenvalues" Arg='F, A'/>
##
##  <Description>
##  The generalised eigenvalues of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GeneralisedEigenvalues", [ IsRing, IsMatrix ] );
DeclareSynonym( "GeneralizedEigenvalues", GeneralisedEigenvalues );

#############################################################################
##
#O  GeneralisedEigenspaces( <F>, <A> )
#O  GeneralizedEigenspaces( <F>, <A> )
##
##  <#GAPDoc Label="GeneralisedEigenspaces">
##  <ManSection>
##  <Oper Name="GeneralisedEigenspaces" Arg='F, A'/>
##  <Oper Name="GeneralizedEigenspaces" Arg='F, A'/>
##
##  <Description>
##  The generalised eigenspaces of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "GeneralisedEigenspaces", [ IsRing, IsMatrix ] );
DeclareSynonym( "GeneralizedEigenspaces", GeneralisedEigenspaces );


#############################################################################
##
#O  Eigenvalues( <F>, <A> )
##
##  <#GAPDoc Label="Eigenvalues">
##  <ManSection>
##  <Oper Name="Eigenvalues" Arg='F, A'/>
##
##  <Description>
##  The eigenvalues of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Eigenvalues", [ IsRing, IsMatrix ] );

#############################################################################
##
#O  Eigenspaces( <F>, <A> )
##
##  <#GAPDoc Label="Eigenspaces">
##  <ManSection>
##  <Oper Name="Eigenspaces" Arg='F, A'/>
##
##  <Description>
##  The eigenspaces of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Eigenspaces", [ IsRing, IsMatrix ] );

#############################################################################
##
#O  Eigenvectors( <F>, <A> )
##
##  <#GAPDoc Label="Eigenvectors">
##  <ManSection>
##  <Oper Name="Eigenvectors" Arg='F, A'/>
##
##  <Description>
##  The eigenvectors of the matrix <A>A</A> over the field <A>F</A>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "Eigenvectors", [ IsRing, IsMatrix ] );


#############################################################################
##
#A  ProjectiveOrder( <mat> )
##
##  <#GAPDoc Label="ProjectiveOrder">
##  <ManSection>
##  <Attr Name="ProjectiveOrder" Arg='mat'/>
##
##  <Description>
##  Returns an integer n and a finite field element e such that
##  <A>A</A>^n = eI.
##  <A>mat</A> must be a matrix defined over a finite field.
##  <Example><![CDATA[
##  gap> ProjectiveOrder([[1,4],[5,2]]*Z(11)^0);
##  [ 5, Z(11)^5 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "ProjectiveOrder", IsMatrix );

#############################################################################
##
#F  OrderMatTrial( <mat>,<lim> )
##
##  <ManSection>
##  <Func Name="OrderMatTrial" Arg='mat,lim'/>
##
##  <Description>
##  tries to compute the order of <A>mat</A> (of small order) by mapping the
##  basis vectors under <A>mat</A>. This is done at most <A>lim</A> times, if the
##  matrix order has not been determined at this point (or if the matrix is
##  not invertible) <K>fail</K> is returned.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "OrderMatTrial" );


#############################################################################
##
#A  RankMat( <mat> )  . . . . . . . . . . . . . . . . . . .  rank of a matrix
##
##  <#GAPDoc Label="RankMat">
##  <ManSection>
##  <Attr Name="RankMat" Arg='mat'/>
##
##  <Description>
##  If <A>mat</A> is a matrix whose rows span a free module over the ring
##  generated by the matrix entries and their inverses
##  then <Ref Attr="RankMat"/> returns the dimension of this free module.
##  Otherwise <K>fail</K> is returned.
##  <P/>
##  Note that <Ref Attr="RankMat"/> may perform a Gaussian elimination.
##  For large rational matrices this may take very long,
##  because the entries may become very large.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> RankMat(mat);
##  2
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "RankMat", IsMatrix );

#############################################################################
##
#O  RankMatDestructive( <mat> )  . . . . . . . . . . . . .  rank of a matrix
##
##  <ManSection>
##  <Oper Name="RankMatDestructive" Arg='mat'/>
##
##  <Description>
##  returns the same result as <Ref Func="RankMat"/> but may
##  modify its argument in the process, if this saves time or memory
##  </Description>
##  </ManSection>
##
DeclareOperation( "RankMatDestructive", [IsMatrix and IsMutable]);


#############################################################################
##
#A  SemiEchelonMat( <mat> )
##
##  <#GAPDoc Label="SemiEchelonMat">
##  <ManSection>
##  <Attr Name="SemiEchelonMat" Arg='mat'/>
##
##  <Description>
##  A matrix over a field <M>F</M> is in semi-echelon form if the first nonzero
##  element in each row is the identity of <M>F</M>,
##  and all values exactly below these pivots are the zero of <M>F</M>.
##  <P/>
##  <Ref Attr="SemiEchelonMat"/> returns a record that contains information about
##  a semi-echelonized form of the matrix <A>mat</A>.
##  <P/>
##  The components of this record are
##  <P/>
##  <List>
##  <Mark><C>vectors</C></Mark>
##  <Item>
##        list of row vectors, each with pivot element the identity of <M>F</M>,
##  </Item>
##  <Mark><C>heads</C></Mark>
##  <Item>
##        list that contains at position <A>i</A>, if nonzero, the number of the
##        row for that the pivot element is in column <A>i</A>.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SemiEchelonMat", IsMatrix );

#############################################################################
##
#O  SemiEchelonMatDestructive( <mat> )
##
##  <#GAPDoc Label="SemiEchelonMatDestructive">
##  <ManSection>
##  <Oper Name="SemiEchelonMatDestructive" Arg='mat'/>
##
##  <Description>
##  This does the same as <C>SemiEchelonMat( <A>mat</A> )</C>, except that it may
##  (and probably will) destroy the matrix <A>mat</A>.
##  <Example><![CDATA[
##  gap> mm:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> SemiEchelonMatDestructive( mm );
##  rec( heads := [ 1, 2, 0 ], vectors := [ [ 1, 2, 3 ], [ 0, 1, 2 ] ] )
##  gap> mm;
##  [ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SemiEchelonMatDestructive", [ IsMatrix and IsMutable] );


