/usr/share/gap/lib/mgmadj.gi is in gap-libs 4r7p9-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 | #############################################################################
##
#W mgmadj.gi GAP library Andrew Solomon
##
##
#Y Copyright (C) 1997, Lehrstuhl D für Mathematik, RWTH Aachen, Germany
#Y (C) 1998 School Math and Comp. Sci., University of St Andrews, Scotland
#Y Copyright (C) 2002 The GAP Group
##
## This file contains generic methods for magmas with zero adjoined.
##
InstallMethod( IsMultiplicativeZero,
"for magma with multiplicative zero and multiplicative element",
IsCollsElms,
[ IsMagma and HasMultiplicativeZero, IsMultiplicativeElement],
function( M, z )
return z = MultiplicativeZero(M);
end);
#
InstallMethod( IsMultiplicativeZero,
"for a magma and multiplicative element",
IsCollsElms,
[ IsMagma, IsMultiplicativeElement],
function(M, z)
local i, en, x;
i := 1;
en := Enumerator(M);
while IsBound(en[i]) do
x := en[i];
if x*z <> z or z*x <> z then
return false;
fi;
i := i +1;
od;
SetMultiplicativeZero(M,Immutable(z));
return true;
end);
#
InstallMethod( IsMultiplicativeZero,
"for a semigroup with generators and multiplicative element",
IsCollsElms,
[IsSemigroup and HasGeneratorsOfSemigroup, IsMultiplicativeElement],
function(S, z)
if HasMultiplicativeZero(S) then
return z=MultiplicativeZero(S);
elif ForAll(GeneratorsOfSemigroup(S), x->x*z=z and z*x=z) then
SetMultiplicativeZero(S, Immutable(z));
return true;
fi;
return false;
end);
#
InstallOtherMethod( MultiplicativeZero, "for a magma",
[ IsMagma ],
function( M )
local en, i;
en := Enumerator(M);
i := 1;
while (IsBound(en[i])) do
if IsMultiplicativeZero(M, en[i]) then
return en[i];
fi;
i := i +1;
od;
return fail;
end );
# MagmaWithZeroAdjoined
InstallMethod(MagmaWithZeroAdjoined, "for a magma with 0 adjoined element",
[IsMagmaWithZeroAdjoinedElementRep],
function( elm )
return FamilyObj(elm)!.MagmaWithZeroAdjoined;
end);
#
InstallMethod(MagmaWithZeroAdjoined, "for a magma",
[IsMagma], m-> Range(InjectionZeroMagma(m)));
#
InstallMethod( OneMutable, "for an element of a magma with zero adjoined",
[IsMultiplicativeElementWithOne and IsMagmaWithZeroAdjoinedElementRep],
x-> One(MagmaWithZeroAdjoined(x)));
#
InstallMethod( MultiplicativeZeroOp,
"for an element of a magma with zero adjoined",
[ IsMagmaWithZeroAdjoinedElementRep],
function( elm )
return MultiplicativeZero(MagmaWithZeroAdjoined(elm));
end );
#
InstallMethod(InjectionZeroMagma, "for a magma",
[IsMagma],
function(m)
local filts, fam, type, inj, zero, gens, out;
if Length(GeneratorsOfMagma(m))=0 then
Error("usage: it is only possible to adjoin a zero to a magma",
" with generators,");
return;
fi;
# filters for the elements
filts := IsMultiplicativeElementWithZero;
if IsMultiplicativeElementWithOne(Representative(m)) then
filts := filts and IsMultiplicativeElementWithOne;
fi;
if IsAssociativeElement(Representative(m)) then
filts := filts and IsAssociativeElement;
fi;
fam:=NewFamily( "FamilyOfElementOfMagmaWithZeroAdjoined", filts);
type:=NewType(fam, filts and IsMagmaWithZeroAdjoinedElementRep);