#############################################################################
##
#A  SemiEchelonMatTransformation( <mat> )
##
##  <#GAPDoc Label="SemiEchelonMatTransformation">
##  <ManSection>
##  <Attr Name="SemiEchelonMatTransformation" Arg='mat'/>
##
##  <Description>
##  does the same as <Ref Attr="SemiEchelonMat"/> but additionally stores the linear
##  transformation <M>T</M> performed on the matrix.
##  The additional components of the result are
##  <P/>
##  <List>
##  <Mark><C>coeffs</C></Mark>
##  <Item>
##        a list of coefficients vectors of the <C>vectors</C> component,
##        with respect to the rows of <A>mat</A>, that is, <C>coeffs * mat</C>
##        is the <C>vectors</C> component.
##  </Item>
##  <Mark><C>relations</C></Mark>
##  <Item>
##        a list of basis vectors for the (left) null space of <A>mat</A>.
##  </Item>
##  </List>
##  <Example><![CDATA[
##  gap> SemiEchelonMatTransformation([[1,2,3],[0,0,1]]);
##  rec( coeffs := [ [ 1, 0 ], [ 0, 1 ] ], heads := [ 1, 0, 2 ], 
##    relations := [  ], vectors := [ [ 1, 2, 3 ], [ 0, 0, 1 ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "SemiEchelonMatTransformation", IsMatrix );

#############################################################################
##
#O  SemiEchelonMatTransformationDestructive( <mat> )
##
##  <ManSection>
##  <Oper Name="SemiEchelonMatTransformationDestructive" Arg='mat'/>
##
##  <Description>
##  This does the same as <C>SemiEchelonMatTransformation( <A>mat</A> )</C>, except that it may
##  (and probably will) destroy the matrix <A>mat</A>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "SemiEchelonMatTransformationDestructive", [
        IsMatrix and IsMutable ] );


#############################################################################
##
#F  SemiEchelonMatsNoCo( <mats> )
##
##  <ManSection>
##  <Func Name="SemiEchelonMatsNoCo" Arg='mats'/>
##
##  <Description>
##  The function that does the work for <C>SemiEchelonMats</C> and
##  <C>SemiEchelonMatsDestructive</C>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "SemiEchelonMatsNoCo" );

#############################################################################
##
#O  SemiEchelonMats( <mats> )
##
##  <#GAPDoc Label="SemiEchelonMats">
##  <ManSection>
##  <Oper Name="SemiEchelonMats" Arg='mats'/>
##
##  <Description>
##  A list of matrices over a field <M>F</M> is in semi-echelon form if the
##  list of row vectors obtained on concatenating the rows of each matrix
##  is a semi-echelonized matrix (see <Ref Func="SemiEchelonMat"/>).
##  <P/>
##  <Ref Oper="SemiEchelonMats"/> returns a record that contains information about
##  a semi-echelonized form of the list <A>mats</A> of matrices.
##  <P/>
##  The components of this record are
##  <P/>
##  <List>
##  <Mark><C>vectors</C></Mark>
##  <Item>
##        list of matrices, each with pivot element the identity of <M>F</M>,
##  </Item>
##  <Mark><C>heads</C></Mark>
##  <Item>
##        matrix that contains at position [<A>i</A>,<A>j</A>], if nonzero,
##        the number of the matrix that has the pivot element in
##        this position
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SemiEchelonMats", [ IsList ] );

#############################################################################
##
#O  SemiEchelonMatsDestructive( <mats> )
##
##  <#GAPDoc Label="SemiEchelonMatsDestructive">
##  <ManSection>
##  <Oper Name="SemiEchelonMatsDestructive" Arg='mats'/>
##
##  <Description>
##  Does the same as <C>SemiEchelonmats</C>, except that it may destroy
##  its argument. Therefore the argument must be a list of matrices
##  that re mutable.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SemiEchelonMatsDestructive", [ IsList ] );


#############################################################################
##
#A  TransposedMatImmutable( <mat> ) . . . . . . . . .  transposed of a matrix
#A  TransposedMatAttr( <mat> )  . . . . . . . . . . .  transposed of a matrix
#A  TransposedMat( <mat> )  . . . . . . . . . . . . .  transposed of a matrix
#O  TransposedMatMutable( <mat> ) . . . . . . . . . .  transposed of a matrix
#O  TransposedMatOp( <mat> )  . . . . . . . . . . . .  transposed of a matrix
##
##  <#GAPDoc Label="TransposedMatImmutable">
##  <ManSection>
##  <Attr Name="TransposedMatImmutable" Arg='mat'/>
##  <Attr Name="TransposedMatAttr" Arg='mat'/>
##  <Attr Name="TransposedMat" Arg='mat'/>
##  <Oper Name="TransposedMatMutable" Arg='mat'/>
##  <Oper Name="TransposedMatOp" Arg='mat'/>
##
##  <Description>
##  These functions all return the transposed of the matrix <A>mat</A>, i.e.,
##  a matrix <A>trans</A> such that <C><A>trans</A>[<A>i</A>][<A>k</A>] = <A>mat</A>[<A>k</A>][<A>i</A>]</C> holds.
##  <P/>
##  They differ only w.r.t. the mutability of the result.
##  <P/>
##  <Ref Attr="TransposedMat"/> is an attribute and hence returns an immutable result.
##  <Ref Oper="TransposedMatMutable"/> is guaranteed to return a new <E>mutable</E> matrix.
##  <P/>
##  <Ref Attr="TransposedMatImmutable"/> and <Ref Attr="TransposedMatAttr"/> 
##  are synonyms of <Ref Attr="TransposedMat"/>,
##  and <Ref Oper="TransposedMatOp"/> is a synonym of <Ref Oper="TransposedMatMutable"/>,
##  in analogy to operations such as <Ref Func="Zero"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "TransposedMatImmutable", IsMatrix );

DeclareSynonymAttr( "TransposedMatAttr", TransposedMatImmutable );
DeclareSynonymAttr( "TransposedMat", TransposedMatImmutable );

DeclareOperation( "TransposedMatMutable", [ IsMatrix ] );
DeclareSynonym( "TransposedMatOp", TransposedMatMutable );
DeclareSynonym( "MutableTransposedMat", TransposedMatMutable ); # needed?


#############################################################################
##
#O  MutableTransposedMatDestructive( <mat> )
##
##  <ManSection>
##  <Oper Name="MutableTransposedMatDestructive" Arg='mat'/>
##
##  <Description>
##  <C>MutableTransposedMatDestructive</C> returns the transpose of the mutable
##  matrix <A>mat</A>. It may, but does not have to, destroy the contents
##  of <A>mat</A> in the process. In particular, the returned matrix may be 
##  identical to <A>mat</A>, having been transposed in place.
##  </Description>
##  </ManSection>
##
DeclareOperation( "MutableTransposedMatDestructive", [IsMatrix and IsMutable] );


#############################################################################
##
#O  TransposedMatDestructive( <mat> )
##
##  <#GAPDoc Label="TransposedMatDestructive">
##  <ManSection>
##  <Oper Name="TransposedMatDestructive" Arg='mat'/>
##
##  <Description>
##  If <A>mat</A> is a mutable matrix, then the transposed
##  is computed by swapping the entries in <A>mat</A>. In this way <A>mat</A> gets
##  changed. In all other cases the transposed is computed by <Ref Attr="TransposedMat"/>.
##  <Example><![CDATA[
##  gap> TransposedMat([[1,2,3],[4,5,6],[7,8,9]]);
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  gap> mm:= [[1,2,3],[4,5,6],[7,8,9]];;
##  gap> TransposedMatDestructive( mm );
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  gap> mm;
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TransposedMatDestructive", [ IsMatrix ] );



############################################################################
##
#P  IsMonomialMatrix( <mat> )
##
##  <#GAPDoc Label="IsMonomialMatrix">
##  <ManSection>
##  <Prop Name="IsMonomialMatrix" Arg='mat'/>
##
##  <Description>
##  A matrix is monomial if  and only if it  has exactly one nonzero entry in
##  every row and every column.
##  <Example><![CDATA[
##  gap> IsMonomialMatrix([[0,1],[1,0]]);
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareProperty( "IsMonomialMatrix", IsMatrix );


#############################################################################
##
#O  InverseMatMod( <mat>, <obj> )
##
##  <#GAPDoc Label="InverseMatMod">
##  <ManSection>
##  <Oper Name="InverseMatMod" Arg='mat, obj'/>
##
##  <Description>
##  For a square matrix <A>mat</A>, <Ref Oper="InverseMatMod"/> returns a matrix <A>inv</A>
##  such that <C><A>inv</A> * <A>mat</A></C> is congruent to the identity matrix modulo
##  <A>obj</A>, if such a matrix exists, and <K>fail</K> otherwise.
##  <Example><![CDATA[
##  gap> mat:= [ [ 1, 2 ], [ 3, 4 ] ];;  inv:= InverseMatMod( mat, 5 );
##  [ [ 3, 1 ], [ 4, 2 ] ]
##  gap> mat * inv;
##  [ [ 11, 5 ], [ 25, 11 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "InverseMatMod", [ IsMatrix, IsObject ] );


#############################################################################
##
#O  KroneckerProduct( <mat1>, <mat2> )
##
##  <#GAPDoc Label="KroneckerProduct">
##  <ManSection>
##  <Oper Name="KroneckerProduct" Arg='mat1, mat2'/>
##
##  <Description>
##  The Kronecker product of two matrices is the matrix obtained when
##  replacing each entry <A>a</A> of <A>mat1</A> by the product <C><A>a</A>*<A>mat2</A></C> in one
##  matrix.
##  <Example><![CDATA[
##  gap> KroneckerProduct([[1,2]],[[5,7],[9,2]]);
##  [ [ 5, 7, 10, 14 ], [ 9, 2, 18, 4 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "KroneckerProduct", [ IsMatrix, IsMatrix ] );

#############################################################################
##
#O  SolutionMatNoCo( <mat>, <vec> )
##
##  <ManSection>
##  <Oper Name="SolutionMatNoCo" Arg='mat, vec'/>
##
##  <Description>
##  Does thework for <C>SolutionMat</C> and <C>SolutionMatDestructive</C>.
##  </Description>
##  </ManSection>
##
DeclareOperation( "SolutionMatNoCo", [ IsMatrix, IsRowVector ] );


#############################################################################
##
#O  SolutionMat( <mat>, <vec> ) . . . . . . . . . .  one solution of equation
##
##  <#GAPDoc Label="SolutionMat">
##  <ManSection>
##  <Oper Name="SolutionMat" Arg='mat, vec'/>
##
##  <Description>
##  returns a row vector <A>x</A> that is a solution of the equation <C><A>x</A> * <A>mat</A>
##  = <A>vec</A></C>. It returns <K>fail</K> if no such vector exists.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SolutionMat", [ IsMatrix, IsRowVector ] );

#############################################################################
##
#O  SolutionMatDestructive( <mat>, <vec> )
##
##  <#GAPDoc Label="SolutionMatDestructive">
##  <ManSection>
##  <Oper Name="SolutionMatDestructive" Arg='mat, vec'/>
##
##  <Description>
##  Does the same as <C>SolutionMat( <A>mat</A>, <A>vec</A> )</C> except that
##  it may destroy the matrix <A>mat</A> and the vector <A>vec</A>.
##  The matrix <A>mat</A> must be mutable.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> SolutionMat(mat,[3,5,7]);
##  [ 5/3, 1/3, 0 ]
##  gap> mm:= [[1,2,3],[4,5,6],[7,8,9]];;
##  gap> v:= [3,5,7];;
##  gap> SolutionMatDestructive( mm, v );
##  [ 5/3, 1/3, 0 ]
##  gap> mm;
##  [ [ 1, 2, 3 ], [ 0, -3, -6 ], [ 0, 0, 0 ] ]
##  gap> v;
##  [ 0, 0, 0 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SolutionMatDestructive",
    [ IsMatrix and IsMutable, IsRowVector ] );


############################################################################
##
#O  SumIntersectionMat( <M1>, <M2> )  . .  sum and intersection of two spaces
##
##  <#GAPDoc Label="SumIntersectionMat">
##  <ManSection>
##  <Oper Name="SumIntersectionMat" Arg='M1, M2'/>
##
##  <Description>
##  performs  Zassenhaus'  algorithm to compute  bases  for  the sum  and the
##  intersection of spaces generated by the rows of the matrices <A>M1</A>, <A>M2</A>.
##  <P/>
##  returns a list  of length 2,   at first position   a base of the sum,  at
##  second  position a  base   of the   intersection.   Both  bases  are   in
##  semi-echelon form (see&nbsp;<Ref Sect="Echelonized Matrices"/>).
##  <Example><![CDATA[
##  gap> SumIntersectionMat(mat,[[2,7,6],[5,9,4]]);
##  [ [ [ 1, 2, 3 ], [ 0, 1, 2 ], [ 0, 0, 1 ] ], [ [ 1, -3/4, -5/2 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "SumIntersectionMat", [ IsMatrix, IsMatrix ] );



#############################################################################
##
#O  TriangulizedMat( <mat> ) . . .  compute upper triangular form of a matrix
##
##  <#GAPDoc Label="TriangulizedMat">
##  <ManSection>
##  <Oper Name="TriangulizedMat" Arg='mat'/>
##  <Oper Name="RREF" Arg='mat'/>
##
##  <Description>
##  Computes an upper triangular form of the matrix <A>mat</A> via
##  the Gaussian Algorithm. It returns a immutable matrix in upper triangular form.
##  This is sometimes also  called <Q>Hermite normal form</Q> or <Q>Reduced Row Echelon
##  Form</Q>.
##  <C>RREF</C> is a synonym for <C>TriangulizedMat</C>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TriangulizedMat", [ IsMatrix ] );
DeclareSynonym( "RREF", TriangulizedMat);