#the injection
inj:=function(elt)
local new;
new:=Objectify(type, rec(elt:=elt));
return new;
end;
# set the one
if IsMagmaWithOne(m) then
SetOne(fam, inj(One(m)));
fi;
#filters for the magma with 0 adjoined
filts:=IsAttributeStoringRep and IsMagmaWithZeroAdjoined;
if IsSemigroup(m) then
filts:=filts and IsAssociative;
fi;
if IsMagmaWithOne(m) then
filts:=filts and IsMagmaWithOne;
fi;
zero := Objectify(type, rec(elt:=fail));;
gens:=Concatenation(List(GeneratorsOfMagma(m), g-> inj(g)), [zero]);
out:=Objectify( NewType( FamilyObj( gens ), filts), rec());
# store the magma in the family so that it can be recovered from an element
fam!.MagmaWithZeroAdjoined:=out;
if IsGroup(m) then
SetIsZeroGroup(out, true);
fi;
SetMultiplicativeZero(out, zero);
if IsMagmaWithOne(out) then
SetGeneratorsOfMagmaWithOne(out, gens);
fi;
SetGeneratorsOfMagma(out, gens);
inj:=MappingByFunction(m, out, inj, x-> x!.elt);
SetUnderlyingInjectionZeroMagma(out, inj);
return inj;
end);
#
InstallMethod(PrintObj, "for a magma with zero adjoined",
[IsMagmaWithZeroAdjoined and IsMagma and HasGeneratorsOfMagma], 10 ,
function(m)
Print("<");
PrintObj(Source(UnderlyingInjectionZeroMagma(m)));
Print(" with 0 adjoined>");
return;
end);
#
InstallMethod(ViewObj, "for a zero group",
[IsMagmaWithZeroAdjoined and IsMagma and HasGeneratorsOfMagma], 10,
function(m)
Print("<");
ViewObj(Source(UnderlyingInjectionZeroMagma(m)));
Print(" with 0 adjoined>");
return;
end);
#
InstallMethod( Size, "for a magma with a zero adjoined",
[IsMagmaWithZeroAdjoined],
function(m)
return Size(Source(UnderlyingInjectionZeroMagma(m)))+1;
end);
#
InstallMethod( \*, "for two elements of a magma with zero adjoined",
IsIdenticalObj,
[ IsMagmaWithZeroAdjoinedElementRep, IsMagmaWithZeroAdjoinedElementRep ],
function(x, y)
if x!.elt=fail then
return x;
elif y!.elt=fail then
return y;
fi;
return (x!.elt*y!.elt)^UnderlyingInjectionZeroMagma(
MagmaWithZeroAdjoined(x));
end );
#
InstallMethod( \=, "for two elements of a magma with zero adjoined",
IsIdenticalObj,
[IsMagmaWithZeroAdjoinedElementRep, IsMagmaWithZeroAdjoinedElementRep ],
function(x, y)
return x!.elt=y!.elt;
end);
# ordering of the underlying magma with zero less than everything else
InstallMethod(\<, "for two elements of magmas with zero adjoined",
IsIdenticalObj,
[ IsMagmaWithZeroAdjoinedElementRep, IsMagmaWithZeroAdjoinedElementRep ],
function(x, y)
local xx, yy;
xx:=x!.elt; yy:=y!.elt;
if xx=fail then
return not yy=fail;
elif yy=fail then
return false;
fi;
return xx<yy;
end);
#
InstallMethod(PrintObj, "for an element of a magma with zero adjoined",
[IsMagmaWithZeroAdjoinedElementRep],
function(x)
local m;
m:=FamilyObj(x)!.MagmaWithZeroAdjoined;
Print("<");
if IsGroup(Source(UnderlyingInjectionZeroMagma(m))) then
Print("group ");
elif IsMonoid(Source(UnderlyingInjectionZeroMagma(m))) then
Print("monoid ");
elif IsSemigroup(Source(UnderlyingInjectionZeroMagma(m))) then
Print("semigroup ");
else
Print("magma ");
fi;
Print("with 0 adjoined elt: ");
if x!.elt=fail then
Print("0");
else
PrintObj(x!.elt);
fi;
Print(">");
return;
end);
|