#############################################################################
##
#O  TriangulizeMat( <mat> ) . . . . . bring a matrix in upper triangular form
##
##  <#GAPDoc Label="TriangulizeMat">
##  <ManSection>
##  <Oper Name="TriangulizeMat" Arg='mat'/>
##
##  <Description>
##  Applies the Gaussian Algorithm to the mutable matrix
##  <A>mat</A> and changes <A>mat</A> such that it is in upper triangular normal
##  form (sometimes called <Q>Hermite normal form</Q> or <Q>Reduced Row Echelon
##  Form</Q>).
##  <Example><![CDATA[
##  gap> m:=TransposedMatMutable(mat);
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  gap> TriangulizeMat(m);m;
##  [ [ 1, 0, -1 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
##  gap> m:=TransposedMatMutable(mat);
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  gap> TriangulizedMat(m);m;
##  [ [ 1, 0, -1 ], [ 0, 1, 2 ], [ 0, 0, 0 ] ]
##  [ [ 1, 4, 7 ], [ 2, 5, 8 ], [ 3, 6, 9 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TriangulizeMat", [ IsMatrix and IsMutable ] );


#############################################################################
##
#O  UpperSubdiagonal( <mat>, <pos> )
##
##  <#GAPDoc Label="UpperSubdiagonal">
##  <ManSection>
##  <Oper Name="UpperSubdiagonal" Arg='mat, pos'/>
##
##  <Description>
##  returns a mutable list containing the entries of the <A>pos</A>th upper
##  subdiagonal of <A>mat</A>.
##  <Example><![CDATA[
##  gap> UpperSubdiagonal(mat,1);
##  [ 2, 6 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "UpperSubdiagonal", [ IsMatrix, IsPosInt ] );


#############################################################################
##
#F  BaseFixedSpace( <mats> )  . . . . . . . . . . . .  calculate fixed points
##
##  <#GAPDoc Label="BaseFixedSpace">
##  <ManSection>
##  <Func Name="BaseFixedSpace" Arg='mats'/>
##
##  <Description>
##  <Ref Func="BaseFixedSpace"/> returns a list of row vectors that form a base of the
##  vector space <M>V</M> such that <M>v M = v</M> for all <M>v</M> in <M>V</M> and all matrices
##  <M>M</M> in the list <A>mats</A>.  (This is the common eigenspace of all matrices
##  in <A>mats</A> for the eigenvalue 1.)
##  <Example><![CDATA[
##  gap> BaseFixedSpace([[[1,2],[0,1]]]);
##  [ [ 0, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BaseFixedSpace" );


#############################################################################
##
#F  BaseSteinitzVectors( <bas>, <mat> )
##
##  <#GAPDoc Label="BaseSteinitzVectors">
##  <ManSection>
##  <Func Name="BaseSteinitzVectors" Arg='bas, mat'/>
##
##  <Description>
##  find vectors extending mat to a basis spanning the span of <A>bas</A>.
##  Both <A>bas</A> and <A>mat</A> must be matrices of full (row) rank. It returns a
##  record with the following components:
##  <List>
##  <Mark><C>subspace</C></Mark>
##  <Item>
##  s a basis of the space spanned by <A>mat</A> in upper triangular
##  form with leading ones at all echelon steps and zeroes above these ones.
##  </Item>
##  <Mark><C>factorspace</C></Mark>
##  <Item>
##  is a list of extending vectors in upper triangular form.
##  </Item>
##  <Mark><C>factorzero</C></Mark>
##  <Item>
##  is a zero vector.
##  </Item>
##  <Mark><C>heads</C></Mark>
##  <Item>
##  is a list of integers which can be used to decompose vectors in
##  the basis vectors. The <A>i</A>th entry indicating the vector
##  that gives an echelon step at position <A>i</A>.
##  A negative number indicates an echelon step in the subspace, a positive
##  number an echelon step in the complement, the absolute value gives the
##  position of the vector in the lists <C>subspace</C> and <C>factorspace</C>.
##  </Item>
##  </List>
##  <Example><![CDATA[
##  gap> BaseSteinitzVectors(IdentityMat(3,1),[[11,13,15]]);
##  rec( factorspace := [ [ 0, 1, 15/13 ], [ 0, 0, 1 ] ], 
##    factorzero := [ 0, 0, 0 ], heads := [ -1, 1, 2 ], 
##    subspace := [ [ 1, 13/11, 15/11 ] ] )
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BaseSteinitzVectors" );


#############################################################################
##
#F  BlownUpMat( <B>, <mat> )
##
##  <#GAPDoc Label="BlownUpMat">
##  <ManSection>
##  <Func Name="BlownUpMat" Arg='B, mat'/>
##
##  <Description>
##  Let <A>B</A> be a basis of a field extension <M>F / K</M>,
##  and <A>mat</A> a matrix whose entries are all in <M>F</M>.
##  (This is not checked.)
##  <Ref Func="BlownUpMat"/> returns a matrix over <M>K</M> that is obtained by replacing each
##  entry of <A>mat</A> by its regular representation w.r.t.&nbsp;<A>B</A>.
##  <P/>
##  More precisely,
##  regard <A>mat</A> as the matrix of a linear transformation on the row space
##  <M>F^n</M> w.r.t.&nbsp;the <M>F</M>-basis with vectors <M>(v_1, ldots, v_n)</M>, say,
##  and suppose that the basis <A>B</A> consists of the vectors
##  <M>(b_1,  \ldots, b_m)</M>;
##  then the returned matrix is the matrix of the linear transformation
##  on the row space <M>K^{mn}</M> w.r.t.&nbsp;the <M>K</M>-basis whose vectors are
##  <M>(b_1 v_1, \ldots b_m v_1, \ldots, b_m v_n)</M>.
##  <P/>
##  Note that the linear transformations act on <E>row</E> vectors, i.e.,
##  each row of the matrix is a concatenation of vectors of <A>B</A>-coefficients.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BlownUpMat" );


#############################################################################
##
#F  BlownUpVector( <B>, <vector> )
##
##  <#GAPDoc Label="BlownUpVector">
##  <ManSection>
##  <Func Name="BlownUpVector" Arg='B, vector'/>
##
##  <Description>
##  Let <A>B</A> be a basis of a field extension <M>F / K</M>,
##  and <A>vector</A> a row vector whose entries are all in <M>F</M>.
##  <Ref Func="BlownUpVector"/> returns a row vector over <M>K</M> that is obtained by
##  replacing each entry of <A>vector</A> by its coefficients w.r.t.&nbsp;<A>B</A>.
##  <P/>
##  So <Ref Func="BlownUpVector"/> and <Ref Func="BlownUpMat"/> are compatible
##  in the sense that for a matrix <A>mat</A> over <M>F</M>,
##  <C>BlownUpVector( <A>B</A>, <A>mat</A> * <A>vector</A> )</C>
##  is equal to
##  <C>BlownUpMat( <A>B</A>, <A>mat</A> ) * BlownUpVector( <A>B</A>, <A>vector</A> )</C>.
##  <Example><![CDATA[
##  gap> B:= Basis( CF(4), [ 1, E(4) ] );;
##  gap> mat:= [ [ 1, E(4) ], [ 0, 1 ] ];;  vec:= [ 1, E(4) ];;
##  gap> bmat:= BlownUpMat( B, mat );;  bvec:= BlownUpVector( B, vec );;
##  gap> Display( bmat );  bvec;
##  [ [   1,   0,   0,   1 ],
##    [   0,   1,  -1,   0 ],
##    [   0,   0,   1,   0 ],
##    [   0,   0,   0,   1 ] ]
##  [ 1, 0, 0, 1 ]
##  gap> bvec * bmat = BlownUpVector( B, vec * mat );
##  true
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BlownUpVector" );


#############################################################################
##
#O  DiagonalizeMat(<ring>,<mat>)
##
##  <#GAPDoc Label="DiagonalizeMat">
##  <ManSection>
##  <Oper Name="DiagonalizeMat" Arg='ring,mat'/>
##
##  <Description>
##  brings the mutable matrix <A>mat</A>, considered as a matrix over <A>ring</A>,
##  into diagonal form by elementary row and column operations.
##  <Example><![CDATA[
##  gap> m:=[[1,2],[2,1]];;
##  gap> DiagonalizeMat(Integers,m);m;
##  [ [ 1, 0 ], [ 0, 3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "DiagonalizeMat", [IsRing,IsMatrix and IsMutable] );


#############################################################################
##
#F  IdentityMat( <m> [, <R>] )  . . . . . . . identity matrix of a given size
##
##  <#GAPDoc Label="IdentityMat">
##  <ManSection>
##  <Func Name="IdentityMat" Arg='m [, R]'/>
##
##  <Description>
##  returns a (mutable) <A>m</A><M>\times</M><A>m</A> identity matrix over the ring given
##  by <A>R</A>. Here, <A>R</A> can be either a ring, or an element of a ring. By default,
##  an integer matrix is created.
##  <Example><![CDATA[
##  gap> IdentityMat(3);
##  [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ]
##  gap> IdentityMat(2,Integers mod 15);
##  [ [ ZmodnZObj( 1, 15 ), ZmodnZObj( 0, 15 ) ], 
##    [ ZmodnZObj( 0, 15 ), ZmodnZObj( 1, 15 ) ] ]
##  gap> IdentityMat(2,Z(3));
##  [ [ Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3)^0 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "IdentityMat" );


#############################################################################
##
#O  MutableCopyMat( <mat> ) . . . . . . . . . .  Copies  a matrix
##
##  <ManSection>
##  <Oper Name="MutableCopyMat" Arg='mat'/>
##
##  <Description>
##  <C>MutableCopyMat</C>  returns a fully mutable copy  of  the  matrix <A>mat</A>.
##  <P/>
##  The default method does <C>List(<A>mat</A>,ShallowCopy)</C> and thus may also
##  be called for the empty list, returning a new empty list.
##  </Description>
##  </ManSection>
##
DeclareOperation( "MutableCopyMat", [IsList] );


#############################################################################
##
#F  NullMat( <m>, <n> [, <R>] ) . . . . . . . . . null matrix of a given size
##
##  <#GAPDoc Label="NullMat">
##  <ManSection>
##  <Func Name="NullMat" Arg='m, n [, R]'/>
##
##  <Description>
##  returns a (mutable) <A>m</A><M>\times</M><A>n</A> null matrix over the ring given by
##  by <A>R</A>. Here, <A>R</A> can be either a ring, or an element of a ring. By default,
##  an integer matrix is created.
##  <Example><![CDATA[
##  gap> NullMat(3,2);
##  [ [ 0, 0 ], [ 0, 0 ], [ 0, 0 ] ]
##  gap> NullMat(2,2,Integers mod 15);
##  [ [ ZmodnZObj( 0, 15 ), ZmodnZObj( 0, 15 ) ], 
##    [ ZmodnZObj( 0, 15 ), ZmodnZObj( 0, 15 ) ] ]
##  gap> NullMat(3,2,Z(3));
##  [ [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ], [ 0*Z(3), 0*Z(3) ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NullMat" );


#############################################################################
##
#F  NullspaceModQ( <E>, <q> ) . . . . . . . . . . . .nullspace of <E> mod <q>
##
##  <#GAPDoc Label="NullspaceModQ">
##  <ManSection>
##  <Func Name="NullspaceModQ" Arg='E, q'/>
##
##  <Description>
##  <A>E</A> must be a matrix of integers and <A>q</A> a prime power.
##  Then <Ref Func="NullspaceModQ"/> returns the set of all vectors of integers modulo
##  <A>q</A>, which solve the homogeneous equation system given by <A>E</A> modulo <A>q</A>.
##  <Example><![CDATA[
##  gap> mat:= [ [ 1, 3 ], [ 1, 2 ], [ 1, 1 ] ];;  NullspaceModQ( mat, 5 );
##  [ [ 0, 0, 0 ], [ 1, 3, 1 ], [ 2, 1, 2 ], [ 4, 2, 4 ], [ 3, 4, 3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "NullspaceModQ" );


#############################################################################
##
#F  BasisNullspaceModN( <M>, <n> ) . . . . . . .  .  nullspace of <E> mod <n>
##
##  <ManSection>
##  <Func Name="BasisNullspaceModN" Arg='M, n'/>
##
##  <Description>
##  <A>M</A> must be a matrix of integers modulo <A>n</A> and <A>n</A> a positive integer.  
##  Then 'NullspaceModQ' returns a set <A>B</A> of vectors such that every <A>v</A> 
##  such that <A>v</A> <A>M</A> = 0 modulo <A>n</A> can be expressed by a Z-linear combination
##  of elements of <A>M</A>.
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction ("BasisNullspaceModN");


#############################################################################
##
#F  PermutationMat( <perm>, <dim> [, <F> ] ) . . . . . .  permutation matrix
##
##  <#GAPDoc Label="PermutationMat">
##  <ManSection>
##  <Func Name="PermutationMat" Arg='perm, dim [, F ]'/>
##
##  <Description>
##  returns a matrix in dimension <A>dim</A> over the field given by <A>F</A> (i.e.
##  the smallest field containing the element <A>F</A> or <A>F</A> itself if it is a
##  field)  that
##  represents the permutation <A>perm</A> acting by permuting the basis vectors
##  as it permutes points.
##  <Example><![CDATA[
##  gap> PermutationMat((1,2,3),4,1);
##  [ [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ], [ 0, 0, 0, 1 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "PermutationMat" );


#############################################################################
##
#F  DiagonalMat( <vector> ) . . . . . . . . . . . . . . . . . diagonal matrix
##
##  <#GAPDoc Label="DiagonalMat">
##  <ManSection>
##  <Func Name="DiagonalMat" Arg='vector'/>
##
##  <Description>
##  returns a diagonal matrix <A>mat</A> with the diagonal entries given by
##  <A>vector</A>.
##  <Example><![CDATA[
##  gap> DiagonalMat([1,2,3]);
##  [ [ 1, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 3 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "DiagonalMat" );


#############################################################################
##
#F  ReflectionMat( <coeffs>[, <conj>][, <root>] )
##
##  <#GAPDoc Label="ReflectionMat">
##  <ManSection>
##  <Func Name="ReflectionMat" Arg='coeffs[, conj][, root]'/>
##
##  <Description>
##  Let <A>coeffs</A> be a row vector.
##  <Ref Func="ReflectionMat"/> returns the matrix of the reflection in this
##  vector.
##  <P/>
##  More precisely, if <A>coeffs</A> is the coefficients list of a vector
##  <M>v</M> w.r.t. a basis <M>B</M> (see&nbsp;<Ref Func="Basis"/>), say,
##  then the returned matrix describes the
##  reflection in <M>v</M> w.r.t. <M>B</M> as a map on a row space,
##  with action from the right.
##  <P/>
##  The optional argument <A>root</A> is a root of unity that determines the
##  order of the reflection.
##  The default is a reflection of order 2.
##  For triflections one should choose a third root of unity etc.
##  (see&nbsp;<Ref Func="E"/>).
##  <P/>
##  <A>conj</A> is a function of one argument that conjugates a ring element.
##  The default is <Ref Attr="ComplexConjugate"/>.
##  <P/>
##  The matrix of the reflection in <M>v</M> is defined as
##  <Display Mode="M">
##  M = I_n +
##    \overline{{v^{tr}}} \cdot (w-1) / ( v \overline{{v^{tr}}} ) \cdot v
##  </Display>
##  where <M>w</M> equals <A>root</A>,
##  <M>n</M> is the length of the coefficient list,
##  and <M>\overline{{\vphantom{x}}}</M> denotes the conjugation.
##  <P/>
##  So <M>v</M> is mapped to <M>w v</M>, with default <M>-v</M>,
##  and any vector <M>x</M> with the property
##  <M>x \overline{{v^{tr}}} = 0</M> is fixed by the reflection.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ReflectionMat" );


#############################################################################
##
#F  RandomInvertibleMat( <m> [, <R>] )  . . . make a random invertible matrix
##
##  <#GAPDoc Label="RandomInvertibleMat">
##  <ManSection>
##  <Func Name="RandomInvertibleMat" Arg='m [, R]'/>
##
##  <Description>
##  <Ref Func="RandomInvertibleMat"/> returns a new mutable invertible random
##  matrix with <A>m</A> rows and columns with elements taken from the ring
##  <A>R</A>, which defaults to <Ref Var="Integers"/>.
##  <Example><![CDATA[
##  gap> m := RandomInvertibleMat(4);
##  [ [ 1, -2, -1, 0 ], [ 1, 0, 1, -1 ], [ 0, 2, 0, 4 ], 
##    [ -1, -3, 1, -4 ] ]
##  gap> m^-1;
##  [ [ 1/4, 1/2, -1/8, -1/4 ], [ -1/3, 0, -1/3, -1/3 ], 
##    [ -1/12, 1/2, 13/24, 5/12 ], [ 1/6, 0, 5/12, 1/6 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RandomInvertibleMat" );


#############################################################################
##
#F  RandomMat( <m>, <n> [, <R>] ) . . . . . . . . . . .  make a random matrix
##
##  <#GAPDoc Label="RandomMat">
##  <ManSection>
##  <Func Name="RandomMat" Arg='m, n [, R]'/>
##
##  <Description>
##  <Ref Func="RandomMat"/> returns a new mutable random matrix with <A>m</A> rows and
##  <A>n</A> columns with elements taken from the ring <A>R</A>, which defaults
##  to <Ref Var="Integers"/>.
##  <Example><![CDATA[
##  gap> RandomMat(2,3,GF(3));
##  [ [ Z(3), Z(3), 0*Z(3) ], [ Z(3), Z(3)^0, Z(3) ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RandomMat" );


#############################################################################
##
#F  RandomUnimodularMat( <m> )  . . . . . . . . . .  random unimodular matrix
##
##  <#GAPDoc Label="RandomUnimodularMat">
##  <ManSection>
##  <Func Name="RandomUnimodularMat" Arg='m'/>
##
##  <Description>
##  returns a new random mutable <A>m</A><M>\times</M><A>m</A> matrix with integer
##  entries that is invertible over the integers.
##  <Example><![CDATA[
##  gap> m := RandomUnimodularMat(3);
##  [ [ 1, 0, 0 ], [ 156, -39, -25 ], [ -100, 25, 16 ] ]
##  gap> m^-1;
##  [ [ 1, 0, 0 ], [ 4, 16, 25 ], [ 0, -25, -39 ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "RandomUnimodularMat" );


#############################################################################
##
#F  SimultaneousEigenvalues( <matlist>, <expo> ) . . . . . . . . .eigenvalues
##
##  <#GAPDoc Label="SimultaneousEigenvalues">
##  <ManSection>
##  <Func Name="SimultaneousEigenvalues" Arg='matlist, expo'/>
##
##  <Description>
##  The matrices in <A>matlist</A> must be matrices over GF(<A>q</A>)
##  for some prime <A>q</A>.
##  Together, they must generate an abelian p-group of exponent <A>expo</A>.
##  Then the eigenvalues of <A>mat</A> in the splitting field
##  <C>GF(<A>q</A>^<A>r</A>)</C> for some <A>r</A> are powers of an element
##  <M>\xi</M> in the splitting field, which is of order <A>expo</A>.
##  <Ref Func="SimultaneousEigenvalues"/> returns a matrix of
##  integers mod <A>expo</A>, say <M>(a_{{i,j}})</M>, such that the power
##  <M>\xi^{{a_{{i,j}}}}</M> is an eigenvalue of the <A>i</A>-th matrix in
##  <A>matlist</A> and the eigenspaces of the different matrices to the
##  eigenvalues <M>\xi^{{a_{{i,j}}}}</M> for fixed <A>j</A> are equal.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SimultaneousEigenvalues" );


#############################################################################
##
#F  TraceMat( <mat> ) . . . . . . . . . . . . . . . . . . . trace of a matrix
#F  Trace( <mat> )
##
##  <#GAPDoc Label="TraceMat">
##  <ManSection>
##  <Func Name="TraceMat" Arg='mat'/>
##  <Func Name="Trace" Arg='mat' Label="of a matrix"/>
##
##  <Description>
##  The trace of a square matrix is the sum of its diagonal entries.
##  <Example><![CDATA[
##  gap> TraceMat([[1,2,3],[4,5,6],[7,8,9]]);
##  15
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareOperation( "TraceMat", [IsList] );


#############################################################################
##
#A  JordanDecomposition( <mat> )
##
##  <#GAPDoc Label="JordanDecomposition">
##  <ManSection>
##  <Attr Name="JordanDecomposition" Arg='mat'/>
##
##  <Description>
##  <C>JordanDecomposition( <A>mat </A> )</C> returns a list <C>[S,N]</C> such that
##  <C>S</C> is a semisimple matrix and <C>N</C> is nilpotent. Furthermore, <C>S</C>
##  and <C>N</C> commute and <C><A>mat</A>=S+N</C>.
##  <Example><![CDATA[
##  gap> mat:=[[1,2,3],[4,5,6],[7,8,9]];;
##  gap> JordanDecomposition(mat);
##  [ [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ], 
##    [ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ] ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "JordanDecomposition", IsMatrix );


#############################################################################
##
#F  FlatBlockMat( <blockmat> ) . . . . . . . . convert block matrix to matrix
##
##  <ManSection>
##  <Func Name="FlatBlockMat" Arg='blockmat'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "FlatBlockMat" );

#############################################################################
##
#F  DirectSumMat( <matlist> ) . . . . . . . . . . . create block diagonal mat
##
##  <ManSection>
##  <Func Name="DirectSumMat" Arg='matlist'/>
##
##  <Description>
##  </Description>
##  </ManSection>
##
DeclareGlobalFunction( "DirectSumMat" );

#############################################################################
##
#F  EmptyMatrix( <char> )
##
##  <#GAPDoc Label="EmptyMatrix">
##  <ManSection>
##  <Func Name="EmptyMatrix" Arg='char'/>
##
##  <Description>
##  is an empty (ordinary) matrix in characteristic <A>char</A> that can be added
##  to or multiplied with empty lists (representing zero-dimensional row
##  vectors). It also acts (via the operation <Ref Oper="\^"/>) on empty lists.
##  <P/>
##  <!-- store in the family as an attribute?-->
##  <Example><![CDATA[
##  gap> EmptyMatrix(5);
##  EmptyMatrix( 5 )
##  gap> AsList(last);
##  [  ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "EmptyMatrix" );


#############################################################################
##
#F  OnSubspacesByCanonicalBasis(<bas>,<mat>)
##
##  <#GAPDoc Label="OnSubspacesByCanonicalBasis">
##  <ManSection>
##  <Func Name="OnSubspacesByCanonicalBasis" Arg='bas,mat'/>
##  <Func Name="OnSubspacesByCanonicalBasisConcatenations" Arg='basvec,mat'/>
##
##  <Description>
##  implements the operation of a matrix group on subspaces of a vector
##  space. <A>bas</A> must be a list of (linearly independent) vectors which
##  forms a basis of the subspace in Hermite normal form. <A>mat</A> is an
##  element of the acting matrix group. The function returns a mutable
##  matrix which gives the basis of the image of the subspace in Hermite
##  normal form. (In other words: it triangulizes the product of <A>bas</A> with
##  <A>mat</A>.)
##  <P/>
##  <A>bas</A> must be given in Hermite normal form,
##  otherwise an error is triggered (see&nbsp;<Ref Sect="Action on canonical representatives"/>).
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction("OnSubspacesByCanonicalBasis");
DeclareGlobalFunction("OnSubspacesByCanonicalBasisConcatenations");


#############################################################################
##
#F  OnSubspacesByCanonicalBasisGF2(<bas>,<mat>)
##
##  <ManSection>
##  <Func Name="OnSubspacesByCanonicalBasisGF2" Arg='bas,mat'/>
##
##  <Description>
##  is a special version of <C>OnSubspacesByCanonicalBasis</C> for matrices over
##  GF2.
##  </Description>
##  </ManSection>
##
DeclareSynonym("OnSubspacesByCanonicalBasisGF2",OnSubspacesByCanonicalBasis);


#############################################################################
##
#A  CharacteristicPolynomial( [[<F>, <E>, ]<mat>[, <ind>] )
##
##  <#GAPDoc Label="CharacteristicPolynomial">
##  <ManSection>
##  <Attr Name="CharacteristicPolynomial" Arg='[F, E, ]mat[, ind]'/>
##
##  <Description>
##  For a square matrix <A>mat</A>, <Ref Attr="CharacteristicPolynomial"/>
##  returns the <E>characteristic polynomial</E> of <A>mat</A>, that is, the
##  <Ref Oper="StandardAssociate"/> of the determinant of the matrix
##  <M><A>mat</A> - X \cdot I</M>, where <M>X</M> is an indeterminate and
##  <M>I</M> is the appropriate identity matrix.
##  <P/>
##  If fields <A>F</A> and <A>E</A> are given, then <A>F</A> must be a
##  subfield of <A>E</A>, and <A>mat</A> must have entries in <A>E</A>.
##  Then <Ref Oper="CharacteristicPolynomial"/> returns the characteristic
##  polynomial of the <A>F</A>-linear mapping induced by <A>mat</A> 
##  on the underlying <A>E</A>-vector space of <A>mat</A>. In this case, 
##  the characteristic polynomial is computed using <Ref Func="BlownUpMat"/>
##  for the field extension of <M>E/F</M> generated by the default field.
##  Thus, if <M>F = E</M>, the result is the same as for the one argument
##  version.
##  <P/>
##  The returned polynomials are expressed in the indeterminate number
##  <A>ind</A>.  If <A>ind</A> is not given, it defaults to <M>1</M>.
##  <P/>
##  <C>CharacteristicPolynomial(<A>F</A>, <A>E</A>, <A>mat</A>)</C> is a
##  multiple of the  minimal polynomial
##  <C>MinimalPolynomial(<A>F</A>, <A>mat</A>)</C>
##  (see&nbsp;<Ref Func="MinimalPolynomial"/>).
##  <P/>
##  Note that, up to &GAP; version 4.4.6,
##  <Ref Oper="CharacteristicPolynomial"/> only  allowed to specify one field
##  (corresponding to <A>F</A>) as an argument.
##  That usage has been disabled because its definition turned out to be 
##  ambiguous and may have lead to unexpected results. (To ensure
##  backward compatibility, it is still possible to use the old form 
##  if <A>F</A> contains the default field of the matrix,
##  see&nbsp;<Ref Func="DefaultFieldOfMatrix"/>,
##  but this feature will disappear in future versions of &GAP;.)
##  <Example><![CDATA[
##  gap> CharacteristicPolynomial( [ [ 1, 1 ], [ 0, 1 ] ] );
##  x^2-2*x+1
##  gap> mat := [[0,1],[E(4)-1,E(4)]];;
##  gap> CharacteristicPolynomial( mat );
##  x^2+(-E(4))*x+(1-E(4))
##  gap> CharacteristicPolynomial( Rationals, CF(4), mat );
##  x^4+3*x^2+2*x+2
##  gap> mat:= [ [ E(4), 1 ], [ 0, -E(4) ] ];;
##  gap> CharacteristicPolynomial( mat );
##  x^2+1
##  gap> CharacteristicPolynomial( Rationals, CF(4), mat );
##  x^4+2*x^2+1
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareAttribute( "CharacteristicPolynomial", IsMatrix );
DeclareOperation( "CharacteristicPolynomial", [ IsMatrix, IsPosInt ] );
DeclareOperation( "CharacteristicPolynomial", 
    [ IsRing, IsRing, IsMatrix, IsPosInt ] );
DeclareOperation( "CharacteristicPolynomial", 
    [ IsRing, IsRing, IsMatrix ] );


#############################################################################
##
#O  CharacteristicPolynomialMatrixNC( <field>,<mat>,<indnum> )
##
##  <ManSection>
##  <Oper Name="CharacteristicPolynomialMatrixNC" Arg='field,mat,indnum'/>
##
##  <Description>
##  returns the characteristic polynomial for matrix <A>mat</A> which <E>must</E> be
##  defined over <A>field</A>. No tests are performed.
##  </Description>
##  </ManSection>
##
DeclareOperation("CharacteristicPolynomialMatrixNC",
  #IsField is not yet known
  [IsRing,IsOrdinaryMatrix,IsPosInt]);


#############################################################################
##
#O  MinimalPolynomialMatrixNC( <field>,<mat>,<indnum> )
##
##  <ManSection>
##  <Oper Name="MinimalPolynomialMatrixNC" Arg='field,mat,indnum'/>
##
##  <Description>
##  returns the minimal polynomial for matrix <A>mat</A> which <E>must</E> be
##  defined over field>. No tests are performed.
##  </Description>
##  </ManSection>
##
DeclareOperation("MinimalPolynomialMatrixNC",
  #IsField is not yet known
  [IsRing,IsOrdinaryMatrix,IsPosInt]);

#############################################################################
##
#O  FieldOfMatrixList( <matlist> )
##
##  <ManSection>
##  <Oper Name="FieldOfMatrixList" Arg='matlist'/>
##
##  <Description>
##  The smallest  field containing all the entries of all matrices in
##  <A>matlist</A>. As the algorithm must run through all matrix entries, this
##  can be hard.
##  </Description>
##  </ManSection>
##
DeclareOperation("FieldOfMatrixList",[IsListOrCollection]);

#############################################################################
##
#O  DefaultRingOfMatrixList( <matlist> )
##
##  <ManSection>
##  <Oper Name="DefaultScalarDomainOfMatrixList" Arg='matlist'/>
##
##  <Description>
##  For a list of matrices <A>matlist</A> this operation returns a ring
##  <M>R</M> such that all entries of the matrices lie in <M>R</M>. If
##  <M>R</M> has a quotient field that can be represented, this quotient
##  field is returned instead.
##  In general <M>R</R> is not chosen to be as small as possible, but to
##  be determined quickly without being unneccesarily large
##  (see <Ref Attr="DefaultFieldOfMatrix"/>).
##  </Description>
##  </ManSection>
##
DeclareOperation("DefaultScalarDomainOfMatrixList",[IsListOrCollection]);


#############################################################################
##
#O  BaseField( <matrixorvector> )
##
##  <ManSection>
##  <Oper Name="BaseField" Arg='matrixorvector'/>
##
##  <Description>
##  returns the base field of a matrix or a vector. This is only defined
##  for wrapped matrices and vectors, not for plain lists. That is, for
##  a plain list the operation returns fail. It is guaranteed
##  that a call to this operation is only a very fast lookup.
##  </Description>
##  </ManSection>
##
DeclareOperation("BaseField",[IsObject]);


#############################################################################
##
#O  ZeroVector( <len>, <vector> )
##
##  <ManSection>
##  <Oper Name="ZeroVector" Arg='len, vector'/>
##
##  <Description>
##  returns a new mutable zero vector in the same representation as
##  <A>vector</A> of a possibly different length <A>len</A>. The idea behind this
##  is to be able to write code that preserves for example compression
##  over a finite field but returning a vector of different length.
##  </Description>
##  </ManSection>
##
#DeclareOperation("ZeroVector",[IsInt,IsObject]);


#############################################################################
##
#O  ZeroMatrix( <rows>, <cols>, <matrix>  )
##
##  <ManSection>
##  <Oper Name="ZeroMatrix" Arg='rows, cols, matrix'/>
##
##  <Description>
##  returns a new mutable zero matrix in the same representation as
##  <A>matrix</A> of possibly different dimensions. The number of rows of
##  the new matrix is <A>rows</A> and the number of columns is <A>cols</A>.
##  The idea behind this is to be able to write code that preserves
##  for example compression over a finite field.
##  </Description>
##  </ManSection>
##
#DeclareOperation("ZeroMatrix",[IsInt,IsInt,IsObject]);


#############################################################################
##
#O  IdentityMatrix( <rows>, <matrix> )
##
##  <ManSection>
##  <Oper Name="IdentityMatrix" Arg='rows, matrix'/>
##
##  <Description>
##  returns a new mutable identity matrix in the same representation as
##  <A>matrix</A> with <A>rows</A> rows. 
##  </Description>
##  </ManSection>
##
#DeclareOperation("IdentityMatrix",[IsInt,IsObject]);

#############################################################################
##
#O  SimplexMethod( <A>, <b>, <c> )
##
##  <#GAPDoc Label="SimplexMethod">
##  <ManSection>
##  <Oper Name="SimplexMethod" Arg='A,b,c'/>
##
##  <Description>
##  Find a rational vector <A>x</A> that maximizes <M><A>x</A>\cdot<A>c</A></M>, subject
##  to the constraint <M><A>A</A>\cdot<A>x</A>\le<A>b</A></M>. 
##  <Example><![CDATA[
##  gap> A:=[[3,1,1,4],[1,-3,2,3],[2,1,3,-1]];;
##  gap> b:=[12,7,10];;c:=[2,4,3,1];;
##  gap> SimplexMethod(A,b,c);
##  [ [ 0, 52/5, 0, 2/5 ], 42 ]
##  ]]></Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "SimplexMethod" );


#############################################################################
##
#E